期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
A Clustering Model Based on Density Peak Clustering and the Sparrow Search Algorithm for VANETs
1
作者 Chaoliang Wang Qi Fu Zhaohui Li 《Computers, Materials & Continua》 2025年第8期3707-3729,共23页
Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead... Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead to changes in the network topology,thereby reducing cluster stability in urban scenarios.To address this issue,we propose a clustering model based on the density peak clustering(DPC)method and sparrow search algorithm(SSA),named SDPC.First,the model constructs a fitness function based on the parameters obtained from the DPC method and deploys the SSA for iterative optimization to select cluster heads(CHs).Then,the vehicles that have not been selected as CHs are assigned to appropriate clusters by comprehensively considering the distance parameter and link-reliability parameter.Finally,cluster maintenance strategies are considered to tackle the changes in the clusters’organizational structure.To verify the performance of the model,we conducted a simulation on a real-world scenario for multiple metrics related to clusters’stability.The results show that compared with the APROVE and the GAPC,SDPC showed clear performance advantages,indicating that SDPC can effectively ensure VANETs’cluster stability in urban scenarios. 展开更多
关键词 VANETS CLUSTER density peak clustering sparrow search algorithm
在线阅读 下载PDF
Modeling of Energy Consumption and Effluent Quality Using Density Peaks-based Adaptive Fuzzy Neural Network 被引量:10
2
作者 Junfei Qiao Hongbiao Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期968-976,共9页
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a... Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods. 展开更多
关键词 density peaks clustering effluent quality (EQ) energy consumption (EC) fuzzy neural network improved Levenberg-Marquardt algorithm wastewater treatment process (WWTP).
在线阅读 下载PDF
New density clustering-based approach for failure mode and effect analysis considering opinion evolution and bounded confidence
3
作者 WANG Jian ZHU Jingyi +1 位作者 SHI Hua LIU Huchen 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1491-1506,共16页
Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose ch... Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose challenges in prac-tical applications.To improve the conventional FMEA,many modified FMEA models have been suggested.However,the majority of them inadequately address consensus issues and focus on achieving a complete ranking of failure modes.In this research,we propose a new FMEA approach that integrates a two-stage consensus reaching model and a density peak clus-tering algorithm for the assessment and clustering of failure modes.Firstly,we employ the interval 