In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
Most reliability studies assume large samples or independence among components,but these assump-tions often fail in practice,leading to imprecise inference.We address this issue by constructing confidence intervals(CI...Most reliability studies assume large samples or independence among components,but these assump-tions often fail in practice,leading to imprecise inference.We address this issue by constructing confidence intervals(CIs)for the reliability of two-component systems with Weibull distributed failure times under a copula-frailty framework.Our construction integrates gamma-distributed frailties to capture unobserved heterogeneity and a copula-based dependence structure for correlated failures.The main contribution of this work is to derive adjusted CIs that explicitly incorporate the copula parameter in the variance-covariance matrix,achieving near-nominal coverage probabilities even in small samples or highly dependent settings.Through simulation studies,we show that,although traditional methods may suffice with moderate dependence and large samples,the proposed CIs offer notable benefits when dependence is strong or data are sparse.We further illustrate our construction with a synthetic example illustrating how penalized estimation can mitigate the issue of a degenerate Hessian matrix under high dependence and limited observations,so enabling uncertainty quantification despite deviations from nominal assumptions.Overall,our results fill a gap in reliability modeling for systems prone to correlated failures,and contribute to more robust inference in engineering,industrial,and biomedical applications.展开更多
Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimati...Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.展开更多
Objective To identify prognostic genes associated with lysosome-dependent cell death(LDCD)in patients with gastric cancer(GC).Methods Differentially expressed genes(DEGs)were identified using The Cancer Genome Atlas-S...Objective To identify prognostic genes associated with lysosome-dependent cell death(LDCD)in patients with gastric cancer(GC).Methods Differentially expressed genes(DEGs)were identified using The Cancer Genome Atlas-Stomach Adenocarcinoma.Weighted gene co-expression network analysis was performed to identify the key module genes associated with LDCD score.Candidate genes were identified by DEGs and key module genes.Univariate Cox regression analysis,and least absolute shrinkage and selection operator regression and multivariate Cox regression analyses were performed for the selection of prognostic genes,and risk module was established.Subsequently,key cells were identified in the single-cell dataset(GSE183904),and prognostic gene expression was analyzed.Cell proliferation and migration were assessed using the Cell Counting Kit-8 assay and the wound healing assay.Results A total of 4,465 DEGs,95 candidate genes,and 4 prognostic genes,including C19orf59,BATF2,TNFAIP2,and TNFSF18,were identified in the analysis.Receiver operating characteristic curves indicated the excellent predictive power of the risk model.Three key cell types(B cells,chief cells,and endothelial/pericyte cells)were identified in the GSE183904 dataset.C19orf59 and TNFAIP2 exhibited predominant expression in macrophage species,whereas TNFAIP2 evolved over time in endothelial/pericyte cells and chief cells.Functional experiments confirmed that interfering with C19orf59 inhibited proliferation and migration in GC cells.Conclusion C19orf59,BATF2,TNFAIP2,and TNFSF18 are prognostic genes associated with LDCD in GC.Furthermore,the risk model established in this study showed robust predictive power.展开更多
Toxoplasma gondii is a single-celled parasite that infects nearly all warm-blooded animals,including humans(Montoya and Liesenfeld,2004).It occurs worldwide and can persist for a lifetime in mammals.Humans get infecte...Toxoplasma gondii is a single-celled parasite that infects nearly all warm-blooded animals,including humans(Montoya and Liesenfeld,2004).It occurs worldwide and can persist for a lifetime in mammals.Humans get infected by eating undercooked meat of animals containing the tissue cysts of this parasite.In immune-competent individuals,T.展开更多
Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+...Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.展开更多
Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instr...Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.展开更多
