Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and ...Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.展开更多
Asan emerging poserful tool to provide structural informstion af tissue specimens label-freely,Mueller matrix(MM)polarimetry has garnered extensive attention in biomedical studies and pathological diagnois.However,for...Asan emerging poserful tool to provide structural informstion af tissue specimens label-freely,Mueller matrix(MM)polarimetry has garnered extensive attention in biomedical studies and pathological diagnois.However,for the commonly used constant-step rotating MM polarimetricsystem,beam drift induæd by the rotation of polarization eements can lead to distortions in messurement results,severely affect ing MM imaging accuracy.Here,based on our previous study,we prоровe an optimizad self-registration method to mitigate the psæudo-depolarization effects introduced by image artifacts in constant-step rotatin g MM polarimetry.By addresing the prevalent issue of beam drift and image distortions in such polarimetric imaging systems,the effectivenes of the proposed method is experimentally validated using tissue samples.The result.s demonstrate a significant enhanæment in the accuIrsсy of depolarization parameter estimation after applying the optimized self-registration method.Furthermore,the method enhances the coarseness and contrsst of MM-derived parameters images,thereby bolstering their capacity to characterize tissuestructures.The optimized self-registration method proposed in this study can provide an innovstive spproach for quantitative tissue polarimetry bssæd on constant-step ro tating MM messurement,and contribute to the advanæment of polarimetric imaging technology in biomedical applications.展开更多
Lead-free Bi_(_(0.5))Na_(_(0.5))TiO_(3)(BNT)piezoelectric ceramics have the advantages of large coercive fields and high Curie temperatures.But the improvement of piezoelectric coefficient(d 33)is usually accompanied ...Lead-free Bi_(_(0.5))Na_(_(0.5))TiO_(3)(BNT)piezoelectric ceramics have the advantages of large coercive fields and high Curie temperatures.But the improvement of piezoelectric coefficient(d 33)is usually accompanied by a huge sacrifice of depolarization temperature(T d).In this work,a well-balanced performance of d 33 and T d is achieved in MnO_(2)-doped 0.79(Bi_(_(0.5))Na_(_(0.5))TiO_(3))-0.14(Bi_(0.5)K_(0.5)TiO_(3))-0.07BaTiO_(3)ternary ceramics.The in-corporation of 0.25 mol%MnO_(2)enhances the d 33 by more than 40%,while T d remains almost unchanged(i.e.,d 33=181 pC/N,T d=184℃).X-ray diffraction(XRD)shows that an appropriate fraction of the small axis-ratio ferroelectric phase(pseudo-cubic,P c)coexists with the long-range ferroelectric phase(tetrag-onal,T)under this MnO_(2)doping.Piezoelectric force microscopy(PFM)has revealed a special domain configuration,namely large striped and layered macro domains embedded with small nanodomains.This study provides a distinctive avenue to design BNT-based piezoelectric ceramics with high piezoelectric performance and temperature stability.展开更多
Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applic...Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91% were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280% enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.展开更多
The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are pr...The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.展开更多
Ti-bearing slag(TiO2>20 wt%)is a valuable titanium secondary resource.The extraction of titanium from the slag is difficult due to the complex composition and structure.Although molten oxide electrolysis is conside...Ti-bearing slag(TiO2>20 wt%)is a valuable titanium secondary resource.The extraction of titanium from the slag is difficult due to the complex composition and structure.Although molten oxide electrolysis is considered as a promising method,silicon will be preferentially electroreduced compared to titanium due to low theoretical decomposition voltage.In this work,a liquid copper cathode is used to selectively extract titanium from molten Al2O3-MgO-CaO-TiO2-SiO2 electrolyte.It is found that comparing to silicon,titanium can be preferentially reduced by one-step electron transfer due to the enhanced depolarization effect on a liquid copper cathode.So,Ti-Cu alloys are firstly obtained from molten Ti-bearing slag,and then Ti-Si alloys are co-electrodeposited in the molten oxide electrolyte with low TiO2 content.It may be ascribed to the larger binding force between titanium and copper than that between silicon and copper.It provides an effective strategy for the separation of titanium from of Ti-bearing slag.展开更多
