Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The p...Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The pit propagation rate was evaluated in artificial sea water and 3wt% sea salt solution by simulating occluded corrosion cell (SOCC) test and hanging plate test, respectively. The composition of inclusions and corrosive feature were studied by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and optical microscopy (OM). The results indicate that sulfide inclusions in steel are the sites for pit nucleation. The sulphide inclusions vary in shape from short spindle-like to long strip-like with increasing deoxidizing degree. Under the same conditions, the lower the deoxidizing degree gets, the lower the pitting initiation susceptibility becomes, and the stronger the resistance to pit propagation exhibits. For steels with different deoxidizing degrees, their pitting initiation susceptibility is mainly influenced by thermodynamic stability, while the pit propagation rate is primarily subject to the characteristics of inclusions in steel.展开更多
The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,t...The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,the intrinsic complexity of this multi-step reaction severely constrains both the selectivity and efficiency of NO3RR.Copper-based electrocatalysts have been extensively investigated for NO_(3)RR but often suffer from nitrite(NO_(2)^(−))accumulation,which stems from insufficient NO_(3)^(−)adsorption strength.This limitation often leads to rapid catalyst deactivation,hindered hydrogenation pathways,and reduced overall efficiency.Herein,we report a one-step green chemical reduction method to synthesize PtCuSnCo quarternary alloy nanoparticles with homogeneously distributed elements.Under practical NO3−concentrations,the optimized catalyst exhibited an impressive Faradaic efficiency approaching 100%and an outstanding selectivity of 95.6±2.9%.Mechanistic insights uncovered that SnCo sites robustly facilitated NO_(3)^(−)adsorption,complemented by the proficiency of PtCu sites in NO3−reduction.The synergistic spatial neighborhood effect between SnCo and PtCu sites efficiently stabilizes NO_(3)^(−)deoxygenation and suppresses NO_(2)^(−)accumulation.This tandem architecture achieves a finely tuned balance between adsorption strength and deoxygenation kinetics,enabling highly selective and efficient NO3RR.Our findings emphasize the indispensable role of engineered multi-metallic catalysts in overcoming persistent challenges of NO3RR,paving the way for advanced NH3 synthesis and environmental remediation.展开更多
In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixture...In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixtures with diverse oxygen-containing functional groups,pose a challenge as they cannot be easily separated via distillation for direct utilization.A promising solution to this challenge lies in the efficient removal of oxygen-containing functional groups from LDOs through hydrodeoxygenation(HDO),aiming to yield biomass products with singular components.However,the high dissociation energy of the carbon-oxygen bond,coupled with its similarity to the hydrogenation energy of the benzene ring,creates a competition between deoxygenation and benzene ring hydrogenation.Considering hydrogen consumption and lignin properties,the preference is directed towards generating aromatic hydrocarbons rather than saturated components.Thus,the goal is to selectively remove oxygen-containing functional groups while preserving the benzene ring structure.Studies on LDOs conversion have indicated that the design of active components and optimization of reaction conditions play pivotal roles in achieving selective deoxygenation,but a summary of the correlation between these factors and the reaction mechanism is lacking.This review addresses this gap in knowledge by firstly summarizing the various reaction pathways for HDO of LDOs.It explores the impact of catalyst design strategies,including morphology modulation,elemental doping,and surface modification,on the adsorption-desorption dynamics between reactants and catalysts.Secondly,we delve into the application of advanced techniques such as spectroscopic techniques and computational modeling,aiding in uncovering the true active sites in HDO reactions and understanding the interaction of reactive reactants with catalyst surface-interfaces.Additionally,fundamental insights into selective deoxygenation obtained through these techniques are highlighted.Finally,we outline the challenges that lie ahead in the design of highly active and selective HDO catalysts.These challenges include the development of detection tools for reactive species with high activity at low concentrations,the study of reaction medium-catalyst interactions,and the development of theoretical models that more closely approximate real reaction situations.Addressing these challenges will pave the way for the development of efficient and selective HDO catalysts,thus advancing the field of renewable LDOs conversion.展开更多
A low-carbon,low-cost,and high-efficient method was reported for remarkably improving corrosion resistance of C–Mn structural steel by weak deoxidation.The results showed that,with the total oxygen content(wOT)increa...A low-carbon,low-cost,and high-efficient method was reported for remarkably improving corrosion resistance of C–Mn structural steel by weak deoxidation.The results showed that,with the total oxygen content(wOT)increasing in the tested steel from 41×10^(−6)to 195×10^(−6),both the degree of element segregation and the level of banded microstructure weakened,presenting the lower potential difference between pearlite(P)and ferrite(F),and then smaller galvanic corrosion driving force,and thus effectively improving general corrosion properties.In addition,with wOT growing up,the number and size of inclusions increased,and the shape also changed from long chain or small particle to large particle ball with typical mosaic structure,which could effectively inhibit the preferential dissolution of local component due to multiple complex interfaces,and correspondingly suppress the pitting susceptibility.However,the impact toughness at low temperature of the tested steel reduced with wOT increasing,and then,taking the mechanical properties and corrosion resistance all into account,160×10^(−6) was the optimal oxygen content within the present scope.展开更多
