Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried ...Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried out across the L absorption edge of tungsten to perform depth-dependent element-selective analysis sensitive to potential chemical modification of the WS_(2)layer in ambient conditions.Despite the few monolayer thickness of the studied film,the experimentally measured maps of reflectance as a function of incident angle and photon energy turned out to be quite informative showing well-pronounced interference effects near W absorption edge at 10210 eV.The synchrotron studies were complemented with conventional non-resonant reflectance measurements carried out in the laboratory at a fixed photon energy corresponding to Cu Kαemission.The reconstruction of the depth and energy dependent scattering length density within the studied multilayers was carried out using the OpenCL empowered fitting software utilizing spectral shaping algorithm which does not rely on the pre-measured reference absorption spectra.A thin WO_(x) layer has been revealed at the surface of the WS_(2)layer pointing out to the effect of water assisted photo-oxidation reported in a number of works related to ultrathin layers of transition metal dichalcogenides.展开更多
Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the ...Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the evolution of ALD interlayers across various photovoltaic technologies,starting with early silicon solar cells and progressing into a variety of thin-film solar cells.We then delve into the role of ALD in state-of-the-art single-junction perovskite solar cells,particularly in optimizing the critical interfaces of perovskites/charge-transporting layers/-electrodes.Apart from that,we screen the functionality of ALD processing,which consists of reducing surface/interfacial defects and thus mitigating energy loss.Particularly,it enables efficient stacking of multiple thin layers,making a variety of tandem solar cells possible(silicon/perovskite,etc.)for higher efficiency.Moreover,the ALDprocessed interlayer prevents the ion migration between metals and perovskites,inhibiting the inter-diffusioninduced degradation of devices.Despite ALD technology extensively elevating the performance of above conventional/emerging solar cells,key challenges such as precursor flammability,cross-contamination during processing,and low deposition pace persist.We go over these challenges and expect our comprehensive overview of ALD techniques could shed light on pushing the envelope of photovoltaic efficiency.展开更多
Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and wate...Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.展开更多
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si...Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.展开更多
The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-pli...The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-plication.The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost.However,the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface be-tween the matrix and pores,ultimately leading to decreased figure of merit,ZT.Here,we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi_(0.5)Sb_(1.5)Te_(3)for preparing high-performance porous thermoelectric materials.Experimental results indi-cate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering,thereby optimizing carrier/phonon transport behaviors,and effectively increasing the ZT by 23.2%(from 0.99 to 1.22 at 350 K).Besides,our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi_(2)Te_(2.7)Se_(0.3),therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials.展开更多
Doped gallium oxide-based thin films are a class of wide-band semiconductor materials with the ad-vantages of chemically stable,tunable bandgap,and offer the benefit of ultraviolet response.In order to obtain photodet...Doped gallium oxide-based thin films are a class of wide-band semiconductor materials with the ad-vantages of chemically stable,tunable bandgap,and offer the benefit of ultraviolet response.In order to obtain photodetectors(PDs)with superior response,higher demands are placed on the quality of growth and processing of doped films.In this work,Zn-doped ternary metal oxide ZnGaO(ZGO)thin films were grown using the atomic layer deposition technique and annealed at different temperatures under an oxy-gen atmosphere.The results showed that the high-quality ZGO films with good uniformity,high visible light transmittance,low roughness,and significant reduction of oxygen vacancies were obtained after an-nealing.Subsequently,metal-semiconductor-metal PDs were prepared based on the studied ZGO films.The responsivity(R),detectivity(D^(∗)),and external quantum efficiency(EQE)of the optimized device are 61.8 A W^(-1),1.2×10^(12) Jones,and 255.9%,respectively.Compared to the unannealed device,the an-nealed ZGO PD achieves a maximum 309-fold increase in responsivity.This thermal engineering work may provide a strong reference for the development of low-cost,large-area,high-performance ultraviolet detection.And it also broadens the application of ternary metal oxides in optoelectronics.展开更多
Inverted perovskite solar cells,which nickel oxide(NiOx)has been widely employed as a hole transport layer,have shown promise for perovskite-silicon tandem solar cells.However,the deficient quality of perovskite/NiOx ...Inverted perovskite solar cells,which nickel oxide(NiOx)has been widely employed as a hole transport layer,have shown promise for perovskite-silicon tandem solar cells.However,the deficient quality of perovskite/NiOx interface has constrained the performance and stability of the solar cells.In this paper,low-temperature atomic layer deposition(ALD)was employed to prepare a nanometer aluminum oxide(Al_(2)O_(3))layer that effectively blocks carriers recombination,facilitates carriers transport by improving the valence band maximum(VBM)alignment between HTL and perovskite and enhances the morphology of self-assembled monolayer(SAM).The interface between NiO_(x)and perovskite was modified by the embedded Al_(2)O_(3)layer,achieving an open current voltage(Voc)of 1.19 V and a short-circuit current density(J_(sc))of 22.98 mA cm^(-2).The efficiency of the champion cell was 22.22%at 1.5 AM(0.2 cm^(2)),which was a notable enhancement compared to solar cells of average power conversion efficiency(PCE)20.33%without Al_(2)O_(3)passivation layer.The passivated perovskite solar cell exhibits enhanced stability in degradation tests,retaining 85.70%of the initial PCE after storage in ambient air(40%-60%relative humidity(R.H.))at 25℃for 100 h.The results show the potential of low-temperature ALD-Al_(2)O_(3)in inverted perovskite solar cells as well as perovskite-silicon tandem solar cells.展开更多