Senescence impairs preosteoblast expansion and differentiation into functional osteoblasts,blunts their responses to bone formation-stimulating factors and stimulates their secretion of osteoclast-activating factors.D...Senescence impairs preosteoblast expansion and differentiation into functional osteoblasts,blunts their responses to bone formation-stimulating factors and stimulates their secretion of osteoclast-activating factors.Due to these adverse effects,preosteoblast senescence is a crucial target for the treatment of age-related bone loss;however,the underlying mechanism remains unclear.We found that mTORC1 accelerated preosteoblast senescence in vitro and in a mouse model.Mechanistically,mTORC1 induced a change in the membrane potential from polarization to depolarization,thus promoting cell senescence by increasing Ca^(2+)influx and activating downstream NFAT/ATF3/p53 signaling.We further identified the sodium channel Scn1a as a mediator of membrane depolarization in senescent preosteoblasts.Scn1a expression was found to be positively regulated by mTORC1 upstream of C/EBPα,whereas its permeability to Na^(+)was found to be gated by protein kinase A(PKA)-induced phosphorylation.Prosenescent stresses increased the permeability of Scn1a to Na^(+)by suppressing PKA activity and induced depolarization in preosteoblasts.Together,our findings identify a novel pathway involving mTORC1,Scn1a expression and gating,plasma membrane depolarization,increased Ca^(2+)influx and NFAT/ATF3/p53 signaling in the regulation of preosteoblast senescence.Pharmaceutical studies of the related pathways and agents might lead to novel potential treatments for agerelated bone loss.展开更多
An improved transverse Ising model is proposed by taking the depolarization field effect into account. Within the framework of mean-held theory we investigate the behavior of the ferroelectric thin film. Our results s...An improved transverse Ising model is proposed by taking the depolarization field effect into account. Within the framework of mean-held theory we investigate the behavior of the ferroelectric thin film. Our results show that the influence of the depolarization field is to flatten the spontaneous polarization profile and make the films more homogeneous, which is consistent with Ginzburg Landau theory. This fact shows that this model can be taken as an effective model to deal with the ferroelectric film and can be further extended to refer to quantum effect. The competition between quantum effect and depolarization field induces some interesting phenomena on ferroelectric thin films.展开更多
The performance and capacity of multiple-input multiple-output (MIMO) wireless channels are limited by the spatial fading correlation between antenna elements. This limitation is due to the use of mono polarized anten...The performance and capacity of multiple-input multiple-output (MIMO) wireless channels are limited by the spatial fading correlation between antenna elements. This limitation is due to the use of mono polarized antennas at receiver and transmitter sides. In this paper, in order to reduce the antenna correlation, the polarization diversity technique is employed. Although the spatial antenna correlation is attenuated for multi-polarization configurations, the cross-polar components appear. This paper highlights the impact of depolarization effect on the MIMO channel capacity for a 4×4 uniform linear antenna array. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is distributed to each of the transmit antennas. The numerical results illustrate that for low depolarization and spatial correlation, the capacity of single-polarization configuration behaves better than that of multi-polarization configuration.展开更多
We present a systematic investigation of the depolarization properties of a supercontinuum accompanied with femtosecond laser filamentation in barium fluoride(BaF2)crystal.It is found that the depolarization of the su...We present a systematic investigation of the depolarization properties of a supercontinuum accompanied with femtosecond laser filamentation in barium fluoride(BaF2)crystal.It is found that the depolarization of the supercontinuum depends strongly on the crystal orientations with respect to the incident laser polarization.At most crystal orientations,the depolarization of the supercontinuum rises with the increase of the input laser energies and finally saturates.While at 45°,the depolarization of the supercontinuum is not changed and keeps nearly negligible with the increase of the input laser energies.These peculiar depolarization properties of the supercontinuum can be ascribed to the orientation dependence of the cross-polarized wave(XPW)generation and ionization-induced plasma scattering in the BaF2 crystal.展开更多
The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path i...The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.展开更多
Scattering of the electromagnetic waves by a randomly inhomogeneous electrically gyrotropic slab are studied using the perturbation method. Second order statistical moments of the ordinary and extraordinary waves scat...Scattering of the electromagnetic waves by a randomly inhomogeneous electrically gyrotropic slab are studied using the perturbation method. Second order statistical moments of the ordinary and extraordinary waves scattered by the magnetized plasma slab are obtained using the boundary conditions for an arbitrary correlation function of electron density fluctuations. Normalized correlation functions at quasi-longitudinal propagation along the external magnetic field are calculated for the carrier frequency 0.1 MHz and 40 MHz. Isolines of the normalized variance of Faraday angle are constructed for the anisotropic Gaussian correlation function at various anisotropy factors of irregularities. Obtained results are in a good agreement with the experimental data.展开更多
Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrate...Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrated devices with more functionalities rather than basic photo-detecting ability are highly required and have been triggered ever-growing interest in scientific and industrial communities.Ferroelectric thin films have become a potential candidate in the field of UV detection due to their wide bandgap and unique photovoltaic characteristics.Additionally,ferroelectric thin films perform excellent dielectric,piezoelectric,pyroelectric,acousto-optic effects,etc.,which can satisfy the demand for the diversified development of UV detectors.In this review,according to the different roles of ferroelectric thin films in the device,the UV photodetectors based on ferroelectric films are classified into ferroelectric depolarization field driven type,ferroelectric depolarization field and built-in electric field co-driven type,and ferroelectric field enhanced type.These three types of ferroelectric UV photodetectors have great potential and are expected to promote the development of a new generation of UV detection technology.At the end of the paper,the advantages and challenges of three types of ferroelectric UV photodetectors are summarized,and the possible development direction in the future is proposed.展开更多
The [001]c-polarized(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3(PMN-PT) single crystals are widely used in ultrasonic detection transducers and underwater acoustic sensors. However, the relatively small coercive field( 2 kV/cm) of...The [001]c-polarized(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3(PMN-PT) single crystals are widely used in ultrasonic detection transducers and underwater acoustic sensors. However, the relatively small coercive field( 2 kV/cm) of such crystals restricts their application at high frequencies because the driving field will exceed the coercive field. The depolarization field can be considerably larger in an antiparallel direction than in a parallel direction with respect to polarization when the bipolar driving cycle starts. Thus, if the direction of the sine wave signal in the first half cycle is opposite to the polarization direction, then the depolarized domains can be repolarized in the second half of the sine cycle. However, if the direction of the sine wave signal in the first half of the cycle is along the polarization direction, then the change is negligible,and the domains switched in the second half of the sine cycle cannot be recovered. The design of electric driving method needs to allow the use of a large applied field to emit strong enough signals and produce good images. This phenomenon combined with the coercive field increases with the driving frequency, thereby making the PMN-PT single crystals usable for high-frequency applications. As such, the applied field can be considerably larger than the conventionally defined coercive field.展开更多
The spin polarization phenomenon in lepton circular accelerators had been known for many years. It provides a new approach for physicists to study the spin feature of fundamental particles and the dynamics of spin-orb...The spin polarization phenomenon in lepton circular accelerators had been known for many years. It provides a new approach for physicists to study the spin feature of fundamental particles and the dynamics of spin-orbit coupling, such as spin resonances. We use numerical simulation to study the features of spin under the modulation of orbital motion in an electron storage ring. The various cases of depolarization due to spin-orbit coupling through an emitting photon and misalignment of magnets in the ring are discussed.展开更多
(Bi_(0.5)Na_(0.5))TiO_(3)-based materials have attracted widespread attention due to large electro-strain,large remnant polarization(P r)and high Curie temperature(T C),but the existence of inherent depolarization tem...(Bi_(0.5)Na_(0.5))TiO_(3)-based materials have attracted widespread attention due to large electro-strain,large remnant polarization(P r)and high Curie temperature(T C),but the existence of inherent depolarization temperature(T d)limits the temperature stability and application temperature range.In this work,we find that K/Na ratio can regulate T d(from 90℃to 246℃)of the ceramics,which confirms that the increase of K substitution can effectively improve the temperature stability of the material.The phase structure and electrical properties of Bi_(0.5)(Na_(1-x)K_(x))_(0.5)TiO_(3)(BNKT x)ceramics can be well modulated by changing K/Na.In addition,BNKT x system exhibits excellent piezoelectric response at morphotropic phase boundary(MPB)of 20%BKT content(d_(33)=180 pC/N),where rhombohedral(R 3 c)phase and tetragonal(P 4 bm)phase coexist in MPB.With K further substitution,BNKT x ceramics transform into tetragonal phase,and the domain size grows due to the structural transition from short-range-correlated P 4 bm to long-range-correlated P 4 mm.The deferment of T d is also tightly related to the increase of P 4 mm/P 4 bm ratio.This work can provide an effective way to tailor depolarization temperature and electrical properties of BNT-based ceramics.展开更多