The effect of the initial(Al+Si)/MnO molar ratio and slag composition on MnO recovery from electroslag by remelting at 1773 K was investigated.High-purity aluminum metal and silicon were employed as the deoxidizers to...The effect of the initial(Al+Si)/MnO molar ratio and slag composition on MnO recovery from electroslag by remelting at 1773 K was investigated.High-purity aluminum metal and silicon were employed as the deoxidizers to effectively promote the recovery of manganese metal(MM).The reduction of MnO in slag,through the interaction between molten MM with a deoxidizer and the Na_(2)O-enriched electroslag melt,was assessed both thermodynamically and kinetically.The sulfur content of high-sulfur rejected electrolytic manganese metal(EMM)scrap decreased to 0.58%with high-temperature pretreatment.The mass ratio between slag and high-sulfur rejected EMM scrap is 2/3.When the Al_(2)O_(3)content in the initial slags decreased and the Na_(2)O content increased,the MnO reduction ratio increased.The residual MnO concentration of the slag reduced with increasing the Al–Si deoxidizer content.When the(Al+Si)/MnO molar ratio reached 0.83,the MnO concentration in the final slag was only 3%.A deoxidizer mainly containing aluminum and a small amount of Si could be added to recover MnO from the slag,resulting in the improvement in the cleanliness of final Mn metal.展开更多
This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two exp...This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.展开更多
In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the...In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the steel liquid,affecting the cleanliness of the steel.With the increasing requirements for steel performance,reducing the oxygen content in the steel liquid and ensuring its high cleanliness is necessary.After more than a hundred years of development,the total oxygen content in steel has been reduced from approximately 100×10^(-6)to approximately 10×10^(-6),and it can be controlled below 5×10^(-6)in some steel grades.A relatively stable and mature deoxidation technology has been formed,but further reducing the oxygen content in steel is no longer significant for improving steel quality.Our research team developed a deoxidation technology for bearing steel by optimizing the entire conventional process.The technology combines silicon–manganese predeoxidation,ladle furnace diffusion deoxidation,and vacuum final deoxidation.We successfully conducted industrial experiments and produced interstitial-free steel with natural decarbonization predeoxidation.Non-aluminum deoxidation was found to control the oxygen content in bearing steel to between 4×10^(-6) and 8×10^(-6),altering the type of inclusions,eliminating large particle Ds-type inclusions,improving the flowability of the steel liquid,and deriving a higher fatigue life.The natural decarbonization predeoxidation of interstitial-free steel reduced aluminum consumption and production costs and significantly improved the quality of cast billets.展开更多
After the converter steelmaking process,a considerable number of ferroalloys are needed to remove dissolved oxygen from the molten steel,but it also forms a lot of oxide inclusions that cannot be completely removed.At...After the converter steelmaking process,a considerable number of ferroalloys are needed to remove dissolved oxygen from the molten steel,but it also forms a lot of oxide inclusions that cannot be completely removed.At the same time,it increases the carbon emis-sions in the steel production process.After years of research,our team have developed a series of clean deoxidation technologies,includ-ing carbon deoxidation,hydrogen deoxidation,and waste plastic deoxidation of molten steel to address the aforementioned issues.In this study,thermodynamic calculations and laboratory experiments were employed to verify that carbon and hydrogen can reduce the total oxygen content in the molten steel melt to below 5×10^(-6) and 10×10^(-6),respectively.An analysis of the deoxidation mechanisms and ef-fects of polyethylene and polypropylene was also conducted.In addition,the applications of carbon deoxidation technology in different steels with the hot-state experiment and industrial production were discussed carefully.The carbon deoxidation experimental results of different steels were as follows:(1)the oxygen content of bearing steel was effectively controlled at 6.3×10^(-6) and the inclusion number density was lowered by 74.73%compared to aluminum deoxidized bearing steel;(2)the oxygen content in gear steel was reduced to 7.7×10^(-6) and a 54.49%reduction of inclusion number density was achieved with almost no inclusions larger than 5μm from the average level of industry gear steels;(3)a total oxygen content of M2 high-speed steel was as low as 3.7×10^(-6).In industrial production practice,car-bon deoxidation technique was applied in the final deoxidation stage for non-aluminum deoxidized bearing steel,and it yielded excellent results that the oxygen content was reduced to below 8×10^(-6) and the oxide inclusions in the steel mainly consist of silicates,along with small amounts of spinel and calcium aluminate.展开更多
To avoid coarse crystallization of glassy inclusions in Si–Mn deoxidized steel during hot rolling, the effect of MgO on the structure and crystallization behavior of CaO–SiO_(2)–Al_(2)O_(3) inclusions was investiga...To avoid coarse crystallization of glassy inclusions in Si–Mn deoxidized steel during hot rolling, the effect of MgO on the structure and crystallization behavior of CaO–SiO_(2)–Al_(2)O_(3) inclusions was investigated. The results showed that the crystallization temperature of the oxide melts decreased with increasing MgO content from 0 to 15.7 wt.%, which suggested that the addition of MgO would increase the temperature range of the crystalline transition. The increase in MgO content could decrease the crystallization activation energy of inclusions. With the increase in MgO content, the relative fractions of O_(Si)^(0) and O_(Si)^(1) structure units increased, and those of structure units O_(Si)^(2), O_(Si)^(3), and O_(Si)^(4) decreased, increasing the depolymerization degree of the silicate structure. The crystallization ratio of glassy inclusions in the steel crucible increased from 19.7% to 98.3% with increasing MgO content from 0 to 15.7 wt.%. The addition of MgO improved the crystallization ability of inclusions, because MgO provides free oxygen O_(2−) to destroy the bridging oxygens and form non-bridging oxygens O^(−), which depolymerizes silicate network structure and simplifies the [SiO_(4)]-tetrahedral structure. In addition, MgO would promote the precipitation of the Mg-containing phases with a high melting point. When the MgO content was increased above 12.1 wt.%, MgO·Al_(2)O_(3) and 2MgO·SiO_(2) crystalline phases would precipitate from the inclusions.展开更多
