期刊文献+
共找到436篇文章
< 1 2 22 >
每页显示 20 50 100
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
1
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
Fire Detection Method Based on Depthwise Separable Convolution and YOLOv3 被引量:6
2
作者 Yue-Yan Qin Jiang-Tao Cao Xiao-Fei Ji 《International Journal of Automation and computing》 EI CSCD 2021年第2期300-310,共11页
Recently,video-based fire detection technology has become an important research topic in the field of machine vision.This paper proposes a method of combining the classification model and target detection model in dee... Recently,video-based fire detection technology has become an important research topic in the field of machine vision.This paper proposes a method of combining the classification model and target detection model in deep learning for fire detection.Firstly,the depthwise separable convolution is used to classify fire images,which saves a lot of detection time under the premise of ensuring detection accuracy.Secondly,You Only Look Once version 3(YOLOv3)target regression function is used to output the fire position information for the images whose classification result is fire,which avoids the problem that the accuracy of detection cannot be guaranteed by using YOLOv3 for target classification and position regression.At the same time,the detection time of target regression for images without fire is greatly reduced saved.The experiments were tested using a network public database.The detection accuracy reached 98%and the detection rate reached 38fps.This method not only saves the workload of manually extracting flame characteristics,reduces the calculation cost,and reduces the amount of parameters,but also improves the detection accuracy and detection rate. 展开更多
关键词 Fire detection depthwise separable convolution fire classification You Only Look Once version 3(YOLOv3) target regression
原文传递
基于双流金字塔增强的DSCN模型在校园网络安全中的优化研究
3
作者 张友海 程小东 《湖州师范学院学报》 2025年第8期59-67,共9页
针对校园网络安全入侵检测中存在的复杂网络流量模式识别困难和实时响应能力不足的问题,提出一种基于双流金字塔增强策略的深度可分离卷积网络(DSCN)模型,以优化校园网络安全入侵检测与响应系统。该模型通过双流结构融合低分辨率与高分... 针对校园网络安全入侵检测中存在的复杂网络流量模式识别困难和实时响应能力不足的问题,提出一种基于双流金字塔增强策略的深度可分离卷积网络(DSCN)模型,以优化校园网络安全入侵检测与响应系统。该模型通过双流结构融合低分辨率与高分辨率路径的多尺度信息,显著提升其对复杂网络流量模式的识别能力,同时深度可分离卷积(DSC)通过分解卷积操作,有效降低模型的计算复杂度,进而提升系统的实时响应能力。将该模型在KDD Cup 1999、CICIDS 2017、CICIDS 2021和UNSW-NB15数据集上进行验证,结果表明,该模型在入侵检测率、误报率、响应时间等多项指标上表现优异,为校园网络安全防护提供了一种高效的技术解决方案。 展开更多