In this work,the spin dynamics of a centrosymmetric WSe2 bilayer has been investigated by the two-color timeresolved Kerr rotation together with helicity-resolved transient reflectance techniques.Two depolarization pr...In this work,the spin dynamics of a centrosymmetric WSe2 bilayer has been investigated by the two-color timeresolved Kerr rotation together with helicity-resolved transient reflectance techniques.Two depolarization processes associated with the direct transition are discovered at a low temperature of 10 K,with the characteristic decaying time of~3.8 ps and~20 ps,respectively.The short decay time of~3.8 ps is suggested to be the exciton spin lifetime of the WSe2 bilayer,which is limited by the short exciton lifetime of the WSe_(2) bilayer and the rapid intervalley electron–hole exchange interaction between K^(+)and K^(-)valley in the same layer as that of monolayer.The long decay time of~20 ps is suggested to be the spin lifetime of photo-excited electrons,whose spin relaxation is governed by the rapid intervalley scattering from the K valley to the global minimumΣvalley and the subsequent interlayer charge transfer in WSe_(2) bilayer.Our experimental results prove the existence of the spin-polarized excitons and carriers even in centrosymmetric transition metal dichalcogenides(TMDCs)bilayers,suggesting their potential valleytronic and spintronic device applications.展开更多
The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a...The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam.展开更多
We present an innovative design for a two-head,gas-cooled multi-slab high-energy,high-repetition-rate amplifier aimed at mitigating thermally induced depolarization in a wide-bandwidth neodymium-doped glass gain mediu...We present an innovative design for a two-head,gas-cooled multi-slab high-energy,high-repetition-rate amplifier aimed at mitigating thermally induced depolarization in a wide-bandwidth neodymium-doped glass gain medium.This architecture employs two quartz rotators(QRs)with opposite-handedness,strategically positioned within each multi-slab amplifier head,to enhance depolarization compensation.Theoretical modeling of this amplifier configuration demonstrates a 20×reduction in depolarization losses for a 70 mm beam operating at the central wavelength,compared to conventional approaches that utilize a single QR positioned between the amplifier heads.In addition,for a wide bandwidth source,the integration of QRs with opposite-handedness yields a 9×improvement in depolarization losses at the spectral extremes compared to the use of two QRs exhibiting the same optical handedness in both amplifier heads.展开更多
(Hf,Zr)O_(2)offers considerable potential for next-generation semiconductor devices owing to its nonvolatile spontaneous polarization at the nanoscale.However,scaling this material to sub-5 nm thickness poses several ...(Hf,Zr)O_(2)offers considerable potential for next-generation semiconductor devices owing to its nonvolatile spontaneous polarization at the nanoscale.However,scaling this material to sub-5 nm thickness poses several challenges,including the formation of an interfacial layer and high trap concentration.In particular,a low-k SiO_(2)interfacial layer is naturally formed when(Hf,Zr)O_(2)films are directly grown on a Si substrate,leading to high depolarization fields and rapid reduction of the remanent polarization.To address these issues,we conducted a study to significantly improve ferroelectricity and switching endurance of(Hf,Zr)O_(2)films with sub-5 nm thicknesses by inserting a TiO_(2)interfacial layer.The deposition of a Ti film prior to Hf_(0.5)Zr_(0.5)O_(2)film deposition resulted in a high-k TiO_(2)interfacial layer and prevented the direct contact of Hf_(0.5)Zr_(0.5)O_(2)with Si.Our findings show that the high-k TiO_(2)interfacial layer can reduce the SiO_(2)/Si interface trap density and the depolarization field,resulting in a switchable polarization of 60.2μC/cm^(2)for a 5 nm thick Hf_(0.5)Zr_(0.5)O_(2)film.Therefore,we propose that inserting a high-k TiO_(2)interfacial layer between the Hf_(0.5)Zr_(0.5)O_(2)film and the Si substrate may offer a promising solution to enhancing the ferroelectricity and reliability of(Hf,Zr)O_(2)grown on the Si substrate and can pave the way for next-generation semiconductor devices with improved performance.展开更多
文摘Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.
基金funded by the National Natural Science Foundation of China(NSFC)under Grant No.62335007.
