Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
Rare earth-doped inorganic compounds contribute mostly to the family of persistent luminescent materials due to the versatile energy levels of rare earth ions.One of the key research aims is to match the trap level st...Rare earth-doped inorganic compounds contribute mostly to the family of persistent luminescent materials due to the versatile energy levels of rare earth ions.One of the key research aims is to match the trap level stemming from the doped rare earth ion or intrinsic defects to the electronic structure of the host,and therefore thermoluminescence measurement becomes a radical technology in studying trap depth,which is one of the significant parameters that determine the properties of persistent luminescence and photostimulated luminescence.However,the results of trap depth obtained by different thermoluminescence methods are quite different so that they are not comparable.Herein,we analyzed different thermoluminescence methods,selected and improved the traditional peak position method of T_(m)/500 to be E=(-0.94Inβ+30.09)kT_(m).Only the experimental heating rate(β)is needed additionally,but the accuracy is improved greatly in most cases.This convenient and accurate method will accelerate the discovery of novel rare earth-doped materials.展开更多
A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques inclu...A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.展开更多
The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-...The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-frequency sound waves,a novel semi-active sound absorption method has been introduced.This method modulates the surface impedance of a loudspeaker positioned behind the sound-absorbing material,thereby altering the sound absorption coefficient.The theoretical sound absorption coefficient is calculated using MATLAB and compared with the experimental one.Results show that the method can effectively modulates the absorption coefficient in response to varying incident sound wave frequencies,ensuring that it remains at its peak value.展开更多
A new type of 785 nm semiconductor laser device has been proposed.The thin cladding and mode expansion layer structure incorporated into the epitaxy on the p-side significantly impacts the regulation of grating etchin...A new type of 785 nm semiconductor laser device has been proposed.The thin cladding and mode expansion layer structure incorporated into the epitaxy on the p-side significantly impacts the regulation of grating etching depth.Thinning of the p-side waveguide layer makes the light field bias to the n-side cladding layer.By coordinating the confinement effect of the cladding layer,the light confinement factor on the p-side is regulated.On the other hand,the introduction of a mode expansion layer facilitates the expansion of the mode profile on the p side cladding layer.Both these factors contribute positively to reducing the grating etching depth.Compared to the reported epitaxial structures of symmetric waveguides,the new structure significantly reduces the etching depth of the grating while ensuring adequate reflection intensity and maintaining resonance.Moreover,to improve the output performance of the device,the new epitaxial structure has been optimized.Based on the traditional epitaxial structure,an energy release layer and an electron blocking layer are added to improve the electronic recombination efficiency.This improved structure has an output performance comparable to that of a symmetric waveguide,despite being able to have a smaller gain area.展开更多
Based on Moho and Curie depth,heat flow,and upper mantle S-wave velocity anomaly,we infer the thermo-chemical structure of the lithospheres in Africa and surrounding oceans.The Moho depth is derived from gravity anoma...Based on Moho and Curie depth,heat flow,and upper mantle S-wave velocity anomaly,we infer the thermo-chemical structure of the lithospheres in Africa and surrounding oceans.The Moho depth is derived from gravity anomaly using the Parker-Oldenburg method,with constraints from seismic Moho.Crustal stratification defined by Curie-Moho depth difference shows that thermal and strong compositional processes may have shaped the lithospheric architecture of the African continental plate.Moho and Curie depths indicate the southern and eastern African cratons have thermochemical structures different from the West African Craton.Large Curie-Moho depth difference in southern and eastern Africa aligns with the low velocity anomaly originated from the core-mantle boundary.Mantle upwelling from the African low-velocity anomaly presumably induced partial melting at great depth,and the release of mineral-rich fluid and large amounts of volatile components facilitates a regional metasomatism,and results in a depleted,predominantly felsic,low-density paramagnetic crust.Mantle xenolith in kimberlites and volcanic rocks supports metasomatism by melts transmitted through narrow conduits as an intermittent or continuous upward flux of mineral-rich fluid.Alignment of the Curie-Moho depth difference at the intra-plate volcanic province correlates with weak lithospheric strength along the corridor connecting the intra-plate volcanic province with the Ethiopian plateau,suggesting a pathway for thermochemical asthenospheric flow.Crustal stratification and compositional-driven density layering support crustal buoyancy and uplift in the Hoggar,and southern and eastern Africa.A magnetized uppermost mantle is prevalent in the entire oceanic region,except at large igneous provinces(LIPs),volcanic seamounts,and oceanic plateaus,which have partial paramagnetic crusts.Our results support thermochemical upwelling related to the low velocity anomaly beneath the African plate.展开更多