Low-cost and large-area uniform amorphous Ga_(2)O_(3)(α-Ga_(2)O_(3))solar-blind ultraviolet(UV)detectors have garnered significant attention in recent years.Oxygen vacancy(VO)defects are generally considered as the p...Low-cost and large-area uniform amorphous Ga_(2)O_(3)(α-Ga_(2)O_(3))solar-blind ultraviolet(UV)detectors have garnered significant attention in recent years.Oxygen vacancy(VO)defects are generally considered as the predominant defects affecting the detector performance.Reducing VOconcentration generally results in both low dark current and low photo current,significantly limiting further improvement of the photo-to-dark current ratio(PDCR)parameter.Herein,a delicately optimized atomic layer deposition(ALD)method is revealed having the capability to break through the trade-off in a-Ga_(2)O_(3),achieving both low dark current and high photocurrent simultaneously.For a clear demonstration,a-Ga_(2)O_(3)contrast sample is prepared by magnetron sputtering and compared as well.Combined tests are performed including xray photoelectron spectroscopy,photoluminescence,electron paramagnetic resonance and Fourier-transform infrared spectroscopy.It is found that ALDα-Ga_(2)O_(3)has a lower VOconcentration,but also a lower dangling bonds concentration which are strong non-irradiation recombination centers.Therefore,decrease of dangling bonds is suggested to compensate for the low optical gain induced by low VOconcentration and promote the PDCR to~2.06×10^(6).Our findings firstly prove that the dangling bonds also play an important role in determining the a-Ga_(2)O_(3)detection performance,offering new insights for further promotion ofα-Ga_(2)O_(3)UV detector performance via dual optimization of dangling bonds and VO.展开更多
Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve ...Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve the superior electrochemical properties of CIBs,the structure design of electrode materials is essential.Herein,2D NiAl-layered double hydroxide(NiAl-LDH)nanoarrays derived from Al2O3 are in-situ grafted to graphene(G)by atomic layer deposition(ALD)and hydrothermal method.The achieved NiAl-LDH@G hybrids with 2D NiAl-LDH arrays grown perpendicularly on graphene surface,can efficiently prevent the stacking of LDHs and enlarge specific surface area to provide more active sites.The NiAl-LDH@G cathode exhibits a maximum discharge capacity of 223.3 mA h g^(-1)and an excellent reversible capacity of 107 mA h g^(-1)over 500 cycles at 100 mA g^(-1)with a high coulombic efficiency around 96%,whereas pure NiAl-LDH has a discharge capacity of only 48.8 mA h g^(-1)and a coulombic efficiency(CE)of about 78%.More importantly,the NiAl-LDH@G electrode has a stable voltage at 1.9 V and an outstanding discharge capacity of higher than 72 mA h g^(-1)after 120 days.Additionally,XRD,XPS,and EDS have been employed to unveil the electrochemical reaction and Cl-storage mechanism of the NiAlLDH@G cathode in CIBs.This work opens a facile and reasonable way for improving electrochemical performance at anion-type rechargeable batteries in terms of cathode material design and mechanism interpretation.展开更多
Although room-temperature superconductivity is still difficult to achieve,researching materials with electrical conductivity significantly higher than that of copper will be of great importance in improving energy eff...Although room-temperature superconductivity is still difficult to achieve,researching materials with electrical conductivity significantly higher than that of copper will be of great importance in improving energy efficiency,reducing costs,lightening equipment weight,and enhancing overall performance.Herein,this study presents a novel copper-carbon nanofilm composite with enhanced conductivity which has great applications in the electronic devices and electrical equipment.Multilayer copper-carbon nanofilms and interfaces with superior electronic structures are formed based on copper materials using plasma immersion nanocarbon layer deposition technology,effectively enhancing conductivity.Experimental results show that for a five-layer copper-carbon nanofilm composite,the conductivity improves significantly when the thickness of the carbon nanofilm increases.When the carbon nanofilm accounts for 16%of the total thickness,the overall conductivity increases up to 30.20%compared to pure copper.The mechanism of the enhanced conductivity is analyzed including roles of copper atom adsorption sites and electron migration pathways by applying effective medium theory,first-principles calculations and density of states analysis.Under an applied electric field,the high-density electrons in the copper film can migrate into the nanocarbon film,forming highly efficient electron transport channels,which significantly enhance the material’s conductivity.Finally,large-area electrode coating equipment is developed based on this study,providing the novel and robust strategy to enhance the conductivity of copper materials,which enables industrial application of copper-carbon nanocomposite films in the field of high conductivity materials.展开更多