关键词 校园网络安全 入侵检测 深度可分离卷积网络 双流金字塔增强策略
在线阅读 下载PDF
基于TCN-Transformer-DSCNN的船舶发动机轴承故障诊断方法
4
作者 申思宇 杨奕飞 谈敏佳 《江苏科技大学学报(自然科学版)》 2025年第5期28-35,共8页
针对现有船舶发动机轴承故障诊断方法存在时间特征提取不完整和诊断效率低等不足,提出了一种基于新的深度学习模型TCN-Transformer-DSCNN的故障诊断方法.首先对时域卷积网络(temporal convolutional network,TCN)和Transformer的输出特... 针对现有船舶发动机轴承故障诊断方法存在时间特征提取不完整和诊断效率低等不足,提出了一种基于新的深度学习模型TCN-Transformer-DSCNN的故障诊断方法.首先对时域卷积网络(temporal convolutional network,TCN)和Transformer的输出特征融合,弥补了单一网络时间维特征提取不完整.其次,通过门控融合模块对双网络输出特征进行动态加权,防止了融合特征时信息的冗余和冲突.最后,利用轻量化深度可分离卷积网络(depthwise separable convolutional neural network,DSCNN)细化通道空间特征,实现了多维特征提取.由真实船舶发动机轴承数据集的实验评估表明,所提模型在正常诊断下准确率可达99.74%,在3种噪声(-2、0、2 dB)环境下准确率分别达到了99.29%、99.36%、99.62%,均优于CNN、MLP、VGG、Transformer以及InceptionTime等常用故障诊断模型.模型在多维特征提取方面具有鲁棒性和有效性,为复杂海洋工程场景中的故障诊断提供了可靠的解决方案. 展开更多
关键词 船舶发动机轴承 故障诊断 TRANSFORMER 加权融合 时域卷积网络 深度可分离卷积网络
在线阅读 下载PDF
基于DSC与超球面损失的遮挡人脸识别研究
5
作者 孙吏功 王辰灏 +1 位作者 冯嘉琪 杨洪臣 《计算机仿真》 2025年第4期439-445,共7页
当下,佩戴口罩已经成为常态,口罩导致人脸的大部分特征被口罩遮挡,传统的人脸识别算法在识别口罩遮挡人脸时性能下降。针对以上问题,提出了一种融合深度可分离卷积(Depthwise Separable Convolutions,DSC)神经网络和超球面损失函数的遮... 当下,佩戴口罩已经成为常态,口罩导致人脸的大部分特征被口罩遮挡,传统的人脸识别算法在识别口罩遮挡人脸时性能下降。针对以上问题,提出了一种融合深度可分离卷积(Depthwise Separable Convolutions,DSC)神经网络和超球面损失函数的遮挡人脸识别神经网络:超球面Mobilenet神经网络,利用DSC学习遮挡人脸的高鉴别度面部特征,结合超球面损失函数来提高识别准确率。实验表明,相较于其它算法,上述方法在口罩遮挡人脸数据集取得了93.49%的识别准确率,较其它算法提升了13.26%;通过改进损失函数,使得识别准确率有了5.55%的提升。提出的模型能够同时有效处理戴口罩和不戴口罩人脸识别任务,并在拥有较小的参数量的同时,具备较高的识别精度。 展开更多
关键词 视频侦查 口罩遮挡人脸 深度可分离卷积 超球面损失函数 人脸识别
在线阅读 下载PDF
基于Kurtogram与DSCN的滚动轴承故障诊断方法 被引量:4
6
作者 古莹奎 刘平 +1 位作者 林忠海 邱光琦 《中国安全科学学报》 CAS CSCD 北大核心 2021年第6期99-105,共7页
为揭示不同轴承故障类型的特征,提高故障诊断的精度与效率,提出一种基于Kurtogram与深可分卷积神经网络(DSCN)相结合的轴承故障诊断方法。在利用原始振动信号生成Kurtogram的基础上,通过DSCN学习和识别不同故障模式下Kurtogram的图形特... 为揭示不同轴承故障类型的特征,提高故障诊断的精度与效率,提出一种基于Kurtogram与深可分卷积神经网络(DSCN)相结合的轴承故障诊断方法。在利用原始振动信号生成Kurtogram的基础上,通过DSCN学习和识别不同故障模式下Kurtogram的图形特征,自动提取优势特征并进行故障分类。结果表明:相对于其他故障诊断方法,提出的方法在测试集上的识别精确度较高,可达到97.28%;同时,DSCN在降低参数量及提高训练速度上具有明显优势。 展开更多
关键词 滚动轴承 Kurtogram 深可分卷积神经网络(dscN) 故障诊断 混淆矩阵
原文传递
一种新型DSCNN-GRU结构的减速机轴承故障诊断方法 被引量:9
7
作者 汪洋 郭利进 《机械科学与技术》 CSCD 北大核心 2020年第2期258-266,共9页
结合深度学习理论,将一维卷积神经网络运用于振动信号故障诊断,相较于传统方法,提取特征简单且高效。为进一步优化一维卷积结构,弥补其在信号所有位置的寻找模式,联系周期内的故障特征,提出一种新型DSCNN-GRU网络。该模型融合了深度可... 结合深度学习理论,将一维卷积神经网络运用于振动信号故障诊断,相较于传统方法,提取特征简单且高效。为进一步优化一维卷积结构,弥补其在信号所有位置的寻找模式,联系周期内的故障特征,提出一种新型DSCNN-GRU网络。该模型融合了深度可分离卷积的轻量快捷,降低了一维卷积结构参数;加入门控机制,可记忆分析故障点的信号特征,联系周期内的信号关系,更好地捕捉信号故障特征,提升对时间序列的敏感性。提出一种跟踪梯度优化Adam算法,解决模型随时间窗振荡问题。通过采集的减速机滚动轴承数据研究表明,该算法平均故障识别率可达94%以上,分类效果明显,泛化能力强。 展开更多