文摘Asan emerging poserful tool to provide structural informstion af tissue specimens label-freely,Mueller matrix(MM)polarimetry has garnered extensive attention in biomedical studies and pathological diagnois.However,for the commonly used constant-step rotating MM polarimetricsystem,beam drift induæd by the rotation of polarization eements can lead to distortions in messurement results,severely affect ing MM imaging accuracy.Here,based on our previous study,we prоровe an optimizad self-registration method to mitigate the psæudo-depolarization effects introduced by image artifacts in constant-step rotatin g MM polarimetry.By addresing the prevalent issue of beam drift and image distortions in such polarimetric imaging systems,the effectivenes of the proposed method is experimentally validated using tissue samples.The result.s demonstrate a significant enhanæment in the accuIrsсy of depolarization parameter estimation after applying the optimized self-registration method.Furthermore,the method enhances the coarseness and contrsst of MM-derived parameters images,thereby bolstering their capacity to characterize tissuestructures.The optimized self-registration method proposed in this study can provide an innovstive spproach for quantitative tissue polarimetry bssæd on constant-step ro tating MM messurement,and contribute to the advanæment of polarimetric imaging technology in biomedical applications.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2021A012).
文摘Lead-free Bi_(_(0.5))Na_(_(0.5))TiO_(3)(BNT)piezoelectric ceramics have the advantages of large coercive fields and high Curie temperatures.But the improvement of piezoelectric coefficient(d 33)is usually accompanied by a huge sacrifice of depolarization temperature(T d).In this work,a well-balanced performance of d 33 and T d is achieved in MnO_(2)-doped 0.79(Bi_(_(0.5))Na_(_(0.5))TiO_(3))-0.14(Bi_(0.5)K_(0.5)TiO_(3))-0.07BaTiO_(3)ternary ceramics.The in-corporation of 0.25 mol%MnO_(2)enhances the d 33 by more than 40%,while T d remains almost unchanged(i.e.,d 33=181 pC/N,T d=184℃).X-ray diffraction(XRD)shows that an appropriate fraction of the small axis-ratio ferroelectric phase(pseudo-cubic,P c)coexists with the long-range ferroelectric phase(tetrag-onal,T)under this MnO_(2)doping.Piezoelectric force microscopy(PFM)has revealed a special domain configuration,namely large striped and layered macro domains embedded with small nanodomains.This study provides a distinctive avenue to design BNT-based piezoelectric ceramics with high piezoelectric performance and temperature stability.
基金financial support from the National Natural Science Foundation of China(Nos.52072092 and 51922083)the Natural Science Foundation of Heilongjiang Province(No.YQ2019E026)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021018).
文摘Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91% were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280% enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.20903002, No.21273211, No.9112T042, and No.21373194) and the Anhui Provin- cial Natural Science Foundation (No.1408085MA18), and the National Key Basic Research Special Founda- tion (No.2013CB834602 and No.2010CB923300).
文摘The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.
基金supported by the National Natural Science Foundation of China(51725401)the Fundamental Research Funds for the Central Universities(FRF-TP-18-010B1).
文摘Ti-bearing slag(TiO2>20 wt%)is a valuable titanium secondary resource.The extraction of titanium from the slag is difficult due to the complex composition and structure.Although molten oxide electrolysis is considered as a promising method,silicon will be preferentially electroreduced compared to titanium due to low theoretical decomposition voltage.In this work,a liquid copper cathode is used to selectively extract titanium from molten Al2O3-MgO-CaO-TiO2-SiO2 electrolyte.It is found that comparing to silicon,titanium can be preferentially reduced by one-step electron transfer due to the enhanced depolarization effect on a liquid copper cathode.So,Ti-Cu alloys are firstly obtained from molten Ti-bearing slag,and then Ti-Si alloys are co-electrodeposited in the molten oxide electrolyte with low TiO2 content.It may be ascribed to the larger binding force between titanium and copper than that between silicon and copper.It provides an effective strategy for the separation of titanium from of Ti-bearing slag.
