期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Construction of complex digital rock physics based on full convolution network 被引量:6
1
作者 Jia Kang Nian-Yin Li +4 位作者 Li-Qiang Zhao Gang Xiong Dao-Cheng Wang Ying Xiong Zhi-Feng Luo 《Petroleum Science》 SCIE CAS CSCD 2022年第2期651-662,共12页
Digital rock physics(DRP)is a paramount technology to improve the economic benefits of oil and gas fields,devise more scientific oil and gas field development plans,and create digital oil and gas fields.Currently,a si... Digital rock physics(DRP)is a paramount technology to improve the economic benefits of oil and gas fields,devise more scientific oil and gas field development plans,and create digital oil and gas fields.Currently,a significant gap is present between DRP theory and practical applications.Conventional digital-core construction focuses only on simple cores,and the recognition and segmentation effect of fractures and pores of complex cores is poor.The identification of rock minerals is inaccurate,which leads to the difference between the digital and actual cores.To promote the application of DRP in developing oil and gas fields,based on the high-precision X-ray computed tomography scanning technology,the U-Net deep learning model of the full convolution neural network is used to segment the pores,fractures,and matrix from the complex rock core with natural fractures innovatively.Simultaneously,the distribution of rock minerals is divided,and the distribution of rock conditions is corrected by X-ray diffraction.A pore—fracture network model is established based on the equivalent radius,which lays the foundation for fluid seepage simulation.Finally,the accuracy of the established a digital core is verified by the porosity measured via nuclear magnetic resonance technology,which is of great significance to the development and application of DRP in oil and gas fields. 展开更多
关键词 Digital rock physics depth learning U-Net Complex core Complex fracture
原文传递
Automatic Detection of Weld Defects in Pressure Vessel X-Ray Image Based on CNN 被引量:1
2
作者 XIAO Wenkai FENG Xiang +1 位作者 NAN Shuiyu ZHANG Linlin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2022年第6期489-498,共10页
The visual automatic detection method based on artificial intelligence has attracted more and more attention. In order to improve the performance of weld nondestructive defect detection,we propose DRepDet(Dilated RepP... The visual automatic detection method based on artificial intelligence has attracted more and more attention. In order to improve the performance of weld nondestructive defect detection,we propose DRepDet(Dilated RepPoints Detector). First, we analyze the weld defect dataset in detail and summarize the distribution characteristics of weld defect data, that is, the defect scale is very different and the aspect ratio distribution range is large. Second, according to the distribution characteristics of defect data, we design DResBlock module, and introduce dilated convolution with different dilated rates in the process of feature extraction to expand the receptive field and improve the detection performance of large-scale defects. Based on DResBlock and anchor-free detection framework RepPoints, we design DRepDet. Extensive experiments show that our proposed detector can detect 7 types of defects. When using combined dilated rate convolution network in detection, the AP50 and Recall50 of big defects are improved by 3.1% and 3.3% respectively, while the performance of small defects is not affected, almost the same or slightly improved. The final performance of the whole network is improved a large margin,with 6% AP50 and 4.2% Recall50 compared with Cascade RCNN and 1.4% AP50 and 2.9% Recall50 compared with RepPoints. 展开更多
关键词 nondestructive testing depth learning weld defect detection convolutional neural networks dilated convolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部