In 1875,the HMS(皇家海军舰艇)Challenger stopped in the middle of the Pacific Ocean,southwest of the Mariana Islands,to conduct a routine depth sounding.As they'd done countless times before,the British scientists ...In 1875,the HMS(皇家海军舰艇)Challenger stopped in the middle of the Pacific Ocean,southwest of the Mariana Islands,to conduct a routine depth sounding.As they'd done countless times before,the British scientists and sailors on board lowered a weighted rope into the water.Unlike those other times,however,the rope kept falling,seemingly without an end.After nearly 8,230 meters,it finally hit the bottom—the first human attempt at what became known as the Mariana Trench.展开更多
Depth maps play a crucial role in various practical applications such as computer vision,augmented reality,and autonomous driving.How to obtain clear and accurate depth information in video depth estimation is a signi...Depth maps play a crucial role in various practical applications such as computer vision,augmented reality,and autonomous driving.How to obtain clear and accurate depth information in video depth estimation is a significant challenge faced in the field of computer vision.However,existing monocular video depth estimation models tend to produce blurred or inaccurate depth information in regions with object edges and low texture.To address this issue,we propose a monocular depth estimation model architecture guided by semantic segmentation masks,which introduces semantic information into the model to correct the ambiguous depth regions.We have evaluated the proposed method,and experimental results show that our method improves the accuracy of edge depth,demonstrating the effectiveness of our approach.展开更多
Soil carbon stock research has gained prominence in environmental studies amidst climate change concerns,especially given that soil is one of the largest terrestrial carbon reserves.Accurate predictions necessitate co...Soil carbon stock research has gained prominence in environmental studies amidst climate change concerns,especially given that soil is one of the largest terrestrial carbon reserves.Accurate predictions necessitate comprehensive soil profile measurements,which are resource-intensive to obtain.To address this,depth functions are employed to derive continuous estimates,aligning with standardized depths.However,global datasets employing depth functions in raster format have not been widely utilized,which could lower financial costs and improve accuracy in data-scarce regions.Furthermore,research into aggregating depth functions for realistic carbon stock estimations remains limited,offering opportunities to streamline cost and time.The aim of this study was to apply equal-area splines to estimate soil carbon stocks,utilizing SoilGrids and iSDAsoil datasets in a 317-km^(2) Quaternary catchment(30°48′E,29°18′S)in KwaZulu-Natal,South Africa.Both datasets were resampled to a 250-m resolution,and the splines were interpolated to a depth of 50 cm per pixel.Various aggregation methods were employed in calculation,including the cumulative sum(definite integral),discrete sum(sum of 1-cm spline predictions),and the mean carbon stock(mean to 50 cm).Quantitative evaluation was performed with 310 external soil samples.SoilGrids showed higher predictions(100–546 kg m^(-2))than iSDAsoil(66.9–225 kg m^(-2))for the cumulative sum.The discrete sum also exhibited higher prediction values for SoilGrids(293–789 kg m^(-2))compared to iSDAsoil(228–557 kg m^(-2)).SoilGrids aggregated with the discrete sum closely matched previous studies,estimating total carbon stock for the catchment at 7126 t,albeit with spatial inconsistencies.However,when evaluating with an external dataset,the results were not satisfactory for any method according to Lin's concordance correlation coefficient(CCC,correlation of a 1:1 line),with all models obtaining a CCC below 0.01.Similarly,all models had a root mean squared error larger than 59 kg m^(-2).It was concluded that SoilGrids and iSDAsoil were spatially inaccurate in the catchment but can still provide information about the total carbon stock.This method could be improved by obtaining more soil samples for the datasets,incorporating local data into the spline,making the method more computationally efficient,and accounting for discrete horizon boundaries.展开更多
The features of optical defects in a chemical vapor deposition (CVD) synthetic type Ⅱ a diamond were characterized using photoluminescence (PL) spectroscopy, before and after electron irradiation. The sample was cut ...The features of optical defects in a chemical vapor deposition (CVD) synthetic type Ⅱ a diamond were characterized using photoluminescence (PL) spectroscopy, before and after electron irradiation. The sample was cut within a {100} growth layer, and irradiated with 2 MeV electrons along the <100> axis. PL spectra of sample were collected under 532 nm and 355 nm laser excitation, at room temperature and 77 K, and linear scanning analysis along incident depth was applied to determine the distribution of defects. The pre-irradiation characterization results revealed uniformly distributed PL centers at 389 nm, 469 nm, 533 nm, 575 nm (ZPL of NV 0), 637 nm (ZPL of NV -), and 736.7/737.1 nm (ZPL doublet of SiV -). After irradiation, the differential responses of these as-grown defects were observed, alongside the emergence of irradiation-induced defects, namely 489 nm center, H3 center (ZPL at 504 nm) and GR1 center (ZPL at 741 nm). The maximum penetration depth of 2 MeV electron-irradiation induced defects was determined to be 2.1 mm. This work primarily presents the depth profiles of both as-grown and irradiation-induced defects in 2 MeV electrons irradiated diamond. The result provides experimental data for better understanding of the radiation effect in diamonds. Serving as a reference for diamond enhancement by electron irradiation.展开更多