Understanding interlayer charge transfer is crucial for elucidating interface interactions in heterostructures.As the layer number can significantly influence the interface coupling and band alignment,the charge trans...Understanding interlayer charge transfer is crucial for elucidating interface interactions in heterostructures.As the layer number can significantly influence the interface coupling and band alignment,the charge transfer behaviors can be largely regulated.Here,we constructed two-dimensional(2D)heterostructures consisting of monolayer WS_(2)and few-layer InSe to investigate the impact of InSe thickness on exciton dynamics.We performed photoluminescence(PL)spectroscopy and lifetime measurements on pristine few-layer InSe and the heterostructures with different InSe thicknesses.For pristine InSe layers,we found a non-monotonic layer dependence on PL lifetime,which can be attributed to the interplay between the indirect-to-direct bandgap transition and surface recombination effects.For heterostructures,we demonstrated that the type I band alignment of the heterostructure facilitates electron and hole transfer from monolayer WS_(2)to InSe.As the InSe layer number increases,the reduction in conduction band minimum(CBM)enhances the driving force for charge transfer,thereby improving the transfer efficiency.Furthermore,we fabricated and characterized a WS_(2)/InSe optoelectronic device.By analyzing bias voltage dependent PL spectra,we further demonstrated that the trions in WS_(2)within the heterostructure are positively charged(X^(+)),and their emission intensity can be efficiently modulated by applying different biases.This study not only reveals the layer-dependent characteristics of band alignment and interlayer charge transfer in heterostructures but also provides valuable insights for the applications of 2D semiconductors in optoelectronic devices.展开更多
Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance...Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance of supported metal catalysts.This is particularly true for single-atom catalysts(SACs)and pseudo-single-atom catalysts(pseudo-SACs),where all metal atoms are dispersed on,and interact directly with the support.Consequently,the MSI of SACs and pseudo-SACs are theoretically more sensitive to modulation compared to that of traditional nanoparticle catalysts.In this work,we experimentally demonstrated this hypothesis by an observed size-dependent MSI modulation.We fabricated CoFe_(2)O_(4) supported Pt pseudo-SACs and nanoparticle catalysts,followed by a straightforward water treatment process.It was found that the covalent strong metal-support interaction(CMSI)in pseudo-SACs can be weakened,leading to a significant activity improvement in methane combustion reaction.This finding aligns with our recent observation of CoFe_(2)O_(4) supported Pt SACs.By contrast,the MSI in Pt nanoparticle catalyst was barely affected by the water treatment,giving rise to almost unchanged catalytic performance.This work highlights the critical role of metal size in determining the MSI modulation,offering a novel strategy for tuning the catalytic performance of SACs and pseudo-SACs by fine-tuning their MSIs.展开更多
Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to ...Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to explore the effects of B.longum subsp.infantis supplementation on interferon-beta(IFN-β)secretion and intestinal barrier improvement in growing mice.Female and male mice were orally administered either saline or B.longum subsp.infantis CCFM1269 or I5TI(1×10^(9) CFU/mice per day,n=8)from 1-week-age until 3-,4-,and 5-week-age.RNA sequencing analysis revealed that CCFM1269 exhibited potential antiviral capacity through increasing 2'-5'oligoadenylate synthetase(OAS).Additionally,CCFM1269 supplementation significantly increased colonic IFN-β levels which combined with OAS in 3-week-old female and male mice by activating the TLR4-TRIF-dependent signaling pathway.However,this effect was not observed in 4-and 5-week-old mice.Furthermore,both CCFM1269 were found to modulate the gut microbiota composition and enhance the intestinal barrier function in 3-,4-,and 5-week-old mice.In summary,the results of this study suggested that B.longum subsp.infantis CCFM1269 promoting intestinal barrier and releasing IFN-β in growing mice was in a strain-specific and time-dependent manner.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
Polynomial Chaos Expansion(PCE)has gained significant popularity among engineers across various engineering disciplines for uncertainty analysis.However,traditional PCE suffers from two major drawbacks.First,the ortho...Polynomial Chaos Expansion(PCE)has gained significant popularity among engineers across various engineering disciplines for uncertainty analysis.However,traditional PCE suffers from two major drawbacks.First,the orthogonality of polynomial basis functions holds only for independent input variables,limiting the model’s ability to propagate uncertainty in dependent variables.Second,PCE encounters the"curse of dimensionality"due to the high computational cost of training the model with numerous polynomial coefficients.In practical manufacturing,compressor blades are subject to machining precision limitations,leading to deviations from their ideal geometric shapes.These deviations require a large number of geometric parameters to describe,and exhibit significant correlations.To efficiently quantify the impact of high-dimensional dependent geometric deviations on the aerodynamic performance of compressor blades,this paper firstly