Based on a thermodynamic study of 5 wt.%Si high-silicon austenitic stainless steel(SS-5Si)smelting using CaF_(2)-CaO-Al_(2)0_(3)-Mg-Si0_(2) slag to obtain a low oxygen content of less than 10×10^(-4) wt.%,a kinet...Based on a thermodynamic study of 5 wt.%Si high-silicon austenitic stainless steel(SS-5Si)smelting using CaF_(2)-CaO-Al_(2)0_(3)-Mg-Si0_(2) slag to obtain a low oxygen content of less than 10×10^(-4) wt.%,a kinetic mass transfer model for deep deoxidation was established through laboratory studies,and the effects of slag components and temperature on deoxidation during the slag-steel reaction process of sS-5Si were systematically studied.The experimental data verified the accuracy of the model predictions.The results showed that the final oxygen content in the steel at 1873 K was mainly controlled by the oxygen content derived from the activity of SiO_(2) regulated by the[Si]-[O]equilibrium reaction in the slag system;in particular,when the slag basicity R(R=w(CaO)/w(SiO2),where w(CaO)and w(SiO_(2))are the contents of CaO and SiO_(2) in the slag,respectively)is 3,the Al2O3 content in the slag needs to be less than 2.7%.The mass transfer rate equation for the kinetics of the deoxidation reaction revealed that the mass transfer of oxygen in the liquid metal is the rate-controlling step under different slag conditions at 1873 K,and the oxygen transfer coefficient ko.m increases with increasing the slag basicity from 4.0×10^(-6)m s^(-1)(R=1)to 4.3×10^(-5) m s^(-1)(R=3).ko.m values at R=2 and R=3 are almost the same,indicating that high slag basicity has little effect.The integral of the mass transfer rate equation for the deoxidation reaction of SS-5Si under different slag conditions is obtained.The total oxygen content of the molten steel decreases with increasing basicity from an initial content of 22×10^(-4) to 3.2×10^(-4) wt.%(R=3),consistent with the change in ko.m with slag basicity.At R=2,the slag-steel reaction takes 15 min to reach equilibrium(w[O]=5.5×10^(-4) wt.%),whereas at R=3,the slag-steel reaction takes 30 min to reach equilibrium(w[0]=3.2×10^(-4) wt.%).Considering the depth of deoxidation and reaction time of SS-5Si smelting,it is recommended the slag basicity be controlled at approximately 2.Similarly,the effect of temperature on the deep deoxidation of SS-5Si was studied.展开更多
Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for t...Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for the minimization of internal Gibbs energy preliminarily when solving deoxidation equilibria.The elimination of internal Gibbs energy minimization is particularly advantageous during the coupling of deoxidation equilibrium calculations with computationally intensive approaches,such as computational fluid dynamics.The model enables efficient calculations through direct embedment of the explicit forms of activity coefficient in the computing code.The proposed thermodynamic model was developed using a quasichemical approach with two key approximations:random mixing of metallic elements(Fe and oxidizing metal) and strong nonrandom pairing of metal and oxygen as nearest neighbors.Through these approximations,the quasichemical approach yielded the activity coefficients of solutes as explicit functions of composition and temperature without requiring the minimization of internal Gibbs energy or the coupling of separate programs.The model was successfully applied in the calculation of deoxidation equilibria of various elements(Al,B,C,Ca,Ce,Cr,La,Mg,Mn,Nb,Si,Ti,V,and Zr).The limitations of the model arising from these assumptions were also discussed.展开更多
A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory....A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.In the developed model,the Fe-Cr-Mn-Si-Al-S-O-melts reaction system and CaO-MgO-CaF_(2)-FeO-MnO-Al_(2)O_(3)-SiO_(2)-Cr2O_(3)slags were considered.The oxygen contents calculated by the model are in good agreement with experimental results and reference data.The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity(w(CaO)/w(SiO_(2)),where w(i)is the mass percentage of component i)and decreasing temperature.Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15×10^(-6).The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags,which is more significant at lower binary basicity.Besides,a small amount of FeO,MnO,and Al_(2)O_(3)(about 0-2.5 wt.%)in slags has little effect on equilibrium oxygen contents.Furthermore,it is found that the[C]-[O]reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents.展开更多
In view of process conditions of Vanadium Recovery and Steelmaking Plant, PanGang Group Panzhihua steel and Vanadium Co.,Ltd., and on the basis of making choice of a reasonable deoxidization process, some measures hav...In view of process conditions of Vanadium Recovery and Steelmaking Plant, PanGang Group Panzhihua steel and Vanadium Co.,Ltd., and on the basis of making choice of a reasonable deoxidization process, some measures have been taken to the development of automobile gear steel (20CrMoH) such as the pre-refining technology during converter tapping, "white slag" refining in LF, RH Vacuum treatment, and even protective casting technology. Also different and suitable models of argon blowing from bottom of ladle were adopted in the platform after converter, LF refining and calcium treatment. Test results show that the high cleanness 20CrMoH gear steel slab with T[O] ≤15×10-6(The average T[O] is 11.8×10-6) could be obtained through all these measures.展开更多
The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculate...The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculated results are in good agreement with most of the experimental results.The consistent model parameter set determined in this work may provide theoretical guidance for the deoxidation of TiNi alloy.展开更多
The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was ...The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was added to experimental heats for final deoxidizing during BOF tapping, and the refining top slag with strong reducibility, high basicity and high Al2O3 in ladle furnace was used to produce ultra-low oxygen steel and the transformation of nonmetallic inclusions in molten steel was compared by calcium treatment and no calcium treatment. The results show that the transformation of Al2O3--MgO - Al2O3 spinel-CaO-MgO-Al2O3 complex inclusions has been completed for aluminum deoxidation products and calcium treatment to molten steel is unnecessary when using the control technology of ladle furnace refining top slag to produce ultra-low oxygen steel, and the complex inclusions are liquid at the temperature of steelmaking and easily removable to obtain very high cleanliness steel by flotation. Further- more, the problems of nozzle clogging in casting operations do not happen and the remaining oxide inclusions in steel are the relatively lower melting point complex inclusions.展开更多
Effect of Mg addition on the compositions of inclusions were studied. The results show that Mg can minimize the inclusions of steel obviously. Under the present condition, Mg deoxidation products of low-S content expe...Effect of Mg addition on the compositions of inclusions were studied. The results show that Mg can minimize the inclusions of steel obviously. Under the present condition, Mg deoxidation products of low-S content experimental steel would be changed in the order of Al2O3→MgAl2O4→Mg–Al–O–S→Mg–O–S. Mg deoxidation products of high-S content experimental steel generate Mg–S(–O)+MnS type inclusions, except for usual oxysulfide. And it is consistent with the results of thermodynamics calculation. Mg is preferred to react with oxide, compared with sulfide. The reaction reaches the equilibrium after 1 min or 5 min. It shows that the number and diameter of inclusions in all experimental steel samples are well under control, helping to improve the properties of steel.展开更多