Global warming has been reported to enhance thermal stratification and decrease the mixlayer depth(MLD)in waters due to higher surface water temperatures,especially in summer.Previous studies were conducted for indivi...Global warming has been reported to enhance thermal stratification and decrease the mixlayer depth(MLD)in waters due to higher surface water temperatures,especially in summer.Previous studies were conducted for individual cases or specific periods.At present,there is a lack of global assessments on the influence of climate warming in different seasons on thermal stratification.The ECMWF Reanalysis v5(ERA5)dataset was used to estimate the variability of water body mixing and its drivers in different seasons and regions.Results indicate that global warming could enhance thermal stratification and decrease the MLD globally in summer.Wind speed was the primary driver of MLD changes,followed by temperature.However,ice melt due to global warming enhanced the mixing in icecovered waters in the Northern Hemisphere,and early ice melt led to early mixing.Ice depth was the primary driver of MLD changes in the Northern Hemisphere due to delayed ice formation and earlier melting,while wind speed was the primary driver in other regions or during ice-free seasons.The enhanced mixing due to earlier ice melt out in late winter and early spring could promote water circulation and nutrient turnover,and replenish dissolved oxygen in deep water,thereby promoting the maximum biomass of cyanobacteria and advance harmful algal blooms.展开更多
Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their us...Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their use in wearable devices.To overcome this,recent research by X.Liu et al.presents a compact binocular metalens-based depth perception system that integrates efficient edge detection through an advanced neural network.This system enables accurate,realtime depth mapping even in complex environments,enhancing potential applications in augmented reality,robotics,and autonomous systems.展开更多
The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface t...The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.展开更多
University courses should have both breadth and depth.However,most courses in universities only focus on the breadth construction,while neglecting the depth construction,resulting in students being unable to apply the...University courses should have both breadth and depth.However,most courses in universities only focus on the breadth construction,while neglecting the depth construction,resulting in students being unable to apply the knowledge they have learned to conduct research or solve real-world application problems.The students’high-level abilities are insufficient and not well-trained.Therefore,in this paper,we propose a T-structured course design method to ensure both breadth and depth of a course.The proposed T-structured course design method includes four aspects:T-structured course contents,T-structured teaching activities,T-structured examination formats,and T-structured homework difficulty.By applying our proposed T-structured course design strategy to the course Optimization Algorithms and Intelligent Computing,good results are achieved,demonstrating the applicability of our proposed strategy.展开更多
The marshes of southern Iraq are of great value due to their roles in the economy,environment,heritage,tourism,and agriculture.However,the region has witnessed remarkable transformations in land cover,influenced by hu...The marshes of southern Iraq are of great value due to their roles in the economy,environment,heritage,tourism,and agriculture.However,the region has witnessed remarkable transformations in land cover,influenced by human interventions and natural environmental factors.In this research,the Central Marshlands were selected for study and monitoring.These Marshes form the Mesopotamian Marshes,a vital part of the Tigris-Euphrates river system.This area 2 formerly covered an area of approximately 3,000 km and was once home to the lives of Marsh Arabs and their animals.The primary objective of this study was to compile a set of satellite images covering the same marshland region over several decades.The data used includes images captured by various Landsat missions:MSS(1975),TM(1983&1993),ETM+(2003),and the Operational Land Imager(OLI)from Landsat 8(2015).Satellite images were combined and pre-processed through steps such as layer stacking to create composite images from multiple bands.Several image classification methods were applied,and the classification results showed a significant and unprecedented increase in the percentage of water in the marsh,reaching 16%in 2003.This was combined with vegetation identification techniques,including the identification of vegetation boundaries to detect areas of dense vegetation.In addition,the relative depth of the water was measured to estimate marsh water levels,with the best result obtained in 2003.The normalized mean vegetation index(NDVI)calculated in this study had its best value in 1984 due to the spread of reeds and papyrus during this period.Papyrus is the raw material in the sugar industry,providing a significant economic boost.展开更多