introduces a novel approach called Data-driven Sparse PCE(DSPCE).The proposed method addresses the aforementioned challenges by employing a decorrelation algorithm to directly create multivariate basis functions,accommodating both independent and dependent random variables.Furthermore,the method utilizes an iterative Diffeomorphic Modulation under Observable Response Preserving Homotopy regression algorithm to solve the unknown coefficients,achieving model sparsity while maintaining fitting accuracy.Then,the study investigates the simultaneous effects of seven dependent geometric deviations on the aerodynamics of a high subsonic compressor cascade by using the DSPCE method proposed and sensitivity analysis of covariance.The joint distribution of the dependent geometric deviations is determined using Quantile-Quantile plots and normal copula functions based on finite measurement data.The results demonstrate that the correlations between geometric deviations significantly impact the variance of aerodynamic performance and the flow field.Therefore,it is crucial to consider these correlations for accurately assessing the aerodynamic uncertainty.展开更多
Environmental conditions change constantly either by anthropogenic perturbation or naturally across space and time.Often,a change in behavior is the frst response to changing conditions.Behavioral fexibility can poten...Environmental conditions change constantly either by anthropogenic perturbation or naturally across space and time.Often,a change in behavior is the frst response to changing conditions.Behavioral fexibility can potentially improve an organism’s chances to survive and reproduce.Currently,we lack an understanding on the time-scale such behavioral adjustments need,how they actually affect reproduction and survival and whether behavioral adjustments are suffcient in keeping up with changing conditions.We used house mice(Mus musculus)to test whether personality and life-history traits can adjust to an experimentally induced food-switch fexibly in adulthood or by intergenerational plasticity,that is,adjustments only becoming visible in the offspring generation.Mice lived in 6 experimental populations of semi-natural environments either on high or standard quality food for 4 generations.We showed previously that high-quality food induced better conditions and a less risk-prone personality.Here,we tested whether the speed and/or magnitude of adjustment shows condition-dependency and whether adjustments incur ftness effects.Life-history but not personality traits reacted fexibly to a food-switch,primarily by a direct reduction of reproduction and sloweddown growth.Offspring whose parents received a food-switch developed a more active stress-coping personality and gained weight at a slower rate compared with their respective controls.Furthermore,the modulation of most traits was condition-dependent,with animals previously fed with high-quality food showing stronger responses.Our study highlights that life-history and personality traits adjust at different speed toward environmental change,thus,highlighting the importance of the environment and the mode of response for evolutionary models.展开更多
The classical piezoelectric theory fails to capture the size-dependent electromechanical coupling behaviors of piezoelectric microstructures due to the lack of material length-scale parameters.This study presents the ...The classical piezoelectric theory fails to capture the size-dependent electromechanical coupling behaviors of piezoelectric microstructures due to the lack of material length-scale parameters.This study presents the constitutive relations of a piezoelectric material in terms of irreducible transversely isotropic tensors that include material length-scale parameters.Using these relations and the general strain gradient theory,a size-dependent bending model is proposed for a bilayer cantilever microbeam consisting of a transversely isotropic piezoelectric layer and an isotropic elastic layer.Analytical solutions are provided for bilayer cantilever microbeams subjected to force load and voltage load.The proposed model can be simplified to the model incorporating only partial strain gradient effects.This study examines the effect of strain gradient by comparing the normalized electric potentials and deflections of different models.Numerical results show that the proposed model effectively captures size effects in piezoelectric microbeams,whereas simplified models underestimate size effects due to ignoring partial strain gradient effects.展开更多
Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the...Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.展开更多
This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of t...This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.展开更多