The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investi...The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investigated by welding simulation and observation using a scanning electron microscope equipped with an energy dispersive spectrometer and an optical microscope. The IAFs are observed in steel with Mg addition, and the volume fraction of IAF is as high as 55.4% in the steel containing 0.0027 mass% Mg. The MgO-Al2O3-Ti2O3-MnS inclusions with size around 2 μm are effective nucleation sites for IAF, whereas Al2O3-MnS inclusions are impotent to nucleate the acicular ferrite. The prior-austenite grain (PAG) size distribution in low Mg steel is similar to that in steel without Mg addition. The austenite grain with size about 200 μm is favorable for the IAF formation. In the steel with high Mg content of 0.0099%, the growth of PAG is greatly inhibited, and PAG sizes are smaller than 100 μm. Therefore, the nucleation of IAF can hardly be observed.展开更多
The formation of oxide inclusions in one of the carbon steel productions of Mobarakeh Steel Complex of Isfahan has been evaluated. Several samples from different steps of steel production were taken, from arc furnace,...The formation of oxide inclusions in one of the carbon steel productions of Mobarakeh Steel Complex of Isfahan has been evaluated. Several samples from different steps of steel production were taken, from arc furnace, ladle furnace, tundish, and continuous casting mold. Moreover, samples of slab and hot rolling products were prepared. The samples were investigated by optical and scanning electron microscopes equipped with the EDS system. According to the results, the number, composition, and kind of inclusions were directly influenced by the production variables. It was found that when the amount of dissolved oxygen was high (say more than 0. 002 5%), the dissolved aluminum was able to reduce silicon oxide and react with the dissolved oxygen simultaneously, whilst, the dissolved aluminum could reduce the magnesium oxide only when the oxygen content was below 0. 000 5%. Based on this research, a mechanism for forming the complex inclusions was suggested. It was also found that if the aluminum is added to the melt as late as possible, a cleaner melt with fewer inclusions is prepared; this method will be more effective, especially in the case of complex inclusions.展开更多
The mechanism of oxide inclusions in fatigue crack initiation in the very-high cycle fatigue(VHCF)regime was clarified by subjecting bearing steels deoxidized by Al(Al-deoxidized steel)and Si(Si-deoxidized steel)to ul...The mechanism of oxide inclusions in fatigue crack initiation in the very-high cycle fatigue(VHCF)regime was clarified by subjecting bearing steels deoxidized by Al(Al-deoxidized steel)and Si(Si-deoxidized steel)to ultrasonic tension-compression fatigue tests(stress ratio,R=−1)and analyzing the characteristics of the detected inclusions.Results show that the main types of inclusions in Si-and Al-deoxidized steels are silicate and calcium aluminate,respectively.The content of calcium aluminate inclusions larger than 15μm in Si-deoxidized steel is lower than that in Al-deoxidized steel,and the difference observed may be attributed to different inclusion generation processes during melting.Despite differences in their cleanliness and total oxygen contents,the Si-and Al-deoxidized steels show similar VHCF lives.The factors causing fatigue failure in these steels reveal distinct differences.Calcium aluminate inclusions are responsible for the cracks in Al-deoxidized steel.By comparison,most fatigue cracks in Si-deoxidized steel are triggered by the inhomogeneity of a steel matrix,which indicates that the damage mechanisms of the steel matrix can be a critical issue for this type of steel.A minor portion of the cracks in Si-deoxidized steel could be attributed to different types of inclusions.The mechanisms of fatigue fracture caused by calcium aluminate and silicate inclusions were further analyzed.Calcium aluminate inclusions first separate from the steel matrix and then trigger crack generation.Silicate inclusions and the steel matrix are closely combined in a fatigue process;thus,these inclusions have mild effects on the fatigue life of bearing steels.Si/Mn deoxidation is an effective method to produce high-quality bearing steel with a long fatigue life and good liquid steel fluidity.展开更多
Besides competing with algae for light and mineral nutrients (i. e. N, P, etc.), the root system of Acorus tatarinowii excretes some chemical substances, which injure and eliminate alga cells, to inhibit the growth of...Besides competing with algae for light and mineral nutrients (i. e. N, P, etc.), the root system of Acorus tatarinowii excretes some chemical substances, which injure and eliminate alga cells, to inhibit the growth of the algae. When the algae cells were treated in 'A. tatarinowii water', some of the chlorophyll a were destroyed and the photosynthetic rate of algae decreased markedly and the ability of alga cells to deoxidize triphenyltetrazolium chloride (TTC) reduced greatly. Then alga cells turned from bright red to bluish green under fluorescence microscope. These showed that the allelopathic effects of A. tatarinowii on algae were obvious and planting A. tatarinowii can control some green algae. The experiment on the extractions of the secretions of the root system showed that the inhibitory effect had a concentration effect. If the concentration of the root secretion was below 30 μl/disc, the inhibitory rate was negative; if it was over 45 μl/disc, the inhibitory rate was positive. This proved that the influence of the root secretion on the same acceptor was a kind of concentration effect. When the concentration of the root secretion was low, it promoted the growth of algae; when the concentration reached a definite threshold value, it restrained the growth of algae. In present case, the threshold value was between 30 μl/disc and 45 μl/disc.展开更多
文摘Nine steels with different deoxidizing degrees and two comparative steels were selected. Their pitting initiation susceptibility was compared by means of potentiodynamic polarization tests in 3wt% NaCl solution. The pit propagation rate was evaluated in artificial sea water and 3wt% sea salt solution by simulating occluded corrosion cell (SOCC) test and hanging plate test, respectively. The composition of inclusions and corrosive feature were studied by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and optical microscopy (OM). The results indicate that sulfide inclusions in steel are the sites for pit nucleation. The sulphide inclusions vary in shape from short spindle-like to long strip-like with increasing deoxidizing degree. Under the same conditions, the lower the deoxidizing degree gets, the lower the pitting initiation susceptibility becomes, and the stronger the resistance to pit propagation exhibits. For steels with different deoxidizing degrees, their pitting initiation susceptibility is mainly influenced by thermodynamic stability, while the pit propagation rate is primarily subject to the characteristics of inclusions in steel.