基金supported by grants 82172507 (B.H.), 81700783 (B.H.)and 81672120 (D.J.) from the National Natural Science Foundation of China+1 种基金2019A1515011876 (B.H.) and 2018A030313937 (Z.L.) from the Guangdong Natural Science Fund Management Committee202002030176 (B.H.) from the Guangzhou Municipal Science and Technology Bureau
文摘Senescence impairs preosteoblast expansion and differentiation into functional osteoblasts,blunts their responses to bone formation-stimulating factors and stimulates their secretion of osteoclast-activating factors.Due to these adverse effects,preosteoblast senescence is a crucial target for the treatment of age-related bone loss;however,the underlying mechanism remains unclear.We found that mTORC1 accelerated preosteoblast senescence in vitro and in a mouse model.Mechanistically,mTORC1 induced a change in the membrane potential from polarization to depolarization,thus promoting cell senescence by increasing Ca^(2+)influx and activating downstream NFAT/ATF3/p53 signaling.We further identified the sodium channel Scn1a as a mediator of membrane depolarization in senescent preosteoblasts.Scn1a expression was found to be positively regulated by mTORC1 upstream of C/EBPα,whereas its permeability to Na^(+)was found to be gated by protein kinase A(PKA)-induced phosphorylation.Prosenescent stresses increased the permeability of Scn1a to Na^(+)by suppressing PKA activity and induced depolarization in preosteoblasts.Together,our findings identify a novel pathway involving mTORC1,Scn1a expression and gating,plasma membrane depolarization,increased Ca^(2+)influx and NFAT/ATF3/p53 signaling in the regulation of preosteoblast senescence.Pharmaceutical studies of the related pathways and agents might lead to novel potential treatments for agerelated bone loss.
文摘An improved transverse Ising model is proposed by taking the depolarization field effect into account. Within the framework of mean-held theory we investigate the behavior of the ferroelectric thin film. Our results show that the influence of the depolarization field is to flatten the spontaneous polarization profile and make the films more homogeneous, which is consistent with Ginzburg Landau theory. This fact shows that this model can be taken as an effective model to deal with the ferroelectric film and can be further extended to refer to quantum effect. The competition between quantum effect and depolarization field induces some interesting phenomena on ferroelectric thin films.
文摘The performance and capacity of multiple-input multiple-output (MIMO) wireless channels are limited by the spatial fading correlation between antenna elements. This limitation is due to the use of mono polarized antennas at receiver and transmitter sides. In this paper, in order to reduce the antenna correlation, the polarization diversity technique is employed. Although the spatial antenna correlation is attenuated for multi-polarization configurations, the cross-polar components appear. This paper highlights the impact of depolarization effect on the MIMO channel capacity for a 4&amp;amp;#215;4 uniform linear antenna array. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is distributed to each of the transmit antennas. The numerical results illustrate that for low depolarization and spatial correlation, the capacity of single-polarization configuration behaves better than that of multi-polarization configuration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11527807,11674356,11834015,and 91850121)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21010400)the Open Fund of the State Key Laboratory of High Field Laser Physics,China
文摘We present a systematic investigation of the depolarization properties of a supercontinuum accompanied with femtosecond laser filamentation in barium fluoride(BaF2)crystal.It is found that the depolarization of the supercontinuum depends strongly on the crystal orientations with respect to the incident laser polarization.At most crystal orientations,the depolarization of the supercontinuum rises with the increase of the input laser energies and finally saturates.While at 45°,the depolarization of the supercontinuum is not changed and keeps nearly negligible with the increase of the input laser energies.These peculiar depolarization properties of the supercontinuum can be ascribed to the orientation dependence of the cross-polarized wave(XPW)generation and ionization-induced plasma scattering in the BaF2 crystal.
基金supported in part by the National Natural Science Foundation of China(61561039,61461044)the Natural Science Foundation of Ningxia(NZ14045)the Higher School Science and Technology Research Project of Ningxia(NGY2014051)
文摘The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.
文摘Scattering of the electromagnetic waves by a randomly inhomogeneous electrically gyrotropic slab are studied using the perturbation method. Second order statistical moments of the ordinary and extraordinary waves scattered by the magnetized plasma slab are obtained using the boundary conditions for an arbitrary correlation function of electron density fluctuations. Normalized correlation functions at quasi-longitudinal propagation along the external magnetic field are calculated for the carrier frequency 0.1 MHz and 40 MHz. Isolines of the normalized variance of Faraday angle are constructed for the anisotropic Gaussian correlation function at various anisotropy factors of irregularities. Obtained results are in a good agreement with the experimental data.