In a previous paper[Phys.Rev.A95,060701(R)(2017)],we demonstrated that a new type of two-body interaction,which depends on the center of mass(CoM)momentum,can be realized for ultracold atoms via laser-modulated magnet...In a previous paper[Phys.Rev.A95,060701(R)(2017)],we demonstrated that a new type of two-body interaction,which depends on the center of mass(CoM)momentum,can be realized for ultracold atoms via laser-modulated magnetic Feshbach resonance(MFR).Further studies(e.g.L He et al,Phys.Rev.Lett.120,045302(2018))show that various interesting phenomena,such as Fulde–Ferrell superfluids,can be induced by scattering between ultracold atoms with this interaction.In this work we investigate the shallow bound states of two ultracold atoms with this type of interaction.We show that when the magnetic field B is below the MFR point B0,two shallow bound states can appear in this system.Namely,a'two-component dimer'or a dimer with pseudo-spin 1/2 can be formed by two atoms.Furthermore,the dispersion curve of the dimer may have either single or double minimums in the CoM momentum space.The latter case can be explained as a result from significant pseudo-spin-orbital coupling(SOC)effects.Our results show that the ultracold gases with CoM momentum dependent interaction may be a candidate for quantum simulations with ultracold two-component molecules,especially the molecule gases with SOC.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
Half-Heusler(HH)compounds have emerged as promising candidates for high-temperature thermoelectric power generation;however,their mechanical properties in service environments have been scarcely reported.In this study...Half-Heusler(HH)compounds have emerged as promising candidates for high-temperature thermoelectric power generation;however,their mechanical properties in service environments have been scarcely reported.In this study,the temperature dependences of the mechanical responses and failure mechanisms of an n-type ZrNiSn-based HH compound(Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015))were systematically evaluated through high-temperature compression tests and microfractographic characterization.The test results indicated that the elastic modulus and ultimate compressive strength of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)decreased with increasing temperature.The stress-strain behavior of the material changed from linear(300,500,and 700 K)to nonlinear(900 and 1100 K).Microfractography observations revealed that increasing the temperature reduced the strength of the grain boundary as well as aggravated oxidation and segregation on the fracture surface,which significantly impacted the macro-compressive behavior of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)at elevated temperatures.Finally,a stress-strain relationship for the ZrNiSnbased HH was proposed to describe the change in the compressive response from linear to nonlinear with increasing temperature.The present study elucidates the load-carrying and failure mechanisms of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)within its operational temperature range,providing valuable guidance for the mechanical design of HH thermoelectric devices over their entire service temperature range.展开更多
Species is a fundamental concept in evolutionary biology and biodiversity.However,existing species definitions are often influenced by artificial factors or are challenging in practical application,leading to confusio...Species is a fundamental concept in evolutionary biology and biodiversity.However,existing species definitions are often influenced by artificial factors or are challenging in practical application,leading to confusion in species classification.Due to uncertain environmental changes and random genetic drift,the fitness expectations of a population may shift,causing species to evolve to a new evolutionary state based on their current instantaneous fitness within a dynamic fitness landscape.This contrasts with the classic static fitness landscape,where fitness expectations are constant.In a dynamic fitness landscape,speciation may exhibit path dependence,where the evolution of traits follows a probabilistic path,creating feedback that shapes evolutionary trajectories.The path-dependent evolutionary mechanism suggests that species survival within an ecosystem is not directly determined by their fitness but by the probability of their evolutionary pathways.This model also indicates that species can coexist with varying probabilities under limited environmental pressures.Consequently,new species,cryptic species,or sympatric species may emerge via path-dependent evolutionary processes.Within this framework,we developed a mathematical species concept,which may guide future species classification methodologies.展开更多
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
基金supported by the Colombian government through COLCIENCIA scholarships,National Doctoral Program,Call 727 of 2015C.Castro gratefully acknowledges partial financial support from the Centro de Matematica da Universidade do Minho(CMAT/UM),through UID/00013V.Leiva acknowledges funding from the Agencia Nacional de Investigacion y Desarrollo(ANID)of the Chilean Ministry of Science,Technology,Knowledge and Innovation,through FONDECYT project grant 1200525.