文摘The electrochemical reduction of nitrate(NO_(3)−)to ammonia(NH_(3))(NO3RR)represents an environmentally sustainable strategy for NH_(3)production while concurrently addressing water pollution challenges.Nevertheless,the intrinsic complexity of this multi-step reaction severely constrains both the selectivity and efficiency of NO3RR.Copper-based electrocatalysts have been extensively investigated for NO_(3)RR but often suffer from nitrite(NO_(2)^(−))accumulation,which stems from insufficient NO_(3)^(−)adsorption strength.This limitation often leads to rapid catalyst deactivation,hindered hydrogenation pathways,and reduced overall efficiency.Herein,we report a one-step green chemical reduction method to synthesize PtCuSnCo quarternary alloy nanoparticles with homogeneously distributed elements.Under practical NO3−concentrations,the optimized catalyst exhibited an impressive Faradaic efficiency approaching 100%and an outstanding selectivity of 95.6±2.9%.Mechanistic insights uncovered that SnCo sites robustly facilitated NO_(3)^(−)adsorption,complemented by the proficiency of PtCu sites in NO3−reduction.The synergistic spatial neighborhood effect between SnCo and PtCu sites efficiently stabilizes NO_(3)^(−)deoxygenation and suppresses NO_(2)^(−)accumulation.This tandem architecture achieves a finely tuned balance between adsorption strength and deoxygenation kinetics,enabling highly selective and efficient NO3RR.Our findings emphasize the indispensable role of engineered multi-metallic catalysts in overcoming persistent challenges of NO3RR,paving the way for advanced NH3 synthesis and environmental remediation.
基金supported by the National Natural Science Foundation of China,Pilot Group Program of the Research Fund for International Senior Scientists(22250710676)National Natural Science Foundation of China(22078064,22378062,22304028)+1 种基金Natural Science Foundation of Fujian Province(2021J02009)Tianjin University-Fuzhou University Independent Innovation Fund Cooperation Project(TF2023-1,TF2023-8).
文摘In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixtures with diverse oxygen-containing functional groups,pose a challenge as they cannot be easily separated via distillation for direct utilization.A promising solution to this challenge lies in the efficient removal of oxygen-containing functional groups from LDOs through hydrodeoxygenation(HDO),aiming to yield biomass products with singular components.However,the high dissociation energy of the carbon-oxygen bond,coupled with its similarity to the hydrogenation energy of the benzene ring,creates a competition between deoxygenation and benzene ring hydrogenation.Considering hydrogen consumption and lignin properties,the preference is directed towards generating aromatic hydrocarbons rather than saturated components.Thus,the goal is to selectively remove oxygen-containing functional groups while preserving the benzene ring structure.Studies on LDOs conversion have indicated that the design of active components and optimization of reaction conditions play pivotal roles in achieving selective deoxygenation,but a summary of the correlation between these factors and the reaction mechanism is lacking.This review addresses this gap in knowledge by firstly summarizing the various reaction pathways for HDO of LDOs.It explores the impact of catalyst design strategies,including morphology modulation,elemental doping,and surface modification,on the adsorption-desorption dynamics between reactants and catalysts.Secondly,we delve into the application of advanced techniques such as spectroscopic techniques and computational modeling,aiding in uncovering the true active sites in HDO reactions and understanding the interaction of reactive reactants with catalyst surface-interfaces.Additionally,fundamental insights into selective deoxygenation obtained through these techniques are highlighted.Finally,we outline the challenges that lie ahead in the design of highly active and selective HDO catalysts.These challenges include the development of detection tools for reactive species with high activity at low concentrations,the study of reaction medium-catalyst interactions,and the development of theoretical models that more closely approximate real reaction situations.Addressing these challenges will pave the way for the development of efficient and selective HDO catalysts,thus advancing the field of renewable LDOs conversion.
基金supported by the National Natural Science Foundation of China(No.U21A20113)the Natural Science Foundation of Hubei Province of China(No.2021CFA023).
文摘A low-carbon,low-cost,and high-efficient method was reported for remarkably improving corrosion resistance of C–Mn structural steel by weak deoxidation.The results showed that,with the total oxygen content(wOT)increasing in the tested steel from 41×10^(−6)to 195×10^(−6),both the degree of element segregation and the level of banded microstructure weakened,presenting the lower potential difference between pearlite(P)and ferrite(F),and then smaller galvanic corrosion driving force,and thus effectively improving general corrosion properties.In addition,with wOT growing up,the number and size of inclusions increased,and the shape also changed from long chain or small particle to large particle ball with typical mosaic structure,which could effectively inhibit the preferential dissolution of local component due to multiple complex interfaces,and correspondingly suppress the pitting susceptibility.However,the impact toughness at low temperature of the tested steel reduced with wOT increasing,and then,taking the mechanical properties and corrosion resistance all into account,160×10^(−6) was the optimal oxygen content within the present scope.
基金the financial support from the Anhui Key Laboratory of Low Carbon Metallurgy and Solid Waste Resource Utilization(Anhui University of Technology)(No.SKF23-01)Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology(No.FMRUlab23-1010)+1 种基金Open Project of State Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2022-07)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200).
文摘The effect of the initial(Al+Si)/MnO molar ratio and slag composition on MnO recovery from electroslag by remelting at 1773 K was investigated.High-purity aluminum metal and silicon were employed as the deoxidizers to effectively promote the recovery of manganese metal(MM).The reduction of MnO in slag,through the interaction between molten MM with a deoxidizer and the Na_(2)O-enriched electroslag melt,was assessed both thermodynamically and kinetically.The sulfur content of high-sulfur rejected electrolytic manganese metal(EMM)scrap decreased to 0.58%with high-temperature pretreatment.The mass ratio between slag and high-sulfur rejected EMM scrap is 2/3.When the Al_(2)O_(3)content in the initial slags decreased and the Na_(2)O content increased,the MnO reduction ratio increased.The residual MnO concentration of the slag reduced with increasing the Al–Si deoxidizer content.When the(Al+Si)/MnO molar ratio reached 0.83,the MnO concentration in the final slag was only 3%.A deoxidizer mainly containing aluminum and a small amount of Si could be added to recover MnO from the slag,resulting in the improvement in the cleanliness of final Mn metal.