The polar layered deposits(PLD) of Mars can provide deep insight into paleoclimate changes over the planet's last several million years. Since the 1960s, researchers have studied almost all aspects of Martian PLD ...The polar layered deposits(PLD) of Mars can provide deep insight into paleoclimate changes over the planet's last several million years. Since the 1960s, researchers have studied almost all aspects of Martian PLD properties, searching for patterns that might reveal periodic characteristics of the planet's climate history. Although much progress has been made in our understanding of orbital periodicities reflected in the PLD, questions remain regarding how Martian orbital changes have affected the formation of the PLD and regarding the extent of climate information that is recorded in the PLD. Future studies of PLD should be carried out via integrated research that targets multi-profiles throughout the entire Martian polar regions that would clarify their general features at the hemisphere scale. Numerical modeling, coupled with modern observations of dust and water vapor transportation, should greatly advance our understanding of planetary climate evolution. Furthermore, future landing missions may help to clarify the paleoclimatic characteristics reflected in the PLD by drilling into these layered deposits and measuring mineralogical and geochemical compositions of the drilled samples.展开更多
Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really unifor...Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really uniform films.This work combining nanoparticle fluidization technology with atomic layer deposition(ALD) technology to achieve precise surface modification of a large number of micro-nano particles.First,we explored the fluidization characteristics of TiO_(2) nanoparticles in a home-made atmospheric fluidized bed ALD reactor(FB-ALD) to ensure the uniform fluidization of a large number of nanoparticles.Then TiCl_(4) and H_(2)O were used as precursors to deposit amorphous TiO_(2) films on the surface of TiO_(2) nanoparticles at 80℃ under atmospheric pressure,and the growth per cycle was about 0.109 nm per cycle.After 30 ALD cycles,the film thickness was about 3.1 nm,which could almost fully suppress the photocatalytic activity of TiO_(2).Compared with other traditional coating materials,amorphous TiO_(2) has higher light refractive index,and realizes the suppression of the photocatalytic activity of TiO_(2) without introducing other substances,demonstrating greater application potential in TiO_(2) pigment coating field.The process is a gas-phase coating method,which is efficient,no waste water,and easy to scale up.This work shown the excellent property of interface engineering in improving pigment weatherability and can also provide guidance for the nanoparticle surface modification.展开更多
Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of...Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of OS and such device structures presents certain challenges,including the trade-off relationship between the field-effect mobility and stability of OSs.Conventional 4-line-based operation of the 2T0C enlarges the entire cell volume and complicates the peripheral circuit.Herein,we proposed an IGO(In-Ga-O)channel 2-line-based 2T0C cell design and operating sequences comparable to those of the conventional Si-channel 1 T1C DRAM.IGO was adopted to achieve high thermal stability above 800℃,and the process conditions were optimized to simultaneously obtain a high μFE of 90.7 cm^(2)·V^(-)1·s^(-1),positive Vth of 0.34 V,superior reliability,and uniformity.The proposed 2-line-based 2T0C DRAM cell successfully exhibited multi-bit operation,with the stored voltage varying from 0 V to 1 V at 0.1 V intervals.Furthermore,for stored voltage intervals of 0.1 V and 0.5 V,the refresh time was 10 s and 1000 s in multi-bit operation;these values were more than 150 and 15000 times longer than those of the conventional Si channel 1T1C DRAM,respectively.A monolithic stacked 2-line-based 2T0C DRAM was fabricated,and a multi-bit operation was confirmed.展开更多
As artificial intelligence and big data become increasingly prevalent, resistive random-access memory (RRAM) has become one of the most promising alternatives for storing massive amounts of data. In this study, we emp...As artificial intelligence and big data become increasingly prevalent, resistive random-access memory (RRAM) has become one of the most promising alternatives for storing massive amounts of data. In this study, we employed high-quality crystalline TiN/Al_(2)O_(3)/BaTiO_(3)/Pt RRAM with an optimized thin Al_(2)O_(3) interlayer around 12 nm thick prepared using atomic layer deposition since the thickness of the interlayer affects the memory window size. After insertion of the Al_(2)O_(3) interlayer, the novel RRAM exhibited outstanding uniform resistive switching voltage and the ON/OFF memory window drastically increased from 10 to 103 without any discernible decline in performance. Moreover, the low-resistance state and high-resistance state operating current values decreased by almost one order and three orders of magnitude, respectively, thereby decreasing the power consumption for the RESET and SET processes by more than three and almost one order of magnitude, respectively. The device also exhibits multilevel resistive switching behavior when varying the applied voltage. Finally, we also developed a 6 6 crossbar array which demonstrated consistent and reliable resistive switching behavior with minimal variation. Hence, our approach holds great promise for producing state-of-the-art non-volatile resistive switching devices.展开更多
ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiop...ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiophilicity of both LiZn and Li_(2)O products upon lithiation of ZnO.However,the striking differences in the lithiophilicity between Li_(2)O and LiZn would result in a high overpotential during cycling.In this research,the Al_(2)O_(3)/nZnO(n≥1)hybrid layers were precisely fabricated by atomic layer deposition(ALD)to regulate the lithiophilicity of ZnO phase and Li_(2)O/LiZn configuration—determining the actual Li loading amount and Li plating/stripping processes.Theoretically,the Li adsorption energy(E_(a))values of LiZn and Li_(2)O in the LiZn/Li_(2)O configuration are separately predicted as-2.789 and-3.447 eV.In comparison,the E_(a) values of LiZn,LiAlO_(2),and Li_(2)O in the LiZn/LiAlO_(2)/Li_(2)O configuration upon lithiation of Al_(2)O_(3)/8ZnO layer are calculated as-2.899,-3.089,and-3.208 eV,respectively.Importantly,a novel introduction of LiAlO_(2)into the LiZn/Li_(2)O configuration could enable the hierarchical Li plating/stripping and reduce the overpotentials during cycling.Consequently,the Al_(2)O_(3)/8ZnO-derived hybrid Li-metal anode could exhibit electrochemical performances superior to these of ZnO-derived Li anode in both symmetrical and full cells paired with a LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode.展开更多
Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device pe...Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance,as in a wide bandgap Zn_(1-x)Mg_(x)O(ZMO)to replace the CdS buffer in Cu(In_(1-x),Ga_(x))Se_(2)(CIGSe)thin-film solar cell structure.ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content,which can be helpful in attaining a suitable conduction band offset.Hence,compared to the fixed and limited bandgap of a CdS buffer,a ZMO buffer may provide advantages in V_(oc) and J_(sc) based on its controllable and wide bandgap,even with a relatively wider bandgap CIGSe thin-film solar cell.In addition,to solve problems with the defect sites at the ZMO/CIGSe junction interface,a few-nanometer ZnS layer is employed for heterojunction interface passivation,forming a ZMO/ZnS buffer structure by atomic layer deposition(ALD).Finally,a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap(1.25 eV)and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%,which exhibited a higher performance than the CdS counterpart.展开更多
VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant i...VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.展开更多
The electron transport layer(ETL)plays an important role on the performance and stability of perovskite solar cells(PSCs).Developing double ETL is a promising strategy to take the advantages of different ETL materials...The electron transport layer(ETL)plays an important role on the performance and stability of perovskite solar cells(PSCs).Developing double ETL is a promising strategy to take the advantages of different ETL materials and avoid their drawbacks.Here,an ultrathin SnO_(2)layer of~5 nm deposited by atomic layer deposit(ALD)was used to construct a TiO_(2)/SnO_(2)double ETL,improving the power conversion efficiency(PCE)from 18.02%to 21.13%.The ultrathin SnO_(2)layer enhances the electrical conductivity of the double layer ETLs and improves band alignment at the ETL/perovskite interface,promoting charge extraction and transfer.The ultrathin SnO_(2)layer also passivates the ETL/perovskite interface,suppressing nonradiative recombination.The double ETL achieves outstanding stability compared with PSCs with TiO_(2)only ETL.The PSCs with double ETL retains 85%of its initial PCE after 900 hours illumination.Our work demonstrates the prospects of using ultrathin metal oxide to construct double ETL for high-performance PSCs.展开更多
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th...In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.展开更多
Under"green architecture"principles,electrochromic smart windows are employed to adjust optical transmittance and indoor temperature,yet their high costs limit the wide application.Here,an electrochromic win...Under"green architecture"principles,electrochromic smart windows are employed to adjust optical transmittance and indoor temperature,yet their high costs limit the wide application.Here,an electrochromic window is driven by a redox flow battery(RFB),where TOC and deposition layers are no longer needed.The transmittance of the electrochromic window is modulated by the state of oxidation(SOC)of aqueous posolyte Fe(phen)_(3)Cl_(2),which is coupled with BTMAP-Vi negolyte in RFB.Under optimized conditions,average CE,VE,and EE reach 93.25%,92.61%,and 86.35%for RFB with a capacity fading rate of 1.57%per cycle.88.66%optical modulation and 9.36 cm^(2)/C coloration efficiency are achieved in the electrochromic process,and 72.34%optical modulation is maintained after 12000 s.Essentially,the indoor temperature declines 3℃for posolyte with 100%SOC when compared with the control experiment using circulating water for a model house.This means minimum electricity of 0.0185 kWh is saved when using an air conditioner to cool a 100 m^(3)house,which corresponds to declined CO_(2)emission(COE)of 0.0185 kg.This work provides a novel and cost-efficient strategy for modulating indoor comfort via electrochromic windows driven by RFB.展开更多
基金supported by the Ministry of Science and Higher Education of the Russian Federation(agreement No.075-15-2021-1349)。
文摘Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried out across the L absorption edge of tungsten to perform depth-dependent element-selective analysis sensitive to potential chemical modification of the WS_(2)layer in ambient conditions.Despite the few monolayer thickness of the studied film,the experimentally measured maps of reflectance as a function of incident angle and photon energy turned out to be quite informative showing well-pronounced interference effects near W absorption edge at 10210 eV.The synchrotron studies were complemented with conventional non-resonant reflectance measurements carried out in the laboratory at a fixed photon energy corresponding to Cu Kαemission.The reconstruction of the depth and energy dependent scattering length density within the studied multilayers was carried out using the OpenCL empowered fitting software utilizing spectral shaping algorithm which does not rely on the pre-measured reference absorption spectra.A thin WO_(x) layer has been revealed at the surface of the WS_(2)layer pointing out to the effect of water assisted photo-oxidation reported in a number of works related to ultrathin layers of transition metal dichalcogenides.