文摘Most reliability studies assume large samples or independence among components,but these assump-tions often fail in practice,leading to imprecise inference.We address this issue by constructing confidence intervals(CIs)for the reliability of two-component systems with Weibull distributed failure times under a copula-frailty framework.Our construction integrates gamma-distributed frailties to capture unobserved heterogeneity and a copula-based dependence structure for correlated failures.The main contribution of this work is to derive adjusted CIs that explicitly incorporate the copula parameter in the variance-covariance matrix,achieving near-nominal coverage probabilities even in small samples or highly dependent settings.Through simulation studies,we show that,although traditional methods may suffice with moderate dependence and large samples,the proposed CIs offer notable benefits when dependence is strong or data are sparse.We further illustrate our construction with a synthetic example illustrating how penalized estimation can mitigate the issue of a degenerate Hessian matrix under high dependence and limited observations,so enabling uncertainty quantification despite deviations from nominal assumptions.Overall,our results fill a gap in reliability modeling for systems prone to correlated failures,and contribute to more robust inference in engineering,industrial,and biomedical applications.
基金supported by the National Natural Science Foundation of China(61833005)
文摘Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.
基金supported by Hainan Provincial Natural Science Foundation of China(No.820CXTD438)National Natural Science Foundation of China(No.82160634, No.81773495)。
文摘Objective To identify prognostic genes associated with lysosome-dependent cell death(LDCD)in patients with gastric cancer(GC).Methods Differentially expressed genes(DEGs)were identified using The Cancer Genome Atlas-Stomach Adenocarcinoma.Weighted gene co-expression network analysis was performed to identify the key module genes associated with LDCD score.Candidate genes were identified by DEGs and key module genes.Univariate Cox regression analysis,and least absolute shrinkage and selection operator regression and multivariate Cox regression analyses were performed for the selection of prognostic genes,and risk module was established.Subsequently,key cells were identified in the single-cell dataset(GSE183904),and prognostic gene expression was analyzed.Cell proliferation and migration were assessed using the Cell Counting Kit-8 assay and the wound healing assay.Results A total of 4,465 DEGs,95 candidate genes,and 4 prognostic genes,including C19orf59,BATF2,TNFAIP2,and TNFSF18,were identified in the analysis.Receiver operating characteristic curves indicated the excellent predictive power of the risk model.Three key cell types(B cells,chief cells,and endothelial/pericyte cells)were identified in the GSE183904 dataset.C19orf59 and TNFAIP2 exhibited predominant expression in macrophage species,whereas TNFAIP2 evolved over time in endothelial/pericyte cells and chief cells.Functional experiments confirmed that interfering with C19orf59 inhibited proliferation and migration in GC cells.Conclusion C19orf59,BATF2,TNFAIP2,and TNFSF18 are prognostic genes associated with LDCD in GC.Furthermore,the risk model established in this study showed robust predictive power.
基金supported by the National Natural Sci ence Foundation of China(No.31672543)the Zhejiang Province“Sannongliufang”Science and Technology Coopera tion Project(No.2020SNLF007),China.
文摘Toxoplasma gondii is a single-celled parasite that infects nearly all warm-blooded animals,including humans(Montoya and Liesenfeld,2004).It occurs worldwide and can persist for a lifetime in mammals.Humans get infected by eating undercooked meat of animals containing the tissue cysts of this parasite.In immune-competent individuals,T.
基金Supported by the Academic Achievement Re-cultivation Projects of Jingdezhen Ceramic University(Grant Nos.215/20506341215/20506277)the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)。
文摘Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.
基金supported by the Center for Advanced Systems Understanding(CASUS),financed by Germany’s Federal Ministry of Education and Research(BMBF)and the Saxon State Government out of the State Budget approved by the Saxon State Parliamentfunding from the European Research Council(ERC)under the European Union’s Horizon 2022 research and innovation programme(Grant Agreement No.101076233,“PREXTREME”)funding from the European Union’s Just Transition Fund(JTF)within the project Röntgenlaser-Optimierung der Laserfusion(ROLF),Contract No.5086999001,co-financed by the Saxon State Government out of the State Budget approved by the Saxon State Parliament.