During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three...During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three-dimensional(3 D)vertical stress model,which ignores the effect of mine depth,failing to obtain the vertical stress at different positions along stope length.Therefore,this paper develops and validates an improved 3 D model solution through numerical simulation in Rhino-FLAC^(3D),and examines the stress state and stability of backfill under different conditions.The results show that the improved model can accurately calculate the vertical stress at different mine depths and positions along stope length.The error rates between the results of the improved model and numerical simulation are below 4%,indicating high reliability and applicability.The maximum vertical stress(σ_(zz,max))in backfill is positively correlated with the degree of rock-backfill closure,which is enhanced by mine depth and elastic modulus of backfill,while weakened by stope width and inclination,backfill friction angle,and elastic modulus of rock mass.Theσ_(zz,max)reaches its peak when the stope length is 150 m,whileσ_(zz,max)is insensitive to changes in rock-backfill interface parameters.In all cases,the backfill stability can be improved by reducingσ_(zz,max).The results provide theoretical guidance for the backfill strength design and the safe and efficient recovery of ore pillars in deep mining.展开更多
1 Originally published in 1993,To Live,a novel by Chinese author Yu Hua has since gained international recognition for its raw emotional depth and exploration of themes like fate,endurance and the essence of humanity....1 Originally published in 1993,To Live,a novel by Chinese author Yu Hua has since gained international recognition for its raw emotional depth and exploration of themes like fate,endurance and the essence of humanity.2 The novel follows the life of Xu Fugui,a once⁃wealthy landowner who lost his fortune through gambling(赌博).As his status shifted to that of a peasant,he witnessed the rapid changes of society.Despite enduring relentless hardship,Fugui survived,finding moments of comfort in small and everyday acts of perseverance.展开更多
With the same level of measurement accuracy,more portable and miniaturized measurement systems will have greater advantages,providing users with more flexible and convenient measurement solutions.Here,we introduce a n...With the same level of measurement accuracy,more portable and miniaturized measurement systems will have greater advantages,providing users with more flexible and convenient measurement solutions.Here,we introduce a new type of digital image correlation(DIC)system that incorporates a binocular meta-lens,featuring a simple and compact configuration.Meta-lens is one of the promising flat optical imaging devices that are ultra-thin,customizable,and well-suited for use in confined spaces.We evaluated this binocular meta-lens based DIC(BM-DIC)system through classic in-plane and out-of-plane translation tests,followed by a bending test on a helicopter wing model to capture 3D displacement and deformation fields.For in-plane translations,the system achieved high precision with a standard deviation(σ)below 2μm.Despite a small baseline of 4 mm,the system maintained aσof approximately 32μm for out-of-plane translations.Comparative analysis with conventional dual-camera stereo DIC systems showed that the BM-DIC system maintains an acceptable relative error margin of about 1%in measured strain fields despite a 75-fold reduction in baseline length.This research demonstrates the integration of DIC techniques with advanced meta-lens technology,indicating substantial potential to enhance the capabilities of DIC technology in experimental solid mechanics.展开更多
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-...Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.展开更多
Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breedin...Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breeding.In this study,based on the primary mapping of the tuber eyedepth locus using a small primary-segregating population,a large secondary-segregating population with 2100 individuals was used to map the eye-depth locus further.A major quantitative trait locus for eye-depth on chromosome 10 was identified(designated qEyd10.1)using BSAseq and traditional QTL mapping methods.The qEyd10.1 could explain 55.0%of the eye depth phenotypic variation and was further narrowed to a 309.10 kb interval using recombinant analysis.To predict candidate genes,tissue sectioning and RNA-seq of the specific tuber tissues were performed.Genes encoding members of the peroxidase superfamily with likely roles in indole acetic acid regulation were considered the most promising candidates.These results will facilitate marker-assisted selection for the shallow-eye trait in potato breeding and provide a solid basis for eye-depth gene cloning and the analysis of tuber eye-depth regulatory mechanisms.展开更多
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
基金Project supported by the National Natural Science Foundation of China(52372134,12274023)the Fundamental Re search Funds for the Central Universities(FRF-EYIT-23-04)。
文摘Rare earth-doped inorganic compounds contribute mostly to the family of persistent luminescent materials due to the versatile energy levels of rare earth ions.One of the key research aims is to match the trap level stemming from the doped rare earth ion or intrinsic defects to the electronic structure of the host,and therefore thermoluminescence measurement becomes a radical technology in studying trap depth,which is one of the significant parameters that determine the properties of persistent luminescence and photostimulated luminescence.However,the results of trap depth obtained by different thermoluminescence methods are quite different so that they are not comparable.Herein,we analyzed different thermoluminescence methods,selected and improved the traditional peak position method of T_(m)/500 to be E=(-0.94Inβ+30.09)kT_(m).Only the experimental heating rate(β)is needed additionally,but the accuracy is improved greatly in most cases.This convenient and accurate method will accelerate the discovery of novel rare earth-doped materials.
文摘A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.