基金supported by the Natural Science Foundation of Ningbo,China(2022J149)the Natural Science Foundation of Zhejiang Province,China(LY22E020010,LTGS24B030002)+1 种基金the Ningbo Science and Technology Project,China(2022-DST-004,2022A-230G,2024Z242)the National Key Research and Development Program of China,China(2021YFF0500501)。
文摘Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the evolution of ALD interlayers across various photovoltaic technologies,starting with early silicon solar cells and progressing into a variety of thin-film solar cells.We then delve into the role of ALD in state-of-the-art single-junction perovskite solar cells,particularly in optimizing the critical interfaces of perovskites/charge-transporting layers/-electrodes.Apart from that,we screen the functionality of ALD processing,which consists of reducing surface/interfacial defects and thus mitigating energy loss.Particularly,it enables efficient stacking of multiple thin layers,making a variety of tandem solar cells possible(silicon/perovskite,etc.)for higher efficiency.Moreover,the ALDprocessed interlayer prevents the ion migration between metals and perovskites,inhibiting the inter-diffusioninduced degradation of devices.Despite ALD technology extensively elevating the performance of above conventional/emerging solar cells,key challenges such as precursor flammability,cross-contamination during processing,and low deposition pace persist.We go over these challenges and expect our comprehensive overview of ALD techniques could shed light on pushing the envelope of photovoltaic efficiency.
基金supported by the National Natural Science Foundation of China(52477221,52202296)the Natural Science Foundation of Shaanxi Province(2023KXJ-246,2022JQ-048)。
文摘Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.
文摘Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.
基金supported by the National Natural Science Foundation of China(Nos.U21A2054,21905007)the Key Discipline of Materials Science and Engineering,Bureau of Education of Guangzhou(Grant No.202255464).
文摘The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-plication.The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost.However,the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface be-tween the matrix and pores,ultimately leading to decreased figure of merit,ZT.Here,we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi_(0.5)Sb_(1.5)Te_(3)for preparing high-performance porous thermoelectric materials.Experimental results indi-cate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering,thereby optimizing carrier/phonon transport behaviors,and effectively increasing the ZT by 23.2%(from 0.99 to 1.22 at 350 K).Besides,our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi_(2)Te_(2.7)Se_(0.3),therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials.
基金supported by the National Natural Science Foundation of China(Nos.62027818,61874034,11974320)the National Key R&D Program of China(No.2021YFB3202500)+1 种基金the Key R&D Program of Shanxi Province(No.202102030201008)the International Science and Technology Cooperation Program of Shanghai Science and Technology Innovation Action Plan(No.21520713300).
文摘Doped gallium oxide-based thin films are a class of wide-band semiconductor materials with the ad-vantages of chemically stable,tunable bandgap,and offer the benefit of ultraviolet response.In order to obtain photodetectors(PDs)with superior response,higher demands are placed on the quality of growth and processing of doped films.In this work,Zn-doped ternary metal oxide ZnGaO(ZGO)thin films were grown using the atomic layer deposition technique and annealed at different temperatures under an oxy-gen atmosphere.The results showed that the high-quality ZGO films with good uniformity,high visible light transmittance,low roughness,and significant reduction of oxygen vacancies were obtained after an-nealing.Subsequently,metal-semiconductor-metal PDs were prepared based on the studied ZGO films.The responsivity(R),detectivity(D^(∗)),and external quantum efficiency(EQE)of the optimized device are 61.8 A W^(-1),1.2×10^(12) Jones,and 255.9%,respectively.Compared to the unannealed device,the an-nealed ZGO PD achieves a maximum 309-fold increase in responsivity.This thermal engineering work may provide a strong reference for the development of low-cost,large-area,high-performance ultraviolet detection.And it also broadens the application of ternary metal oxides in optoelectronics.
基金supported by the Special Fund for Science and Technology Innovation of Jiangsu Province(No.BE2022022-1)the Natural Science Foundation of Guangdong Province(No.2022A1515011722).
文摘Inverted perovskite solar cells,which nickel oxide(NiOx)has been widely employed as a hole transport layer,have shown promise for perovskite-silicon tandem solar cells.However,the deficient quality of perovskite/NiOx interface has constrained the performance and stability of the solar cells.In this paper,low-temperature atomic layer deposition(ALD)was employed to prepare a nanometer aluminum oxide(Al_(2)O_(3))layer that effectively blocks carriers recombination,facilitates carriers transport by improving the valence band maximum(VBM)alignment between HTL and perovskite and enhances the morphology of self-assembled monolayer(SAM).The interface between NiO_(x)and perovskite was modified by the embedded Al_(2)O_(3)layer,achieving an open current voltage(Voc)of 1.19 V and a short-circuit current density(J_(sc))of 22.98 mA cm^(-2).The efficiency of the champion cell was 22.22%at 1.5 AM(0.2 cm^(2)),which was a notable enhancement compared to solar cells of average power conversion efficiency(PCE)20.33%without Al_(2)O_(3)passivation layer.The passivated perovskite solar cell exhibits enhanced stability in degradation tests,retaining 85.70%of the initial PCE after storage in ambient air(40%-60%relative humidity(R.H.))at 25℃for 100 h.The results show the potential of low-temperature ALD-Al_(2)O_(3)in inverted perovskite solar cells as well as perovskite-silicon tandem solar cells.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62404146,12174275,62174113)the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant Nos.2023A1515110730 and 2023A1515140094)the INTPART Program at the Research Council of Norway(Project number 322382)。
文摘Low-cost and large-area uniform amorphous Ga_(2)O_(3)(α-Ga_(2)O_(3))solar-blind ultraviolet(UV)detectors have garnered significant attention in recent years.Oxygen vacancy(VO)defects are generally considered as the predominant defects affecting the detector performance.Reducing VOconcentration generally results in both low dark current and low photo current,significantly limiting further improvement of the photo-to-dark current ratio(PDCR)parameter.Herein,a delicately optimized atomic layer deposition(ALD)method is revealed having the capability to break through the trade-off in a-Ga_(2)O_(3),achieving both low dark current and high photocurrent simultaneously.For a clear demonstration,a-Ga_(2)O_(3)contrast sample is prepared by magnetron sputtering and compared as well.Combined tests are performed including xray photoelectron spectroscopy,photoluminescence,electron paramagnetic resonance and Fourier-transform infrared spectroscopy.It is found that ALDα-Ga_(2)O_(3)has a lower VOconcentration,but also a lower dangling bonds concentration which are strong non-irradiation recombination centers.Therefore,decrease of dangling bonds is suggested to compensate for the low optical gain induced by low VOconcentration and promote the PDCR to~2.06×10^(6).Our findings firstly prove that the dangling bonds also play an important role in determining the a-Ga_(2)O_(3)detection performance,offering new insights for further promotion ofα-Ga_(2)O_(3)UV detector performance via dual optimization of dangling bonds and VO.