文摘Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.92263107,U23A20570,52221001,62090035,and 52022029)the Hunan Provincial Natural Science Foundation of China(Grant No.2024RC1034)。
文摘Understanding interlayer charge transfer is crucial for elucidating interface interactions in heterostructures.As the layer number can significantly influence the interface coupling and band alignment,the charge transfer behaviors can be largely regulated.Here,we constructed two-dimensional(2D)heterostructures consisting of monolayer WS_(2)and few-layer InSe to investigate the impact of InSe thickness on exciton dynamics.We performed photoluminescence(PL)spectroscopy and lifetime measurements on pristine few-layer InSe and the heterostructures with different InSe thicknesses.For pristine InSe layers,we found a non-monotonic layer dependence on PL lifetime,which can be attributed to the interplay between the indirect-to-direct bandgap transition and surface recombination effects.For heterostructures,we demonstrated that the type I band alignment of the heterostructure facilitates electron and hole transfer from monolayer WS_(2)to InSe.As the InSe layer number increases,the reduction in conduction band minimum(CBM)enhances the driving force for charge transfer,thereby improving the transfer efficiency.Furthermore,we fabricated and characterized a WS_(2)/InSe optoelectronic device.By analyzing bias voltage dependent PL spectra,we further demonstrated that the trions in WS_(2)within the heterostructure are positively charged(X^(+)),and their emission intensity can be efficiently modulated by applying different biases.This study not only reveals the layer-dependent characteristics of band alignment and interlayer charge transfer in heterostructures but also provides valuable insights for the applications of 2D semiconductors in optoelectronic devices.
文摘Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance of supported metal catalysts.This is particularly true for single-atom catalysts(SACs)and pseudo-single-atom catalysts(pseudo-SACs),where all metal atoms are dispersed on,and interact directly with the support.Consequently,the MSI of SACs and pseudo-SACs are theoretically more sensitive to modulation compared to that of traditional nanoparticle catalysts.In this work,we experimentally demonstrated this hypothesis by an observed size-dependent MSI modulation.We fabricated CoFe_(2)O_(4) supported Pt pseudo-SACs and nanoparticle catalysts,followed by a straightforward water treatment process.It was found that the covalent strong metal-support interaction(CMSI)in pseudo-SACs can be weakened,leading to a significant activity improvement in methane combustion reaction.This finding aligns with our recent observation of CoFe_(2)O_(4) supported Pt SACs.By contrast,the MSI in Pt nanoparticle catalyst was barely affected by the water treatment,giving rise to almost unchanged catalytic performance.This work highlights the critical role of metal size in determining the MSI modulation,offering a novel strategy for tuning the catalytic performance of SACs and pseudo-SACs by fine-tuning their MSIs.
基金funded by the National Key R&D Program of China(2021YFD2100700)National Natural Science Foundation of China(32021005)+1 种基金111 project(BP0719028)Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘Bifidobacterium longum subsp.infantis is a commensal bacterium that predominates in the infant gut,playing a critical role in both preventing foreign infections and facilitating immune development.This study aimed to explore the effects of B.longum subsp.infantis supplementation on interferon-beta(IFN-β)secretion and intestinal barrier improvement in growing mice.Female and male mice were orally administered either saline or B.longum subsp.infantis CCFM1269 or I5TI(1×10^(9) CFU/mice per day,n=8)from 1-week-age until 3-,4-,and 5-week-age.RNA sequencing analysis revealed that CCFM1269 exhibited potential antiviral capacity through increasing 2'-5'oligoadenylate synthetase(OAS).Additionally,CCFM1269 supplementation significantly increased colonic IFN-β levels which combined with OAS in 3-week-old female and male mice by activating the TLR4-TRIF-dependent signaling pathway.However,this effect was not observed in 4-and 5-week-old mice.Furthermore,both CCFM1269 were found to modulate the gut microbiota composition and enhance the intestinal barrier function in 3-,4-,and 5-week-old mice.In summary,the results of this study suggested that B.longum subsp.infantis CCFM1269 promoting intestinal barrier and releasing IFN-β in growing mice was in a strain-specific and time-dependent manner.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金the National Science and Technology Major Project of China(No.J2019-I-0011)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX2023057)for supporting the research work.