关键词 卷积神经网络 深度可分离卷积 门控机制 故障诊断 滚动轴承
在线阅读 下载PDF
基于GADF-MDSC的特大型轴承深度迁移故障诊断方法 被引量:3
8
作者 姜烨飞 王华 +2 位作者 潘裕斌 王天祥 傅航 《振动与冲击》 EI CSCD 北大核心 2024年第19期10-18,共9页
针对工程应用中特大型轴承运行工况复杂以及故障数据匮乏,导致其故障特征提取不全面的问题,提出了一种基于格拉姆角差场-多尺度深度可分离卷积(Gramian angular difference field-multi-scale depthwise separable convolutions,GADF-MD... 针对工程应用中特大型轴承运行工况复杂以及故障数据匮乏,导致其故障特征提取不全面的问题,提出了一种基于格拉姆角差场-多尺度深度可分离卷积(Gramian angular difference field-multi-scale depthwise separable convolutions,GADF-MDSC)的特大型轴承深度迁移智能诊断方法。首先,构建GADF-MDSC故障诊断网络,该网络分为三大模块:图像转换、特征提取、输出部分。图像转换模块采用GADF编码方式将振动信号转换为二维图像;特征提取模块通过MDSC提取综合故障特征信息,并利用双向门控循环单元筛选融合特征;输出部分由Softmax函数预测轴承故障类型的概率分布。然后,利用源域数据预训练模型,将预训练模型权重参数作为目标域训练模型初始化参数,冻结除底层外的所有参数,使用目标域数据微调模型,实现深度迁移故障诊断任务。最后,通过两种特大型轴承试验对深度迁移模型进行验证。试验结果表明,所提方法在目标域样本仅有5.00%的条件下,仍能保证较高的跨工况精度,达到86.04%,且迁移效果优于其他方法。 展开更多
关键词 特大型轴承 故障诊断 迁移学习 格拉姆角差场(GADF) 多尺度深度可分离卷积(Mdsc)
在线阅读 下载PDF
基于MDSCLDNN-HAN的调制识别算法 被引量:2
9
作者 李天宇 侯进 +1 位作者 李昀喆 郝彦超 《无线电工程》 北大核心 2022年第9期1525-1532,共8页
针对基于深度学习的调制识别模型存在模型参数多、计算量大等问题,使用深度可分离卷积和注意力机制,提出了一种新型多通道特征融合的神经网络模型。在数据集RadioML2016.10a和RadioML2016.10b上进行实验,验证结果表明,信噪比在0 dB以上... 针对基于深度学习的调制识别模型存在模型参数多、计算量大等问题,使用深度可分离卷积和注意力机制,提出了一种新型多通道特征融合的神经网络模型。在数据集RadioML2016.10a和RadioML2016.10b上进行实验,验证结果表明,信噪比在0 dB以上时,所提算法模型对2个数据集的识别准确率分别为92.9%和93.1%,识别准确率优于现有模型,同时参数量减少65.7%,计算量减少76.6%。 展开更多
关键词 调制识别 深度学习 深度可分离卷积 幅度和相位 注意力
在线阅读 下载PDF
基于DSConvBiGRU网络和热电堆阵列的动态手势识别方法 被引量:1
10
作者 顾亮 于莲芝 《计量学报》 CSCD 北大核心 2024年第6期795-805,共11页
提出了适用于嵌入式系统并融合深度可分离卷积神经网络与双向门控循环单元的DSConvBiGRU网络模型,将其用于动态手势序列的分类,设计并实现了一种使用低分辨率热电堆阵列传感器的动态手势识别解决方案,构建了动态手势数据集并在公开网站... 提出了适用于嵌入式系统并融合深度可分离卷积神经网络与双向门控循环单元的DSConvBiGRU网络模型,将其用于动态手势序列的分类,设计并实现了一种使用低分辨率热电堆阵列传感器的动态手势识别解决方案,构建了动态手势数据集并在公开网站发布,完成了预训练网络模型在Raspberry Pi边缘端的部署。系统对传感器输出的连续20个温度矩阵进行区间映射、背景减除、Lanczos插值和Otsu二值化预处理得到单个动态手势序列,再由预训练的DSConvBiGRU网络进行分类。实验结果表明:网络模型在测试集上识别准确率为99.291%,在边缘端预处理耗时5.513 ms,推理耗时8.231 ms,该系统满足低功耗、高精度和实时性的设计需求。 展开更多
关键词 机器视觉 光电检测 动态手势识别 热电堆阵列 深度可分离卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于SE-DSCNN的MMC开关管故障诊断方法 被引量:12
11
作者 曾昭瑢 何怡刚 《电力自动化设备》 EI CSCD 北大核心 2022年第5期104-111,共8页
为了实现模块化多电平变换器(MMC)子模块开关管的故障诊断,提出了一种基于挤压-激励模块的深度可分离卷积神经网络(SE-DSCNN)。该网络直接利用原始电容电压数据,不需要任何的特征提取算法,能够自动提取隐藏在原始数据中的深层特征,结合... 为了实现模块化多电平变换器(MMC)子模块开关管的故障诊断,提出了一种基于挤压-激励模块的深度可分离卷积神经网络(SE-DSCNN)。该网络直接利用原始电容电压数据,不需要任何的特征提取算法,能够自动提取隐藏在原始数据中的深层特征,结合挤压-激励模块以突出通道域中具有代表性的特征,利用深度可分离卷积(DSC)来减少网络的计算量。利用滑动时间窗口将数据分段并归一化后输入提前训练好的最优模型中,模型输出预测标签。通过与其他人工特征提取方法及深度学习方法进行对比,结果表明模型参数量比具有相同卷积层数的标准卷积神经网络(CNN)减少了70.92%左右。所提方法在已有样本片段上的分类准确率及不同故障时期的诊断正确率均达99%及以上,诊断单个样本片段所需的时间约为0.34 ms,不但能区分故障早期的耦合性特征,还能实现准确、可靠、高效、快速的故障诊断。 展开更多