基金support from the National Natural Science Foundation of China (No. U1960202)the Opening Foundation from Shanghai Engineering Research Center of Hot Manufacturing, China (No. 18DZ2253400)。
文摘This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.
基金financially supported by the National Natural Science Foundation of China (No.52174297)。
文摘In the long traditional process of steelmaking,excess oxygen is blown into the converter,and alloying elements are used for deoxidation.This inevitably results in excessive deoxidation of products remaining within the steel liquid,affecting the cleanliness of the steel.With the increasing requirements for steel performance,reducing the oxygen content in the steel liquid and ensuring its high cleanliness is necessary.After more than a hundred years of development,the total oxygen content in steel has been reduced from approximately 100×10^(-6)to approximately 10×10^(-6),and it can be controlled below 5×10^(-6)in some steel grades.A relatively stable and mature deoxidation technology has been formed,but further reducing the oxygen content in steel is no longer significant for improving steel quality.Our research team developed a deoxidation technology for bearing steel by optimizing the entire conventional process.The technology combines silicon–manganese predeoxidation,ladle furnace diffusion deoxidation,and vacuum final deoxidation.We successfully conducted industrial experiments and produced interstitial-free steel with natural decarbonization predeoxidation.Non-aluminum deoxidation was found to control the oxygen content in bearing steel to between 4×10^(-6) and 8×10^(-6),altering the type of inclusions,eliminating large particle Ds-type inclusions,improving the flowability of the steel liquid,and deriving a higher fatigue life.The natural decarbonization predeoxidation of interstitial-free steel reduced aluminum consumption and production costs and significantly improved the quality of cast billets.
基金supported by the National Natural Science Foundation of China(No.52174297).
文摘After the converter steelmaking process,a considerable number of ferroalloys are needed to remove dissolved oxygen from the molten steel,but it also forms a lot of oxide inclusions that cannot be completely removed.At the same time,it increases the carbon emis-sions in the steel production process.After years of research,our team have developed a series of clean deoxidation technologies,includ-ing carbon deoxidation,hydrogen deoxidation,and waste plastic deoxidation of molten steel to address the aforementioned issues.In this study,thermodynamic calculations and laboratory experiments were employed to verify that carbon and hydrogen can reduce the total oxygen content in the molten steel melt to below 5×10^(-6) and 10×10^(-6),respectively.An analysis of the deoxidation mechanisms and ef-fects of polyethylene and polypropylene was also conducted.In addition,the applications of carbon deoxidation technology in different steels with the hot-state experiment and industrial production were discussed carefully.The carbon deoxidation experimental results of different steels were as follows:(1)the oxygen content of bearing steel was effectively controlled at 6.3×10^(-6) and the inclusion number density was lowered by 74.73%compared to aluminum deoxidized bearing steel;(2)the oxygen content in gear steel was reduced to 7.7×10^(-6) and a 54.49%reduction of inclusion number density was achieved with almost no inclusions larger than 5μm from the average level of industry gear steels;(3)a total oxygen content of M2 high-speed steel was as low as 3.7×10^(-6).In industrial production practice,car-bon deoxidation technique was applied in the final deoxidation stage for non-aluminum deoxidized bearing steel,and it yielded excellent results that the oxygen content was reduced to below 8×10^(-6) and the oxide inclusions in the steel mainly consist of silicates,along with small amounts of spinel and calcium aluminate.
基金supported by the National Natural Science Foundation of China(Nos.52274341 and 51974210).
文摘To avoid coarse crystallization of glassy inclusions in Si–Mn deoxidized steel during hot rolling, the effect of MgO on the structure and crystallization behavior of CaO–SiO_(2)–Al_(2)O_(3) inclusions was investigated. The results showed that the crystallization temperature of the oxide melts decreased with increasing MgO content from 0 to 15.7 wt.%, which suggested that the addition of MgO would increase the temperature range of the crystalline transition. The increase in MgO content could decrease the crystallization activation energy of inclusions. With the increase in MgO content, the relative fractions of O_(Si)^(0) and O_(Si)^(1) structure units increased, and those of structure units O_(Si)^(2), O_(Si)^(3), and O_(Si)^(4) decreased, increasing the depolymerization degree of the silicate structure. The crystallization ratio of glassy inclusions in the steel crucible increased from 19.7% to 98.3% with increasing MgO content from 0 to 15.7 wt.%. The addition of MgO improved the crystallization ability of inclusions, because MgO provides free oxygen O_(2−) to destroy the bridging oxygens and form non-bridging oxygens O^(−), which depolymerizes silicate network structure and simplifies the [SiO_(4)]-tetrahedral structure. In addition, MgO would promote the precipitation of the Mg-containing phases with a high melting point. When the MgO content was increased above 12.1 wt.%, MgO·Al_(2)O_(3) and 2MgO·SiO_(2) crystalline phases would precipitate from the inclusions.