文摘Polynomial Chaos Expansion(PCE)has gained significant popularity among engineers across various engineering disciplines for uncertainty analysis.However,traditional PCE suffers from two major drawbacks.First,the orthogonality of polynomial basis functions holds only for independent input variables,limiting the model’s ability to propagate uncertainty in dependent variables.Second,PCE encounters the"curse of dimensionality"due to the high computational cost of training the model with numerous polynomial coefficients.In practical manufacturing,compressor blades are subject to machining precision limitations,leading to deviations from their ideal geometric shapes.These deviations require a large number of geometric parameters to describe,and exhibit significant correlations.To efficiently quantify the impact of high-dimensional dependent geometric deviations on the aerodynamic performance of compressor blades,this paper firstly introduces a novel approach called Data-driven Sparse PCE(DSPCE).The proposed method addresses the aforementioned challenges by employing a decorrelation algorithm to directly create multivariate basis functions,accommodating both independent and dependent random variables.Furthermore,the method utilizes an iterative Diffeomorphic Modulation under Observable Response Preserving Homotopy regression algorithm to solve the unknown coefficients,achieving model sparsity while maintaining fitting accuracy.Then,the study investigates the simultaneous effects of seven dependent geometric deviations on the aerodynamics of a high subsonic compressor cascade by using the DSPCE method proposed and sensitivity analysis of covariance.The joint distribution of the dependent geometric deviations is determined using Quantile-Quantile plots and normal copula functions based on finite measurement data.The results demonstrate that the correlations between geometric deviations significantly impact the variance of aerodynamic performance and the flow field.Therefore,it is crucial to consider these correlations for accurately assessing the aerodynamic uncertainty.
文摘Environmental conditions change constantly either by anthropogenic perturbation or naturally across space and time.Often,a change in behavior is the frst response to changing conditions.Behavioral fexibility can potentially improve an organism’s chances to survive and reproduce.Currently,we lack an understanding on the time-scale such behavioral adjustments need,how they actually affect reproduction and survival and whether behavioral adjustments are suffcient in keeping up with changing conditions.We used house mice(Mus musculus)to test whether personality and life-history traits can adjust to an experimentally induced food-switch fexibly in adulthood or by intergenerational plasticity,that is,adjustments only becoming visible in the offspring generation.Mice lived in 6 experimental populations of semi-natural environments either on high or standard quality food for 4 generations.We showed previously that high-quality food induced better conditions and a less risk-prone personality.Here,we tested whether the speed and/or magnitude of adjustment shows condition-dependency and whether adjustments incur ftness effects.Life-history but not personality traits reacted fexibly to a food-switch,primarily by a direct reduction of reproduction and sloweddown growth.Offspring whose parents received a food-switch developed a more active stress-coping personality and gained weight at a slower rate compared with their respective controls.Furthermore,the modulation of most traits was condition-dependent,with animals previously fed with high-quality food showing stronger responses.Our study highlights that life-history and personality traits adjust at different speed toward environmental change,thus,highlighting the importance of the environment and the mode of response for evolutionary models.
基金supported by the National Key Research and Development Program of China(2018YFB0703500).
文摘The classical piezoelectric theory fails to capture the size-dependent electromechanical coupling behaviors of piezoelectric microstructures due to the lack of material length-scale parameters.This study presents the constitutive relations of a piezoelectric material in terms of irreducible transversely isotropic tensors that include material length-scale parameters.Using these relations and the general strain gradient theory,a size-dependent bending model is proposed for a bilayer cantilever microbeam consisting of a transversely isotropic piezoelectric layer and an isotropic elastic layer.Analytical solutions are provided for bilayer cantilever microbeams subjected to force load and voltage load.The proposed model can be simplified to the model incorporating only partial strain gradient effects.This study examines the effect of strain gradient by comparing the normalized electric potentials and deflections of different models.Numerical results show that the proposed model effectively captures size effects in piezoelectric microbeams,whereas simplified models underestimate size effects due to ignoring partial strain gradient effects.