关键词 MMC 开关管故障 挤压-激励模块 深度可分离卷积神经网络 故障诊断
在线阅读 下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:2
12
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural Network depthwise Dilated separable convolution Hierarchical Multi-Scale Feature Fusion
在线阅读 下载PDF
基于MHSA⁃EDSCNet混合模型的运动想象多任务分类研究
13
作者 张圆 乔晓艳 《测试技术学报》 2024年第6期652-660,共9页
运动想象脑电信号解码是脑机接口技术的关键环节。针对传统深度学习方法难以获得脑电全局信息,提出多头自注意力(MHSA)机制结合改进的深度可分离卷积网络(EDSCNet)模型,用于运动想象多任务分类。首先,通过滤波器组共空间模式提取不同子... 运动想象脑电信号解码是脑机接口技术的关键环节。针对传统深度学习方法难以获得脑电全局信息,提出多头自注意力(MHSA)机制结合改进的深度可分离卷积网络(EDSCNet)模型,用于运动想象多任务分类。首先,通过滤波器组共空间模式提取不同子带共空间模式空域特征,准确获取运动想象脑电的细粒度特征信息;其次,利用一维卷积改进深度可分离卷积网络,进一步提取脑电局部空间信息和空间关联信息,并结合多头自注意力机制,更好地捕捉运动想象脑电特征的全局空间信息,增强特征表征能力,提高多任务分类准确率,同时可减少模型参数和计算量;最后,在BCI Competition IV2a运动想象脑电数据集对该模型进行验证和评估,并对左手、右手、双脚和舌头四类运动想象任务脑电特征进行可视化。结果表明:模型在两个运动想象四类任务数据集,分别获得95.35%和96.87%的平均分类准确率以及0.9379和0.9586的Kappa系数。模型特征可视化对大脑不同的运动想象任务能够显著区分,并且模型对所有被试表现出一致的性能。 展开更多
关键词 脑电信号 深度可分离卷积 滤波器组共空间模式 多头自注意力
在线阅读 下载PDF
DSC-LSTM的TE过程故障诊断 被引量:1
14
作者 于桂仙 杨青 刘彦俏 《沈阳理工大学学报》 CAS 2021年第4期6-10,共5页
为提高化工过程的故障诊断效果,将深度可分离卷积(DSC)和长短期记忆网络(LSTM)相结合,提出基于DSC-LSTM的集合型故障诊断方法,采用时空结合的方式从两个角度提取特征进行故障诊断。首先对数据进行归一化处理后将其送入DSC网络,通过DSC... 为提高化工过程的故障诊断效果,将深度可分离卷积(DSC)和长短期记忆网络(LSTM)相结合,提出基于DSC-LSTM的集合型故障诊断方法,采用时空结合的方式从两个角度提取特征进行故障诊断。首先对数据进行归一化处理后将其送入DSC网络,通过DSC提取空域特征,同时对数据进行降维;再将DSC的输出作为LSTM的输入,通过LSTM提取时域特征,然后通过全连接层(FC)进行故障诊断;最后在田纳西-伊斯曼(TE)化工过程上对该方法进行验证。结果表明,DSC-LSTM集合方法可有效地提高故障诊断的准确率指标。 展开更多
关键词 故障诊断 深度可分离卷积 长短期记忆网络 集合型 田纳西-伊斯曼过程
在线阅读 下载PDF
A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data
15
作者 Kun Fang Julong Pan +1 位作者 Lingyi Li Ruihan Xiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期493-514,共22页
With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This ... With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection(Skip-DSCGAN)for fall detection.The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data.A semisupervised learning approach is adopted to train the model using only activities of daily living(ADL)data,which can avoid data imbalance problems.Furthermore,a quantile-based approach is employed to determine the fall threshold,which makes the fall detection frameworkmore robust.This proposed fall detection framework is evaluated against four