基金National Natural Science Foundation of China(No.51705545)。
文摘The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-frequency sound waves,a novel semi-active sound absorption method has been introduced.This method modulates the surface impedance of a loudspeaker positioned behind the sound-absorbing material,thereby altering the sound absorption coefficient.The theoretical sound absorption coefficient is calculated using MATLAB and compared with the experimental one.Results show that the method can effectively modulates the absorption coefficient in response to varying incident sound wave frequencies,ensuring that it remains at its peak value.
文摘A new type of 785 nm semiconductor laser device has been proposed.The thin cladding and mode expansion layer structure incorporated into the epitaxy on the p-side significantly impacts the regulation of grating etching depth.Thinning of the p-side waveguide layer makes the light field bias to the n-side cladding layer.By coordinating the confinement effect of the cladding layer,the light confinement factor on the p-side is regulated.On the other hand,the introduction of a mode expansion layer facilitates the expansion of the mode profile on the p side cladding layer.Both these factors contribute positively to reducing the grating etching depth.Compared to the reported epitaxial structures of symmetric waveguides,the new structure significantly reduces the etching depth of the grating while ensuring adequate reflection intensity and maintaining resonance.Moreover,to improve the output performance of the device,the new epitaxial structure has been optimized.Based on the traditional epitaxial structure,an energy release layer and an electron blocking layer are added to improve the electronic recombination efficiency.This improved structure has an output performance comparable to that of a symmetric waveguide,despite being able to have a smaller gain area.
基金Supported by the National Natural Science Foundation of China(Nos.91858213,41776057,41761134051)part of the PhD work of O J AKINRINADE and the National Key Research and Development Program of China(Nos.2023 YFF 0803400,2023 YFF 0803404)。
文摘Based on Moho and Curie depth,heat flow,and upper mantle S-wave velocity anomaly,we infer the thermo-chemical structure of the lithospheres in Africa and surrounding oceans.The Moho depth is derived from gravity anomaly using the Parker-Oldenburg method,with constraints from seismic Moho.Crustal stratification defined by Curie-Moho depth difference shows that thermal and strong compositional processes may have shaped the lithospheric architecture of the African continental plate.Moho and Curie depths indicate the southern and eastern African cratons have thermochemical structures different from the West African Craton.Large Curie-Moho depth difference in southern and eastern Africa aligns with the low velocity anomaly originated from the core-mantle boundary.Mantle upwelling from the African low-velocity anomaly presumably induced partial melting at great depth,and the release of mineral-rich fluid and large amounts of volatile components facilitates a regional metasomatism,and results in a depleted,predominantly felsic,low-density paramagnetic crust.Mantle xenolith in kimberlites and volcanic rocks supports metasomatism by melts transmitted through narrow conduits as an intermittent or continuous upward flux of mineral-rich fluid.Alignment of the Curie-Moho depth difference at the intra-plate volcanic province correlates with weak lithospheric strength along the corridor connecting the intra-plate volcanic province with the Ethiopian plateau,suggesting a pathway for thermochemical asthenospheric flow.Crustal stratification and compositional-driven density layering support crustal buoyancy and uplift in the Hoggar,and southern and eastern Africa.A magnetized uppermost mantle is prevalent in the entire oceanic region,except at large igneous provinces(LIPs),volcanic seamounts,and oceanic plateaus,which have partial paramagnetic crusts.Our results support thermochemical upwelling related to the low velocity anomaly beneath the African plate.
文摘In 1875,the HMS(皇家海军舰艇)Challenger stopped in the middle of the Pacific Ocean,southwest of the Mariana Islands,to conduct a routine depth sounding.As they'd done countless times before,the British scientists and sailors on board lowered a weighted rope into the water.Unlike those other times,however,the rope kept falling,seemingly without an end.After nearly 8,230 meters,it finally hit the bottom—the first human attempt at what became known as the Mariana Trench.
文摘Depth maps play a crucial role in various practical applications such as computer vision,augmented reality,and autonomous driving.How to obtain clear and accurate depth information in video depth estimation is a significant challenge faced in the field of computer vision.However,existing monocular video depth estimation models tend to produce blurred or inaccurate depth information in regions with object edges and low texture.To address this issue,we propose a monocular depth estimation model architecture guided by semantic segmentation masks,which introduces semantic information into the model to correct the ambiguous depth regions.We have evaluated the proposed method,and experimental results show that our method improves the accuracy of edge depth,demonstrating the effectiveness of our approach.