文摘Based on a thermodynamic study of 5 wt.%Si high-silicon austenitic stainless steel(SS-5Si)smelting using CaF_(2)-CaO-Al_(2)0_(3)-Mg-Si0_(2) slag to obtain a low oxygen content of less than 10×10^(-4) wt.%,a kinetic mass transfer model for deep deoxidation was established through laboratory studies,and the effects of slag components and temperature on deoxidation during the slag-steel reaction process of sS-5Si were systematically studied.The experimental data verified the accuracy of the model predictions.The results showed that the final oxygen content in the steel at 1873 K was mainly controlled by the oxygen content derived from the activity of SiO_(2) regulated by the[Si]-[O]equilibrium reaction in the slag system;in particular,when the slag basicity R(R=w(CaO)/w(SiO2),where w(CaO)and w(SiO_(2))are the contents of CaO and SiO_(2) in the slag,respectively)is 3,the Al2O3 content in the slag needs to be less than 2.7%.The mass transfer rate equation for the kinetics of the deoxidation reaction revealed that the mass transfer of oxygen in the liquid metal is the rate-controlling step under different slag conditions at 1873 K,and the oxygen transfer coefficient ko.m increases with increasing the slag basicity from 4.0×10^(-6)m s^(-1)(R=1)to 4.3×10^(-5) m s^(-1)(R=3).ko.m values at R=2 and R=3 are almost the same,indicating that high slag basicity has little effect.The integral of the mass transfer rate equation for the deoxidation reaction of SS-5Si under different slag conditions is obtained.The total oxygen content of the molten steel decreases with increasing basicity from an initial content of 22×10^(-4) to 3.2×10^(-4) wt.%(R=3),consistent with the change in ko.m with slag basicity.At R=2,the slag-steel reaction takes 15 min to reach equilibrium(w[O]=5.5×10^(-4) wt.%),whereas at R=3,the slag-steel reaction takes 30 min to reach equilibrium(w[0]=3.2×10^(-4) wt.%).Considering the depth of deoxidation and reaction time of SS-5Si smelting,it is recommended the slag basicity be controlled at approximately 2.Similarly,the effect of temperature on the deep deoxidation of SS-5Si was studied.
文摘Herein,a thermodynamic model aimed at describing deoxidation equilibria in liquid steel was developed.The model provides explicit forms of the activity coefficient of solutes in liquid steel,eliminating the need for the minimization of internal Gibbs energy preliminarily when solving deoxidation equilibria.The elimination of internal Gibbs energy minimization is particularly advantageous during the coupling of deoxidation equilibrium calculations with computationally intensive approaches,such as computational fluid dynamics.The model enables efficient calculations through direct embedment of the explicit forms of activity coefficient in the computing code.The proposed thermodynamic model was developed using a quasichemical approach with two key approximations:random mixing of metallic elements(Fe and oxidizing metal) and strong nonrandom pairing of metal and oxygen as nearest neighbors.Through these approximations,the quasichemical approach yielded the activity coefficients of solutes as explicit functions of composition and temperature without requiring the minimization of internal Gibbs energy or the coupling of separate programs.The model was successfully applied in the calculation of deoxidation equilibria of various elements(Al,B,C,Ca,Ce,Cr,La,Mg,Mn,Nb,Si,Ti,V,and Zr).The limitations of the model arising from these assumptions were also discussed.
基金This work was financially supported by Key R&D Plan of Shandong Province in 2021(Grant No.2021CXGC010209).
文摘A thermodynamic model for predicting the equilibrium oxygens of 304 stainless steel was developed based on the theory of slag-steel equilibrium,the law of mass conservation,and the ion and molecule coexistence theory.In the developed model,the Fe-Cr-Mn-Si-Al-S-O-melts reaction system and CaO-MgO-CaF_(2)-FeO-MnO-Al_(2)O_(3)-SiO_(2)-Cr2O_(3)slags were considered.The oxygen contents calculated by the model are in good agreement with experimental results and reference data.The equilibrium oxygen contents in 304 stainless steel mainly decrease with increasing binary basicity(w(CaO)/w(SiO_(2)),where w(i)is the mass percentage of component i)and decreasing temperature.Controlling binary basicity at 2.0 while maintaining temperatures lower than 1823 K will keep the oxygen contents in the 304 stainless steel lower than 15×10^(-6).The equilibrium oxygen contents may also be decreased with increasing content of MgO in slags,which is more significant at lower binary basicity.Besides,a small amount of FeO,MnO,and Al_(2)O_(3)(about 0-2.5 wt.%)in slags has little effect on equilibrium oxygen contents.Furthermore,it is found that the[C]-[O]reaction may occur during refining process but will not significantly affect the equilibrium oxygen contents.
文摘In view of process conditions of Vanadium Recovery and Steelmaking Plant, PanGang Group Panzhihua steel and Vanadium Co.,Ltd., and on the basis of making choice of a reasonable deoxidization process, some measures have been taken to the development of automobile gear steel (20CrMoH) such as the pre-refining technology during converter tapping, "white slag" refining in LF, RH Vacuum treatment, and even protective casting technology. Also different and suitable models of argon blowing from bottom of ladle were adopted in the platform after converter, LF refining and calcium treatment. Test results show that the high cleanness 20CrMoH gear steel slab with T[O] ≤15×10-6(The average T[O] is 11.8×10-6) could be obtained through all these measures.
基金Project (10520706400) supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject (2007CB613606) supported by the National Basic Research Program of ChinaProjects (50774052,51074105) supported by the National Natural Science Foundation of China
文摘The Ti-Ni-O ternary system was assessed by means of Calphad method using ternary experimental data in previous study.Isothermal sections at 1 173 and 1 273 K were calculated.The result shows that the present calculated results are in good agreement with most of the experimental results.The consistent model parameter set determined in this work may provide theoretical guidance for the deoxidation of TiNi alloy.
基金Item Sponsored by National Basic Research Program of China(2010CB630806)
文摘The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was added to experimental heats for final deoxidizing during BOF tapping, and the refining top slag with strong reducibility, high basicity and high Al2O3 in ladle furnace was used to produce ultra-low oxygen steel and the transformation of nonmetallic inclusions in molten steel was compared by calcium treatment and no calcium treatment. The results show that the transformation of Al2O3--MgO - Al2O3 spinel-CaO-MgO-Al2O3 complex inclusions has been completed for aluminum deoxidation products and calcium treatment to molten steel is unnecessary when using the control technology of ladle furnace refining top slag to produce ultra-low oxygen steel, and the complex inclusions are liquid at the temperature of steelmaking and easily removable to obtain very high cleanliness steel by flotation. Further- more, the problems of nozzle clogging in casting operations do not happen and the remaining oxide inclusions in steel are the relatively lower melting point complex inclusions.