基金supported by the National Natural Science Foundation of China(Grant Nos.22278101,22068010,22168016,and 52365044)the Natural Science Foundation of Hainan Province(Grant Nos.2019RC142 and 519QN176)the Finance Science and Technology Project of Hainan Province(Grant No.ZDYF2020009).
文摘Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve the superior electrochemical properties of CIBs,the structure design of electrode materials is essential.Herein,2D NiAl-layered double hydroxide(NiAl-LDH)nanoarrays derived from Al2O3 are in-situ grafted to graphene(G)by atomic layer deposition(ALD)and hydrothermal method.The achieved NiAl-LDH@G hybrids with 2D NiAl-LDH arrays grown perpendicularly on graphene surface,can efficiently prevent the stacking of LDHs and enlarge specific surface area to provide more active sites.The NiAl-LDH@G cathode exhibits a maximum discharge capacity of 223.3 mA h g^(-1)and an excellent reversible capacity of 107 mA h g^(-1)over 500 cycles at 100 mA g^(-1)with a high coulombic efficiency around 96%,whereas pure NiAl-LDH has a discharge capacity of only 48.8 mA h g^(-1)and a coulombic efficiency(CE)of about 78%.More importantly,the NiAl-LDH@G electrode has a stable voltage at 1.9 V and an outstanding discharge capacity of higher than 72 mA h g^(-1)after 120 days.Additionally,XRD,XPS,and EDS have been employed to unveil the electrochemical reaction and Cl-storage mechanism of the NiAlLDH@G cathode in CIBs.This work opens a facile and reasonable way for improving electrochemical performance at anion-type rechargeable batteries in terms of cathode material design and mechanism interpretation.
基金support from the National Natural Science Foundation of China(61574091)National Natural Science Foundation of China Key Program(50730008).
文摘Although room-temperature superconductivity is still difficult to achieve,researching materials with electrical conductivity significantly higher than that of copper will be of great importance in improving energy efficiency,reducing costs,lightening equipment weight,and enhancing overall performance.Herein,this study presents a novel copper-carbon nanofilm composite with enhanced conductivity which has great applications in the electronic devices and electrical equipment.Multilayer copper-carbon nanofilms and interfaces with superior electronic structures are formed based on copper materials using plasma immersion nanocarbon layer deposition technology,effectively enhancing conductivity.Experimental results show that for a five-layer copper-carbon nanofilm composite,the conductivity improves significantly when the thickness of the carbon nanofilm increases.When the carbon nanofilm accounts for 16%of the total thickness,the overall conductivity increases up to 30.20%compared to pure copper.The mechanism of the enhanced conductivity is analyzed including roles of copper atom adsorption sites and electron migration pathways by applying effective medium theory,first-principles calculations and density of states analysis.Under an applied electric field,the high-density electrons in the copper film can migrate into the nanocarbon film,forming highly efficient electron transport channels,which significantly enhance the material’s conductivity.Finally,large-area electrode coating equipment is developed based on this study,providing the novel and robust strategy to enhance the conductivity of copper materials,which enables industrial application of copper-carbon nanocomposite films in the field of high conductivity materials.
基金supported financially by the Key Research Program of the Institute of Geology and Geophysics, CAS (Grant No. IGGCAS-202102 and IGGCAS-201905)。
文摘The polar layered deposits(PLD) of Mars can provide deep insight into paleoclimate changes over the planet's last several million years. Since the 1960s, researchers have studied almost all aspects of Martian PLD properties, searching for patterns that might reveal periodic characteristics of the planet's climate history. Although much progress has been made in our understanding of orbital periodicities reflected in the PLD, questions remain regarding how Martian orbital changes have affected the formation of the PLD and regarding the extent of climate information that is recorded in the PLD. Future studies of PLD should be carried out via integrated research that targets multi-profiles throughout the entire Martian polar regions that would clarify their general features at the hemisphere scale. Numerical modeling, coupled with modern observations of dust and water vapor transportation, should greatly advance our understanding of planetary climate evolution. Furthermore, future landing missions may help to clarify the paleoclimatic characteristics reflected in the PLD by drilling into these layered deposits and measuring mineralogical and geochemical compositions of the drilled samples.