文摘Soil carbon stock research has gained prominence in environmental studies amidst climate change concerns,especially given that soil is one of the largest terrestrial carbon reserves.Accurate predictions necessitate comprehensive soil profile measurements,which are resource-intensive to obtain.To address this,depth functions are employed to derive continuous estimates,aligning with standardized depths.However,global datasets employing depth functions in raster format have not been widely utilized,which could lower financial costs and improve accuracy in data-scarce regions.Furthermore,research into aggregating depth functions for realistic carbon stock estimations remains limited,offering opportunities to streamline cost and time.The aim of this study was to apply equal-area splines to estimate soil carbon stocks,utilizing SoilGrids and iSDAsoil datasets in a 317-km^(2) Quaternary catchment(30°48′E,29°18′S)in KwaZulu-Natal,South Africa.Both datasets were resampled to a 250-m resolution,and the splines were interpolated to a depth of 50 cm per pixel.Various aggregation methods were employed in calculation,including the cumulative sum(definite integral),discrete sum(sum of 1-cm spline predictions),and the mean carbon stock(mean to 50 cm).Quantitative evaluation was performed with 310 external soil samples.SoilGrids showed higher predictions(100–546 kg m^(-2))than iSDAsoil(66.9–225 kg m^(-2))for the cumulative sum.The discrete sum also exhibited higher prediction values for SoilGrids(293–789 kg m^(-2))compared to iSDAsoil(228–557 kg m^(-2)).SoilGrids aggregated with the discrete sum closely matched previous studies,estimating total carbon stock for the catchment at 7126 t,albeit with spatial inconsistencies.However,when evaluating with an external dataset,the results were not satisfactory for any method according to Lin's concordance correlation coefficient(CCC,correlation of a 1:1 line),with all models obtaining a CCC below 0.01.Similarly,all models had a root mean squared error larger than 59 kg m^(-2).It was concluded that SoilGrids and iSDAsoil were spatially inaccurate in the catchment but can still provide information about the total carbon stock.This method could be improved by obtaining more soil samples for the datasets,incorporating local data into the spline,making the method more computationally efficient,and accounting for discrete horizon boundaries.
基金This work is supported by National Natural Science Foundation of China(No.42372054)。
文摘The features of optical defects in a chemical vapor deposition (CVD) synthetic type Ⅱ a diamond were characterized using photoluminescence (PL) spectroscopy, before and after electron irradiation. The sample was cut within a {100} growth layer, and irradiated with 2 MeV electrons along the <100> axis. PL spectra of sample were collected under 532 nm and 355 nm laser excitation, at room temperature and 77 K, and linear scanning analysis along incident depth was applied to determine the distribution of defects. The pre-irradiation characterization results revealed uniformly distributed PL centers at 389 nm, 469 nm, 533 nm, 575 nm (ZPL of NV 0), 637 nm (ZPL of NV -), and 736.7/737.1 nm (ZPL doublet of SiV -). After irradiation, the differential responses of these as-grown defects were observed, alongside the emergence of irradiation-induced defects, namely 489 nm center, H3 center (ZPL at 504 nm) and GR1 center (ZPL at 741 nm). The maximum penetration depth of 2 MeV electron-irradiation induced defects was determined to be 2.1 mm. This work primarily presents the depth profiles of both as-grown and irradiation-induced defects in 2 MeV electrons irradiated diamond. The result provides experimental data for better understanding of the radiation effect in diamonds. Serving as a reference for diamond enhancement by electron irradiation.
基金Supported by the 14th Five-Year National Key Research and Development Program of China(No.2022YFC3202004)the National Natural Science Foundation of China(No.42220104010)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20220041)the Young Scientists Group Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,China(No.E1SL002)。
文摘Global warming has been reported to enhance thermal stratification and decrease the mixlayer depth(MLD)in waters due to higher surface water temperatures,especially in summer.Previous studies were conducted for individual cases or specific periods.At present,there is a lack of global assessments on the influence of climate warming in different seasons on thermal stratification.The ECMWF Reanalysis v5(ERA5)dataset was used to estimate the variability of water body mixing and its drivers in different seasons and regions.Results indicate that global warming could enhance thermal stratification and decrease the MLD globally in summer.Wind speed was the primary driver of MLD changes,followed by temperature.However,ice melt due to global warming enhanced the mixing in icecovered waters in the Northern Hemisphere,and early ice melt led to early mixing.Ice depth was the primary driver of MLD changes in the Northern Hemisphere due to delayed ice formation and earlier melting,while wind speed was the primary driver in other regions or during ice-free seasons.The enhanced mixing due to earlier ice melt out in late winter and early spring could promote water circulation and nutrient turnover,and replenish dissolved oxygen in deep water,thereby promoting the maximum biomass of cyanobacteria and advance harmful algal blooms.