基金Item Sponsored by National Natural Science Foundation of China(50904017)Fundamental Research Funds for the Central Universities of China(N120502004,N120602005)
文摘Effect of Mg addition on the compositions of inclusions were studied. The results show that Mg can minimize the inclusions of steel obviously. Under the present condition, Mg deoxidation products of low-S content experimental steel would be changed in the order of Al2O3→MgAl2O4→Mg–Al–O–S→Mg–O–S. Mg deoxidation products of high-S content experimental steel generate Mg–S(–O)+MnS type inclusions, except for usual oxysulfide. And it is consistent with the results of thermodynamics calculation. Mg is preferred to react with oxide, compared with sulfide. The reaction reaches the equilibrium after 1 min or 5 min. It shows that the number and diameter of inclusions in all experimental steel samples are well under control, helping to improve the properties of steel.
文摘The effects of Mg content, inclusion size, and austenite grain size on the intragranular acicular ferrite (IAF) nucleation in heat-affected zone of steel plate after high-heat-input welding of 400 kJ/cm were investigated by welding simulation and observation using a scanning electron microscope equipped with an energy dispersive spectrometer and an optical microscope. The IAFs are observed in steel with Mg addition, and the volume fraction of IAF is as high as 55.4% in the steel containing 0.0027 mass% Mg. The MgO-Al2O3-Ti2O3-MnS inclusions with size around 2 μm are effective nucleation sites for IAF, whereas Al2O3-MnS inclusions are impotent to nucleate the acicular ferrite. The prior-austenite grain (PAG) size distribution in low Mg steel is similar to that in steel without Mg addition. The austenite grain with size about 200 μm is favorable for the IAF formation. In the steel with high Mg content of 0.0099%, the growth of PAG is greatly inhibited, and PAG sizes are smaller than 100 μm. Therefore, the nucleation of IAF can hardly be observed.
文摘The formation of oxide inclusions in one of the carbon steel productions of Mobarakeh Steel Complex of Isfahan has been evaluated. Several samples from different steps of steel production were taken, from arc furnace, ladle furnace, tundish, and continuous casting mold. Moreover, samples of slab and hot rolling products were prepared. The samples were investigated by optical and scanning electron microscopes equipped with the EDS system. According to the results, the number, composition, and kind of inclusions were directly influenced by the production variables. It was found that when the amount of dissolved oxygen was high (say more than 0. 002 5%), the dissolved aluminum was able to reduce silicon oxide and react with the dissolved oxygen simultaneously, whilst, the dissolved aluminum could reduce the magnesium oxide only when the oxygen content was below 0. 000 5%. Based on this research, a mechanism for forming the complex inclusions was suggested. It was also found that if the aluminum is added to the melt as late as possible, a cleaner melt with fewer inclusions is prepared; this method will be more effective, especially in the case of complex inclusions.
基金This work was financially supported by the National Natural Science Foundation of China(No.51774031)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-026A1)the State Key Laboratory of Advanced Metallurgy Foundation(No.41620001).
文摘The mechanism of oxide inclusions in fatigue crack initiation in the very-high cycle fatigue(VHCF)regime was clarified by subjecting bearing steels deoxidized by Al(Al-deoxidized steel)and Si(Si-deoxidized steel)to ultrasonic tension-compression fatigue tests(stress ratio,R=−1)and analyzing the characteristics of the detected inclusions.Results show that the main types of inclusions in Si-and Al-deoxidized steels are silicate and calcium aluminate,respectively.The content of calcium aluminate inclusions larger than 15μm in Si-deoxidized steel is lower than that in Al-deoxidized steel,and the difference observed may be attributed to different inclusion generation processes during melting.Despite differences in their cleanliness and total oxygen contents,the Si-and Al-deoxidized steels show similar VHCF lives.The factors causing fatigue failure in these steels reveal distinct differences.Calcium aluminate inclusions are responsible for the cracks in Al-deoxidized steel.By comparison,most fatigue cracks in Si-deoxidized steel are triggered by the inhomogeneity of a steel matrix,which indicates that the damage mechanisms of the steel matrix can be a critical issue for this type of steel.A minor portion of the cracks in Si-deoxidized steel could be attributed to different types of inclusions.The mechanisms of fatigue fracture caused by calcium aluminate and silicate inclusions were further analyzed.Calcium aluminate inclusions first separate from the steel matrix and then trigger crack generation.Silicate inclusions and the steel matrix are closely combined in a fatigue process;thus,these inclusions have mild effects on the fatigue life of bearing steels.Si/Mn deoxidation is an effective method to produce high-quality bearing steel with a long fatigue life and good liquid steel fluidity.
基金TheNationalNaturalScienceFoundationofChinaandthe"Ninth five"significantBitem (No .KZ 95 1 B1 2 0 1)oftheChineseAcademyofScie
文摘Besides competing with algae for light and mineral nutrients (i. e. N, P, etc.), the root system of Acorus tatarinowii excretes some chemical substances, which injure and eliminate alga cells, to inhibit the growth of the algae. When the algae cells were treated in 'A. tatarinowii water', some of the chlorophyll a were destroyed and the photosynthetic rate of algae decreased markedly and the ability of alga cells to deoxidize triphenyltetrazolium chloride (TTC) reduced greatly. Then alga cells turned from bright red to bluish green under fluorescence microscope. These showed that the allelopathic effects of A. tatarinowii on algae were obvious and planting A. tatarinowii can control some green algae. The experiment on the extractions of the secretions of the root system showed that the inhibitory effect had a concentration effect. If the concentration of the root secretion was below 30 μl/disc, the inhibitory rate was negative; if it was over 45 μl/disc, the inhibitory rate was positive. This proved that the influence of the root secretion on the same acceptor was a kind of concentration effect. When the concentration of the root secretion was low, it promoted the growth of algae; when the concentration reached a definite threshold value, it restrained the growth of algae. In present case, the threshold value was between 30 μl/disc and 45 μl/disc.