other generative adversarial network(GAN)models with superior anomaly detection performance using two fall public datasets(SisFall&MobiAct).The test results show that the proposed method achieves better results,reaching 96.93% and 92.75% accuracy on the above two test datasets,respectively.At the same time,the proposed method also achieves satisfactory results in terms ofmodel size and inference delay time,making it suitable for deployment on wearable devices with limited resources.In addition,this paper also compares GAN-based semisupervised learning methods with supervised learning methods commonly used in fall detection.It clarifies the advantages of GAN-based semisupervised learning methods in fall detection. 展开更多
关键词 Fall detection skip-connection depthwise separable convolution generative adversarial networks inertial sensor
在线阅读 下载PDF
A Framework of Lightweight Deep Cross-Connected Convolution Kernel Mapping Support Vector Machines
16
作者 Qi Wang Zhaoying Liu +3 位作者 Ting Zhang Shanshan Tu Yujian Li Muhammad Waqas 《Journal on Artificial Intelligence》 2022年第1期37-48,共12页
Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classifi... Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classification.However,the depth kernel mapping support vector machine does not take into account the connection of different dimensional spaces and increases the model parameters.To further improve the recognition capability of deep kernel mapping support vector machines while reducing the number of model parameters,this paper proposes a framework of Lightweight Deep Convolutional Cross-Connected Kernel Mapping Support Vector Machines(LC-CKMSVM).The framework consists of a feature extraction module and a classification module.The feature extraction module first maps the data from low-dimensional to high-dimensional space by fusing the representations of different dimensional spaces through cross-connections;then,it uses depthwise separable convolution to replace part of the original convolution to reduce the number of parameters in the module;The classification module uses a soft margin support vector machine for classification.The results on 6 different visual datasets show that LC-CKMSVM obtains better classification accuracies on most cases than the other five models. 展开更多
关键词 convolutional neural network cross-connected lightweight framework depthwise separable convolution