基金financially supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCOthe National Research Foundation (NRF) grants (RS-2024-00462912, RS-2024-00416272, RS-2024-00337012, RS-2024-00408446) funded by the Ministry of Science and ICT (MSIT) of the Korean government+2 种基金the Korea Evaluation Institute of Industrial Technology (KEIT) grant (No. 1415185027/20019169, Alchemist project) funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Korean governmentthe Soseon Science fellowship funded by Community Chest of Koreathe NRF PhD fellowship (RS-2023-00275565) funded by the Ministry of Education (MOE) of the Korean government。
文摘Spatial computing and augmented reality are advancing rapidly,with the goal of seamlessly blending virtual and physical worlds.However,traditional depth-sensing systems are bulky and energy-intensive,limiting their use in wearable devices.To overcome this,recent research by X.Liu et al.presents a compact binocular metalens-based depth perception system that integrates efficient edge detection through an advanced neural network.This system enables accurate,realtime depth mapping even in complex environments,enhancing potential applications in augmented reality,robotics,and autonomous systems.
基金supported by the National Natural Science Foundation of China(Grant No.42230601).
文摘The impact of aerosols on clouds,which remains one of the largest aspects of uncertainty in current weather forecasting and climate change research,can be influenced by various factors,such as the underlying surface type,cloud type,cloud phase,and aerosol type.To explore the impact of different underlying surfaces on the effect of aerosols on cloud development,this study focused on the Yangtze River Delta(YRD)and its offshore regions(YRD sea)for a comparative analysis based on multi-source satellite data,while also considering the variations in cloud type and cloud phase.The results show lower cloud-top height and depth of single-layer clouds over the ocean than land,and higher liquid cloud in spring over the ocean.Aerosols are found to enhance the cumulus cloud depth through microphysical effects,which is particularly evident over the ocean.Aerosols are also found to decrease the cloud droplet effective radius in the ocean region and during the mature stage of cloud development in the land region,while opposite results are found during the early stage of cloud development in the land region.The quantitative results indicate that the indirect effect is positive(0.05)in the land region at relatively high cloud water path,which is smaller than that in the ocean region(0.11).The findings deepen our understanding of the influence aerosols on cloud development and the mechanisms involved,which could then be applied to improve the ability to simulate cloud-associated weather processes.
基金supported in part by the fund of 2023 Guangdong Province Science and Technology Innovation Strategy Special Project“Construction of Industrial Data and Intelligent Application Innovation Platform”(2023A011),2024 Shanwei New Generation Electronic Information Industry Talent Revitalization Plan,and the project“Research on the Impact and Countermeasures of Large Scale Charging Facility Access on Guangdong Power Grid Planning and Construction.”。
文摘University courses should have both breadth and depth.However,most courses in universities only focus on the breadth construction,while neglecting the depth construction,resulting in students being unable to apply the knowledge they have learned to conduct research or solve real-world application problems.The students’high-level abilities are insufficient and not well-trained.Therefore,in this paper,we propose a T-structured course design method to ensure both breadth and depth of a course.The proposed T-structured course design method includes four aspects:T-structured course contents,T-structured teaching activities,T-structured examination formats,and T-structured homework difficulty.By applying our proposed T-structured course design strategy to the course Optimization Algorithms and Intelligent Computing,good results are achieved,demonstrating the applicability of our proposed strategy.
文摘The marshes of southern Iraq are of great value due to their roles in the economy,environment,heritage,tourism,and agriculture.However,the region has witnessed remarkable transformations in land cover,influenced by human interventions and natural environmental factors.In this research,the Central Marshlands were selected for study and monitoring.These Marshes form the Mesopotamian Marshes,a vital part of the Tigris-Euphrates river system.This area 2 formerly covered an area of approximately 3,000 km and was once home to the lives of Marsh Arabs and their animals.The primary objective of this study was to compile a set of satellite images covering the same marshland region over several decades.The data used includes images captured by various Landsat missions:MSS(1975),TM(1983&1993),ETM+(2003),and the Operational Land Imager(OLI)from Landsat 8(2015).Satellite images were combined and pre-processed through steps such as layer stacking to create composite images from multiple bands.Several image classification methods were applied,and the classification results showed a significant and unprecedented increase in the percentage of water in the marsh,reaching 16%in 2003.This was combined with vegetation identification techniques,including the identification of vegetation boundaries to detect areas of dense vegetation.In addition,the relative depth of the water was measured to estimate marsh water levels,with the best result obtained in 2003.The normalized mean vegetation index(NDVI)calculated in this study had its best value in 1984 due to the spread of reeds and papyrus during this period.Papyrus is the raw material in the sugar industry,providing a significant economic boost.