基金supported by the Guang Dong Basic and Applied Basic Research Foundation,China(2021B1515120025)。
文摘Ultraviolet(UV)photodetectors are extensively adopted in the fields of the Internet of Things,optical communications and imaging.Nowadays,with broadening the application scope of UV photodetectors,developing integrated devices with more functionalities rather than basic photo-detecting ability are highly required and have been triggered ever-growing interest in scientific and industrial communities.Ferroelectric thin films have become a potential candidate in the field of UV detection due to their wide bandgap and unique photovoltaic characteristics.Additionally,ferroelectric thin films perform excellent dielectric,piezoelectric,pyroelectric,acousto-optic effects,etc.,which can satisfy the demand for the diversified development of UV detectors.In this review,according to the different roles of ferroelectric thin films in the device,the UV photodetectors based on ferroelectric films are classified into ferroelectric depolarization field driven type,ferroelectric depolarization field and built-in electric field co-driven type,and ferroelectric field enhanced type.These three types of ferroelectric UV photodetectors have great potential and are expected to promote the development of a new generation of UV detection technology.At the end of the paper,the advantages and challenges of three types of ferroelectric UV photodetectors are summarized,and the possible development direction in the future is proposed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674270)the Fundamental Research Funds for Xiamen University,China(Grant No.20720180113)+2 种基金the Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province,China(Grant No.JAT170036)the Opening Fund of Acoustics Science and Technology Laboratory,China(Grant No.SSKF2018006)sponsored by the Education Department of Fujian Province,China for his study at the Pennsylvania State University(Grant No.2016071145)
文摘The [001]c-polarized(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3(PMN-PT) single crystals are widely used in ultrasonic detection transducers and underwater acoustic sensors. However, the relatively small coercive field( 2 kV/cm) of such crystals restricts their application at high frequencies because the driving field will exceed the coercive field. The depolarization field can be considerably larger in an antiparallel direction than in a parallel direction with respect to polarization when the bipolar driving cycle starts. Thus, if the direction of the sine wave signal in the first half cycle is opposite to the polarization direction, then the depolarized domains can be repolarized in the second half of the sine cycle. However, if the direction of the sine wave signal in the first half of the cycle is along the polarization direction, then the change is negligible,and the domains switched in the second half of the sine cycle cannot be recovered. The design of electric driving method needs to allow the use of a large applied field to emit strong enough signals and produce good images. This phenomenon combined with the coercive field increases with the driving frequency, thereby making the PMN-PT single crystals usable for high-frequency applications. As such, the applied field can be considerably larger than the conventionally defined coercive field.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10875118)
文摘The spin polarization phenomenon in lepton circular accelerators had been known for many years. It provides a new approach for physicists to study the spin feature of fundamental particles and the dynamics of spin-orbit coupling, such as spin resonances. We use numerical simulation to study the features of spin under the modulation of orbital motion in an electron storage ring. The various cases of depolarization due to spin-orbit coupling through an emitting photon and misalignment of magnets in the ring are discussed.
基金the support of the National Science Foundation of China (No. 51972215)the National Natural Science Foundation of China (NSFC) (No. 52061130216)+1 种基金a Newton Advanced Fellowship award (NAFR1201126)the Central Funds Guiding the Local Science and Technology Development of Sichuan Province(2021ZYD0022)
文摘(Bi_(0.5)Na_(0.5))TiO_(3)-based materials have attracted widespread attention due to large electro-strain,large remnant polarization(P r)and high Curie temperature(T C),but the existence of inherent depolarization temperature(T d)limits the temperature stability and application temperature range.In this work,we find that K/Na ratio can regulate T d(from 90℃to 246℃)of the ceramics,which confirms that the increase of K substitution can effectively improve the temperature stability of the material.The phase structure and electrical properties of Bi_(0.5)(Na_(1-x)K_(x))_(0.5)TiO_(3)(BNKT x)ceramics can be well modulated by changing K/Na.In addition,BNKT x system exhibits excellent piezoelectric response at morphotropic phase boundary(MPB)of 20%BKT content(d_(33)=180 pC/N),where rhombohedral(R 3 c)phase and tetragonal(P 4 bm)phase coexist in MPB.With K further substitution,BNKT x ceramics transform into tetragonal phase,and the domain size grows due to the structural transition from short-range-correlated P 4 bm to long-range-correlated P 4 mm.The deferment of T d is also tightly related to the increase of P 4 mm/P 4 bm ratio.This work can provide an effective way to tailor depolarization temperature and electrical properties of BNT-based ceramics.