基金Project supported by the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0391)。
文摘Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.
基金the Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB660012/0168)managed under Rajamangala University of Technology Thanyaburi(FRB66E0646O.4).
文摘This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.
基金supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405300)the National Safety Academic Fund (Grant No. U1930201)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China (22XNH100)
文摘In a previous paper[Phys.Rev.A95,060701(R)(2017)],we demonstrated that a new type of two-body interaction,which depends on the center of mass(CoM)momentum,can be realized for ultracold atoms via laser-modulated magnetic Feshbach resonance(MFR).Further studies(e.g.L He et al,Phys.Rev.Lett.120,045302(2018))show that various interesting phenomena,such as Fulde–Ferrell superfluids,can be induced by scattering between ultracold atoms with this interaction.In this work we investigate the shallow bound states of two ultracold atoms with this type of interaction.We show that when the magnetic field B is below the MFR point B0,two shallow bound states can appear in this system.Namely,a'two-component dimer'or a dimer with pseudo-spin 1/2 can be formed by two atoms.Furthermore,the dispersion curve of the dimer may have either single or double minimums in the CoM momentum space.The latter case can be explained as a result from significant pseudo-spin-orbital coupling(SOC)effects.Our results show that the ultracold gases with CoM momentum dependent interaction may be a candidate for quantum simulations with ultracold two-component molecules,especially the molecule gases with SOC.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.U2141208 and 12141203)Shengqiang Bai acknowledges the support from the International Partnership Program of the Chinese Academy of Sciences(Grant No.121631KYSB20200012).
文摘Half-Heusler(HH)compounds have emerged as promising candidates for high-temperature thermoelectric power generation;however,their mechanical properties in service environments have been scarcely reported.In this study,the temperature dependences of the mechanical responses and failure mechanisms of an n-type ZrNiSn-based HH compound(Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015))were systematically evaluated through high-temperature compression tests and microfractographic characterization.The test results indicated that the elastic modulus and ultimate compressive strength of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)decreased with increasing temperature.The stress-strain behavior of the material changed from linear(300,500,and 700 K)to nonlinear(900 and 1100 K).Microfractography observations revealed that increasing the temperature reduced the strength of the grain boundary as well as aggravated oxidation and segregation on the fracture surface,which significantly impacted the macro-compressive behavior of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)at elevated temperatures.Finally,a stress-strain relationship for the ZrNiSnbased HH was proposed to describe the change in the compressive response from linear to nonlinear with increasing temperature.The present study elucidates the load-carrying and failure mechanisms of Zr_(0.5)Hf_(0.5)NiSn_(0.985)Sb_(0.015)within its operational temperature range,providing valuable guidance for the mechanical design of HH thermoelectric devices over their entire service temperature range.
基金supported by the NSFC-Yunnan United fund(U2102221)National Natural Science Foundation of China(32171482)。
文摘Species is a fundamental concept in evolutionary biology and biodiversity.However,existing species definitions are often influenced by artificial factors or are challenging in practical application,leading to confusion in species classification.Due to uncertain environmental changes and random genetic drift,the fitness expectations of a population may shift,causing species to evolve to a new evolutionary state based on their current instantaneous fitness within a dynamic fitness landscape.This contrasts with the classic static fitness landscape,where fitness expectations are constant.In a dynamic fitness landscape,speciation may exhibit path dependence,where the evolution of traits follows a probabilistic path,creating feedback that shapes evolutionary trajectories.The path-dependent evolutionary mechanism suggests that species survival within an ecosystem is not directly determined by their fitness but by the probability of their evolutionary pathways.This model also indicates that species can coexist with varying probabilities under limited environmental pressures.Consequently,new species,cryptic species,or sympatric species may emerge via path-dependent evolutionary processes.Within this framework,we developed a mathematical species concept,which may guide future species classification methodologies.