基金Project(2024ZD1003704)supported by the Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project,ChinaProjects(51834001,52130404)supported by the National Natural Science Foundation of China。
文摘During upward horizontal stratified backfill mining,stable backfill is essential for cap and sill pillar recovery.Currently,the primary method for calculating the required strength of backfill is the generalized three-dimensional(3 D)vertical stress model,which ignores the effect of mine depth,failing to obtain the vertical stress at different positions along stope length.Therefore,this paper develops and validates an improved 3 D model solution through numerical simulation in Rhino-FLAC^(3D),and examines the stress state and stability of backfill under different conditions.The results show that the improved model can accurately calculate the vertical stress at different mine depths and positions along stope length.The error rates between the results of the improved model and numerical simulation are below 4%,indicating high reliability and applicability.The maximum vertical stress(σ_(zz,max))in backfill is positively correlated with the degree of rock-backfill closure,which is enhanced by mine depth and elastic modulus of backfill,while weakened by stope width and inclination,backfill friction angle,and elastic modulus of rock mass.Theσ_(zz,max)reaches its peak when the stope length is 150 m,whileσ_(zz,max)is insensitive to changes in rock-backfill interface parameters.In all cases,the backfill stability can be improved by reducingσ_(zz,max).The results provide theoretical guidance for the backfill strength design and the safe and efficient recovery of ore pillars in deep mining.
文摘1 Originally published in 1993,To Live,a novel by Chinese author Yu Hua has since gained international recognition for its raw emotional depth and exploration of themes like fate,endurance and the essence of humanity.2 The novel follows the life of Xu Fugui,a once⁃wealthy landowner who lost his fortune through gambling(赌博).As his status shifted to that of a peasant,he witnessed the rapid changes of society.Despite enduring relentless hardship,Fugui survived,finding moments of comfort in small and everyday acts of perseverance.
基金financial support from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.C5031-22G,CityU11310522,CityU11300123)City University of Hong Kong(Project No.9610628)+5 种基金National Natural Science Foundation of China(NSFC)(12172222,12302368,22227901)National Science and Technology Major Project of China(J2019-V-0004-0095)Science Center for Gas Turbine Project(2023-B-V-002-001)Aeronautical Science Foundation of China(20230046057018)China Postdoctoral Science Foundation(2023M742231)Postdoctoral Fellowship Program of CPSF(GZC20231561。
文摘With the same level of measurement accuracy,more portable and miniaturized measurement systems will have greater advantages,providing users with more flexible and convenient measurement solutions.Here,we introduce a new type of digital image correlation(DIC)system that incorporates a binocular meta-lens,featuring a simple and compact configuration.Meta-lens is one of the promising flat optical imaging devices that are ultra-thin,customizable,and well-suited for use in confined spaces.We evaluated this binocular meta-lens based DIC(BM-DIC)system through classic in-plane and out-of-plane translation tests,followed by a bending test on a helicopter wing model to capture 3D displacement and deformation fields.For in-plane translations,the system achieved high precision with a standard deviation(σ)below 2μm.Despite a small baseline of 4 mm,the system maintained aσof approximately 32μm for out-of-plane translations.Comparative analysis with conventional dual-camera stereo DIC systems showed that the BM-DIC system maintains an acceptable relative error margin of about 1%in measured strain fields despite a 75-fold reduction in baseline length.This research demonstrates the integration of DIC techniques with advanced meta-lens technology,indicating substantial potential to enhance the capabilities of DIC technology in experimental solid mechanics.
基金Projects(52225403,52074112)supported by the National Natural Science Foundation of ChinaProject(2022CFD009)supported by the Hubei Natural Science Foundation Innovation and Development Joint Fund Key Project,China+2 种基金Project(SDGZK2423)supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,ChinaProject(HJZKYBKT2024111)supported by the Xiangyang Federation of Social Sciences“Hanjiang Think Tank”Project,ChinaProject supported by the Hubei Superior and Distinctive Discipline Group of“New Energy Vehicle and Smart Transportation”,China。
文摘Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.
基金funded by the National Natural Science Foundation of China(Grant No.31801421)the Chinese Academy of Agricultural Sciences Innovation Project(Grant No.CAAS-ASTIPIVFCAAS).
文摘Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breeding.In this study,based on the primary mapping of the tuber eyedepth locus using a small primary-segregating population,a large secondary-segregating population with 2100 individuals was used to map the eye-depth locus further.A major quantitative trait locus for eye-depth on chromosome 10 was identified(designated qEyd10.1)using BSAseq and traditional QTL mapping methods.The qEyd10.1 could explain 55.0%of the eye depth phenotypic variation and was further narrowed to a 309.10 kb interval using recombinant analysis.To predict candidate genes,tissue sectioning and RNA-seq of the specific tuber tissues were performed.Genes encoding members of the peroxidase superfamily with likely roles in indole acetic acid regulation were considered the most promising candidates.These results will facilitate marker-assisted selection for the shallow-eye trait in potato breeding and provide a solid basis for eye-depth gene cloning and the analysis of tuber eye-depth regulatory mechanisms.