在线阅读 下载PDF
基于YOLOv5s的轻量化森林火灾探测算法 被引量:2
17
作者 刘惠临 方琼 +3 位作者 江宇 魏华章 王涛 张树川 《中国安全科学学报》 北大核心 2025年第1期75-83,共9页
为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间... 为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间;其次,设计分组混洗策略优化常规卷积,并在特征提取的C3模块中融入高效通道注意力(ECA)机制和深度可分离卷积,增强图像特征提取与融合能力的同时有效降低模型的参数量;然后,采用动态非单调聚焦机制优化Wise-交并比(WIOU)损失函数,减少低质量样本产生的有害梯度;最后,在构建的森林火灾数据集上将所提算法与其他算法做充分的试验对比。结果表明:所提算法在各类场景均展现出良好的泛化性,对火焰目标的检测精度达到86.1%,较标准YOLOv5s检测精度提升2.7%,检测速度提升11.4%,有效降低了火灾误报率,增强了模型的检测性能。 展开更多
关键词 YOLOv5s 轻量化 森林火灾探测 深度可分离卷积 注意力 Wise-交并比(WIOU)
原文传递
基于二次分解时频图和SE-DSMC-BSA的轻量化有载分接开关机械故障识别方法 被引量:1
18
作者 李思奇 夏卯 +4 位作者 鲁思兆 毕贵红 黄一超 阮彦俊 李良创 《振动与冲击》 北大核心 2025年第11期268-279,308,共13页
有载分接开关(on-load tap-changer,OLTC)是有载调压变压器中唯一可动的部件,其频繁切换易导致机械故障。为了实现OLTC机械状态的在线监测,文中提出一种结合二次分解时频图、深度可分离多尺度卷积(depthwise separable multiscale convo... 有载分接开关(on-load tap-changer,OLTC)是有载调压变压器中唯一可动的部件,其频繁切换易导致机械故障。为了实现OLTC机械状态的在线监测,文中提出一种结合二次分解时频图、深度可分离多尺度卷积(depthwise separable multiscale convolution,DSMC)、挤压-激励(squeeze-excitation,SE)注意力机制和广播自注意力(broadcast self-attention,BSA)机制的轻量化OLTC故障识别方法。首先,建立OLTC故障模拟试验平台获取振动信号。在此基础上,引入二次分解和Hilbert变换,将两次分解的分量全部转换为时频图。然后,利用SE-DSMC对时频图进行多尺度的特征提取,并进行通道特征增强。最后,引入BSA对全局特征进行提取,以提升故障识别的准确率。与现有方法相比,该方法特别是在小样本情况下具有识别速度快、准确率高和轻量化等优势。 展开更多
关键词 有载分接开关(OLTC) 故障识别 二次分解 挤压-激励(SE) 深度可分离多尺度卷积(DSMC) 广播自注意力(BSA) 轻量化
在线阅读 下载PDF
基于改进YOLOv4-Tiny的交通标志图像识别算法研究 被引量:2
19
作者 孙海明 付世超 《计算机应用与软件》 北大核心 2025年第5期164-170,190,共8页
为实现无人驾驶汽车对交通标志的精准识别,提出基于改进YOLOv4-Tiny的交通标志图像识别算法YOLO-slim。在原算法中加入卷积注意力网络并在特征金字塔网络中引入浅层特征,提高算法对不同层间特征信息的利用率。使用深度可分离卷积替换标... 为实现无人驾驶汽车对交通标志的精准识别,提出基于改进YOLOv4-Tiny的交通标志图像识别算法YOLO-slim。在原算法中加入卷积注意力网络并在特征金字塔网络中引入浅层特征,提高算法对不同层间特征信息的利用率。使用深度可分离卷积替换标准卷积减少网络参数量压缩模型权重文件。在模型训练中使用Focus loss损失函数平衡难易样本。实验结果表明,YOLO-slim的平均准确率为94.41%,权重文件为4.49 MB,检测速度为8.0 ms。改进后的算法准确率更高、权重文件更小,更适合部署在车载计算单元上。 展开更多
关键词 交通标志 算法 注意力机制 深度可分离卷积
在线阅读 下载PDF
基于DSC-BiGRU的化工过程故障诊断
20
作者 杨青 于桂仙 +1 位作者 刘彦俏 吴东升 《沈阳理工大学学报》 CAS 2022年第5期6-12,共7页
针对化工过程数据具有动态时序性以及少数故障特征不明显难以进行故障诊断问题,本文将深度可分离卷积(DSC)和双向门控循环单元(BiGRU)相结合,提出基于DSC-BiGRU的集合型故障诊断方法。首先,对数据进行归一化处理并输入DSC网络提取空域特... 针对化工过程数据具有动态时序性以及少数故障特征不明显难以进行故障诊断问题,本文将深度可分离卷积(DSC)和双向门控循环单元(BiGRU)相结合,提出基于DSC-BiGRU的集合型故障诊断方法。首先,对数据进行归一化处理并输入DSC网络提取空域特征,并将数据降维;再将DSC的输出作为BiGRU的输入,通过BiGRU从两个方向提取时域特征;最后,通过全连接层(FC)进行故障诊断。经田纳西-伊士曼(TE)过程验证,该方法较传统方法能够有效提升化工过程的故障诊断精度。 展开更多
关键词 故障诊断 深度可分离卷积 双向门控循环单元 集合型故障诊断 田纳西-伊士曼过程
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部