基金supported by the National Natural Science Foundation of China(21808214)Research Project Supported by Shanxi Scholarship Council of China(2023-126)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20220013)。
文摘Normally,a transparent inert film is coated on the surface of TiO_(2) particles to enhance the weatherability of the pigment.Liquid-phase coating process is mainly used in industry,which difficult to get really uniform films.This work combining nanoparticle fluidization technology with atomic layer deposition(ALD) technology to achieve precise surface modification of a large number of micro-nano particles.First,we explored the fluidization characteristics of TiO_(2) nanoparticles in a home-made atmospheric fluidized bed ALD reactor(FB-ALD) to ensure the uniform fluidization of a large number of nanoparticles.Then TiCl_(4) and H_(2)O were used as precursors to deposit amorphous TiO_(2) films on the surface of TiO_(2) nanoparticles at 80℃ under atmospheric pressure,and the growth per cycle was about 0.109 nm per cycle.After 30 ALD cycles,the film thickness was about 3.1 nm,which could almost fully suppress the photocatalytic activity of TiO_(2).Compared with other traditional coating materials,amorphous TiO_(2) has higher light refractive index,and realizes the suppression of the photocatalytic activity of TiO_(2) without introducing other substances,demonstrating greater application potential in TiO_(2) pigment coating field.The process is a gas-phase coating method,which is efficient,no waste water,and easy to scale up.This work shown the excellent property of interface engineering in improving pigment weatherability and can also provide guidance for the nanoparticle surface modification.
基金supported by the Technology Innovation Program(Grant Nos.20017382 and 20023023)funded by the Ministry of Trade,Industry&Energy(MOTIE,Republic of Korea)supported by a National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(Grant No.RS-2023-00260527).
文摘Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of OS and such device structures presents certain challenges,including the trade-off relationship between the field-effect mobility and stability of OSs.Conventional 4-line-based operation of the 2T0C enlarges the entire cell volume and complicates the peripheral circuit.Herein,we proposed an IGO(In-Ga-O)channel 2-line-based 2T0C cell design and operating sequences comparable to those of the conventional Si-channel 1 T1C DRAM.IGO was adopted to achieve high thermal stability above 800℃,and the process conditions were optimized to simultaneously obtain a high μFE of 90.7 cm^(2)·V^(-)1·s^(-1),positive Vth of 0.34 V,superior reliability,and uniformity.The proposed 2-line-based 2T0C DRAM cell successfully exhibited multi-bit operation,with the stored voltage varying from 0 V to 1 V at 0.1 V intervals.Furthermore,for stored voltage intervals of 0.1 V and 0.5 V,the refresh time was 10 s and 1000 s in multi-bit operation;these values were more than 150 and 15000 times longer than those of the conventional Si channel 1T1C DRAM,respectively.A monolithic stacked 2-line-based 2T0C DRAM was fabricated,and a multi-bit operation was confirmed.
基金supported by the National Research Foundation of Korea funded by the Korean Government(grant No.RS-2023-00208801).
文摘As artificial intelligence and big data become increasingly prevalent, resistive random-access memory (RRAM) has become one of the most promising alternatives for storing massive amounts of data. In this study, we employed high-quality crystalline TiN/Al_(2)O_(3)/BaTiO_(3)/Pt RRAM with an optimized thin Al_(2)O_(3) interlayer around 12 nm thick prepared using atomic layer deposition since the thickness of the interlayer affects the memory window size. After insertion of the Al_(2)O_(3) interlayer, the novel RRAM exhibited outstanding uniform resistive switching voltage and the ON/OFF memory window drastically increased from 10 to 103 without any discernible decline in performance. Moreover, the low-resistance state and high-resistance state operating current values decreased by almost one order and three orders of magnitude, respectively, thereby decreasing the power consumption for the RESET and SET processes by more than three and almost one order of magnitude, respectively. The device also exhibits multilevel resistive switching behavior when varying the applied voltage. Finally, we also developed a 6 6 crossbar array which demonstrated consistent and reliable resistive switching behavior with minimal variation. Hence, our approach holds great promise for producing state-of-the-art non-volatile resistive switching devices.
基金supported by the National Key Research and Development Program of China(2021YFB2400202)the National Natural Science Foundation of China(52104313)+1 种基金the Key Research and Development Plan of Shaanxi(2024GH-YBXM-11)the Foshan Science and Technology Innovation Team Project(1920001004098).
