期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A heuristic clustering algorithm based on high density-connected partitions
1
作者 Yuan Lufeng Yao Erlin Tan Guangming 《High Technology Letters》 EI CAS 2018年第2期149-155,共7页
Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structu... Clustering data with varying densities and complicated structures is important,while many existing clustering algorithms face difficulties for this problem. The reason is that varying densities and complicated structure make single algorithms perform badly for different parts of data. More intensive parts are assumed to have more information probably,an algorithm clustering from high density part is proposed,which begins from a tiny distance to find the highest density-connected partition and form corresponding super cores,then distance is iteratively increased by a global heuristic method to cluster parts with different densities. Mean of silhouette coefficient indicates the cluster performance. Denoising function is implemented to eliminate influence of noise and outliers. Many challenging experiments indicate that the algorithm has good performance on data with widely varying densities and extremely complex structures. It decides the optimal number of clusters automatically.Background knowledge is not needed and parameters tuning is easy. It is robust against noise and outliers. 展开更多
关键词 heuristic clustering density-based spatial clustering of applications with noise( DBSCAN) density-based clustering agglomerative clustering machine learning high density-connected partitions optimal clustering number
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部