基金Project supported by the National Natural Science Foundation of China(Grant No.11474276)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDPB0603)
文摘In this work,the spin dynamics of a centrosymmetric WSe2 bilayer has been investigated by the two-color timeresolved Kerr rotation together with helicity-resolved transient reflectance techniques.Two depolarization processes associated with the direct transition are discovered at a low temperature of 10 K,with the characteristic decaying time of~3.8 ps and~20 ps,respectively.The short decay time of~3.8 ps is suggested to be the exciton spin lifetime of the WSe2 bilayer,which is limited by the short exciton lifetime of the WSe_(2) bilayer and the rapid intervalley electron–hole exchange interaction between K^(+)and K^(-)valley in the same layer as that of monolayer.The long decay time of~20 ps is suggested to be the spin lifetime of photo-excited electrons,whose spin relaxation is governed by the rapid intervalley scattering from the K valley to the global minimumΣvalley and the subsequent interlayer charge transfer in WSe_(2) bilayer.Our experimental results prove the existence of the spin-polarized excitons and carriers even in centrosymmetric transition metal dichalcogenides(TMDCs)bilayers,suggesting their potential valleytronic and spintronic device applications.
文摘The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam.
基金the auspices of the U.S.Department of Energy by Lawrance Livermore National Laboratory under Contract DE-AC52-07NA27344funding provided by the Department of Energy Office of Fusion Energy Sciences.LLNL-JRNL-869299。
文摘We present an innovative design for a two-head,gas-cooled multi-slab high-energy,high-repetition-rate amplifier aimed at mitigating thermally induced depolarization in a wide-bandwidth neodymium-doped glass gain medium.This architecture employs two quartz rotators(QRs)with opposite-handedness,strategically positioned within each multi-slab amplifier head,to enhance depolarization compensation.Theoretical modeling of this amplifier configuration demonstrates a 20×reduction in depolarization losses for a 70 mm beam operating at the central wavelength,compared to conventional approaches that utilize a single QR positioned between the amplifier heads.In addition,for a wide bandwidth source,the integration of QRs with opposite-handedness yields a 9×improvement in depolarization losses at the spectral extremes compared to the use of two QRs exhibiting the same optical handedness in both amplifier heads.
基金This study was supported by the National Research Foundation(NRF)grant,funded by the Ministry of Science and Information and Communication Technology of Korea(MSIT)(Nos.2022M3F3A2A01073562,2020R1C1C1008193,and 2021M3F3A2A02037889)Younghwan Lee acknowledges support from the NRF grant,funded by the MSIT(No.NRF2022R1A6A3A01086832).We would like to thank Editage(www.editage.co.kr)for editing and reviewing the English language in the manuscript.Experiments at PLS-II were supported in part by the Korean government MSIT and POSTECH.
文摘(Hf,Zr)O_(2)offers considerable potential for next-generation semiconductor devices owing to its nonvolatile spontaneous polarization at the nanoscale.However,scaling this material to sub-5 nm thickness poses several challenges,including the formation of an interfacial layer and high trap concentration.In particular,a low-k SiO_(2)interfacial layer is naturally formed when(Hf,Zr)O_(2)films are directly grown on a Si substrate,leading to high depolarization fields and rapid reduction of the remanent polarization.To address these issues,we conducted a study to significantly improve ferroelectricity and switching endurance of(Hf,Zr)O_(2)films with sub-5 nm thicknesses by inserting a TiO_(2)interfacial layer.The deposition of a Ti film prior to Hf_(0.5)Zr_(0.5)O_(2)film deposition resulted in a high-k TiO_(2)interfacial layer and prevented the direct contact of Hf_(0.5)Zr_(0.5)O_(2)with Si.Our findings show that the high-k TiO_(2)interfacial layer can reduce the SiO_(2)/Si interface trap density and the depolarization field,resulting in a switchable polarization of 60.2μC/cm^(2)for a 5 nm thick Hf_(0.5)Zr_(0.5)O_(2)film.Therefore,we propose that inserting a high-k TiO_(2)interfacial layer between the Hf_(0.5)Zr_(0.5)O_(2)film and the Si substrate may offer a promising solution to enhancing the ferroelectricity and reliability of(Hf,Zr)O_(2)grown on the Si substrate and can pave the way for next-generation semiconductor devices with improved performance.