文摘ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiophilicity of both LiZn and Li_(2)O products upon lithiation of ZnO.However,the striking differences in the lithiophilicity between Li_(2)O and LiZn would result in a high overpotential during cycling.In this research,the Al_(2)O_(3)/nZnO(n≥1)hybrid layers were precisely fabricated by atomic layer deposition(ALD)to regulate the lithiophilicity of ZnO phase and Li_(2)O/LiZn configuration—determining the actual Li loading amount and Li plating/stripping processes.Theoretically,the Li adsorption energy(E_(a))values of LiZn and Li_(2)O in the LiZn/Li_(2)O configuration are separately predicted as-2.789 and-3.447 eV.In comparison,the E_(a) values of LiZn,LiAlO_(2),and Li_(2)O in the LiZn/LiAlO_(2)/Li_(2)O configuration upon lithiation of Al_(2)O_(3)/8ZnO layer are calculated as-2.899,-3.089,and-3.208 eV,respectively.Importantly,a novel introduction of LiAlO_(2)into the LiZn/Li_(2)O configuration could enable the hierarchical Li plating/stripping and reduce the overpotentials during cycling.Consequently,the Al_(2)O_(3)/8ZnO-derived hybrid Li-metal anode could exhibit electrochemical performances superior to these of ZnO-derived Li anode in both symmetrical and full cells paired with a LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode.
基金conducted under the framework of the research and development program of the Korea Institute of Energy Research(C4-2412 and C4-2413)supported by the National Research Foundation of Korea(grant number 2022M3J1A1063019)funded by the Ministry of Science and ICT.
文摘Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance,as in a wide bandgap Zn_(1-x)Mg_(x)O(ZMO)to replace the CdS buffer in Cu(In_(1-x),Ga_(x))Se_(2)(CIGSe)thin-film solar cell structure.ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content,which can be helpful in attaining a suitable conduction band offset.Hence,compared to the fixed and limited bandgap of a CdS buffer,a ZMO buffer may provide advantages in V_(oc) and J_(sc) based on its controllable and wide bandgap,even with a relatively wider bandgap CIGSe thin-film solar cell.In addition,to solve problems with the defect sites at the ZMO/CIGSe junction interface,a few-nanometer ZnS layer is employed for heterojunction interface passivation,forming a ZMO/ZnS buffer structure by atomic layer deposition(ALD).Finally,a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap(1.25 eV)and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%,which exhibited a higher performance than the CdS counterpart.
基金financially supported by the National Natural Science Foundation of China (Nos. 51401046, 51572042, 61131005, 61021061, and 61271037)International Cooperation Projects (Nos. 2013HH0003 and 2015DFR50870)+3 种基金the 111 Project (No. B13042)the Sichuan Province S&T program (Nos. 2014GZ0003, 2015GZ0091, and 2015GZ0069)Fundamental Research Funds for the Central Universitiesthe start-up fund from the University of Electronic Science and Technology of China
文摘VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field.
基金supported by the National Key R&D Program of China(Grant No.2019YFB1503201)the National Natural Science Foundation of China(Grant Nos.52172238,52102304,51902264,and 51902177)+3 种基金the Natural Science Foundation of Shanxi Province,China(Grant No.2020JM093)Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(Grant No.2020GXLH-Z-014)Science Technology and Innovation Commission of Shenzhen Municipality(Grant No.JCYJ20190807111605472)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102019JC0005 and G2021KY05103)。
文摘The electron transport layer(ETL)plays an important role on the performance and stability of perovskite solar cells(PSCs).Developing double ETL is a promising strategy to take the advantages of different ETL materials and avoid their drawbacks.Here,an ultrathin SnO_(2)layer of~5 nm deposited by atomic layer deposit(ALD)was used to construct a TiO_(2)/SnO_(2)double ETL,improving the power conversion efficiency(PCE)from 18.02%to 21.13%.The ultrathin SnO_(2)layer enhances the electrical conductivity of the double layer ETLs and improves band alignment at the ETL/perovskite interface,promoting charge extraction and transfer.The ultrathin SnO_(2)layer also passivates the ETL/perovskite interface,suppressing nonradiative recombination.The double ETL achieves outstanding stability compared with PSCs with TiO_(2)only ETL.The PSCs with double ETL retains 85%of its initial PCE after 900 hours illumination.Our work demonstrates the prospects of using ultrathin metal oxide to construct double ETL for high-performance PSCs.
基金funded in part by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217)。
文摘In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.
基金supports from the National Natural Science Foundation of China(No.22122108)the Luohe Xinwang Chemical Co.,Ltd.,China.The“Top-rated Discipline”construction scheme of Shaanxi higher education in China supported part of this work。
文摘Under"green architecture"principles,electrochromic smart windows are employed to adjust optical transmittance and indoor temperature,yet their high costs limit the wide application.Here,an electrochromic window is driven by a redox flow battery(RFB),where TOC and deposition layers are no longer needed.The transmittance of the electrochromic window is modulated by the state of oxidation(SOC)of aqueous posolyte Fe(phen)_(3)Cl_(2),which is coupled with BTMAP-Vi negolyte in RFB.Under optimized conditions,average CE,VE,and EE reach 93.25%,92.61%,and 86.35%for RFB with a capacity fading rate of 1.57%per cycle.88.66%optical modulation and 9.36 cm^(2)/C coloration efficiency are achieved in the electrochromic process,and 72.34%optical modulation is maintained after 12000 s.Essentially,the indoor temperature declines 3℃for posolyte with 100%SOC when compared with the control experiment using circulating water for a model house.This means minimum electricity of 0.0185 kWh is saved when using an air conditioner to cool a 100 m^(3)house,which corresponds to declined CO_(2)emission(COE)of 0.0185 kg.This work provides a novel and cost-efficient strategy for modulating indoor comfort via electrochromic windows driven by RFB.