2-tuple linguistic vari-ables(I2TLVs)to express the uncertain risk evaluations provided by FMEA experts.Then,a two-stage consensus reaching model is adopted to enable FMEA experts to reach a consensus.Next,failure modes are categorized into several risk clusters using a density peak clustering algorithm.Finally,the proposed FMEA is illustrated by a case study of load-bearing guidance devices of subway systems.The results show that the proposed FMEA model can more easily to describe the uncertain risk information of failure modes by using the I2TLVs;the introduction of an endogenous feedback mechanism and an exogenous feedback mechanism can accelerate the process of consensus reaching;and the density peak clustering of failure modes successfully improves the practical applicability of FMEA. 展开更多
关键词 failure mode and effect analysis(FMEA) interval 2-tuple linguistic variable(I2TLV) consensus reaching density peak clustering algorithm
在线阅读 下载PDF
基于BDPCA聚类算法的航空发动机故障数据标记 被引量:10
4
作者 吕超 程弓 刘云清 《振动与冲击》 EI CSCD 北大核心 2020年第9期35-41,共7页
航空发动机作为飞行器的动力核心对飞行器的安全飞行有着举足轻重的作用,保证航空发动机的平稳运行对飞行安全有着重大意义。在基于有监督学习的航空发动机故障诊断技术不断取得进展的同时,如何将平时获取的大量未标记数据转换为能够用... 航空发动机作为飞行器的动力核心对飞行器的安全飞行有着举足轻重的作用,保证航空发动机的平稳运行对飞行安全有着重大意义。在基于有监督学习的航空发动机故障诊断技术不断取得进展的同时,如何将平时获取的大量未标记数据转换为能够用来训练故障诊断模型的带标记数据,成为了制约行业发展的一大瓶颈。针对这一问题引入了基于无监督学习的DPCA算法,用以实现对未标记数据集的准确分类与标记,并针对DPCA算法在局部密度计算与簇类别数选择方面的缺陷进行了优化:针对原始DPCA算法应用标准高斯核计算局部密度易造成误识别的状况,引入共享邻域算法对局部密度的计算方法进行优化;针对原始DPCA算法需要人工研判确定簇类别数易造成的误识别状况,引入BIC选择准则对簇类别数的选择方法进行优化;提出了原始DPCA算法与共享邻域算法以及BIC选择准则相结合的BDPCA算法。最后应用航空发动机转子故障数据对BDPCA算法进行了性能验证并取得了良好的结果,证实了BDPCA算法在航空发动机气路故障诊断领域有较高的实用价值。 展开更多
关键词 航空发动机 气路故障 密度峰值聚类分析(dpca) 贝叶斯信息准则(BIC) 共享邻域
在线阅读 下载PDF
基于BDPCA的驾驶员脑疲劳等级划分研究 被引量:1
5
作者 吕超 闫超 +1 位作者 徐亚茹 年锦涛 《计算机仿真》 北大核心 2022年第11期208-214,共7页
当人体产生疲劳状态时,大脑释放的脑电信号也会发生相应的变化。在以往对脑疲劳状态的研究中,研究者多从清醒与疲劳两种状态进行分析,忽略了对不同的疲劳状态程度的研究,且对不同疲劳状态划分的定义并不客观。针对脑疲劳状态等级划分研... 当人体产生疲劳状态时,大脑释放的脑电信号也会发生相应的变化。在以往对脑疲劳状态的研究中,研究者多从清醒与疲劳两种状态进行分析,忽略了对不同的疲劳状态程度的研究,且对不同疲劳状态划分的定义并不客观。针对脑疲劳状态等级划分研究不充分的问题,提出了一种基于非监督学习的聚类算法对疲劳状态等级进行客观性的划分。通过小波包分解提取脑电信号的节律能量和非线性特征作为特征向量,使用共同邻域参数(CNN)改进的DPCA聚类算法对提取到的特征向量进行分析训练。同时,使用贝叶斯准则(BIC)对类簇个数进行辅助判定。实验结果证明,改进后的BDPCA算法准确率可以达到85%以上,能够对脑电信号中表征的不同疲劳状态等级进行准确划分,实现了脑疲劳状态等级的客观性定义。 展开更多
关键词 疲劳等级 脑电信号 小波包分解 密度峰值聚类 贝叶斯准则
在线阅读 下载PDF
基于K互近邻与核密度估计的DPC算法 被引量:2
6
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
原文传递
基于ABWO的并行DCNN优化算法 被引量:1
7
作者 毛伊敏 刘映兴 《计算机工程与设计》 北大核心 2025年第2期353-359,共7页
针对并行DCNN算法在大数据环境下存在特征差异性较小、模型性能不足、参数更新慢和集群并行效率低等问题,提出一种基于ABWO的并行DCNN优化算法PDCNN-ABWO。提出一种基于自适应密度峰值聚类的特征选择策略FS-ADPC划分原始特征,筛选差异... 针对并行DCNN算法在大数据环境下存在特征差异性较小、模型性能不足、参数更新慢和集群并行效率低等问题,提出一种基于ABWO的并行DCNN优化算法PDCNN-ABWO。提出一种基于自适应密度峰值聚类的特征选择策略FS-ADPC划分原始特征,筛选差异性较大的特征;设计一种ResNet-CBAMDW模型,提升模型性能;提出一种基于自适应黑寡妇优化算法的并行训练策略PT-ABWO优化初始参数,加快参数更新速度;提出一种基于大数据基准测试的动态负载均衡策略DLB-BDB,合理分配任务负载,提升集群并行效率。实验结果表明,该算法能够有效提升DCNN在大数据环境下的训练效率。 展开更多
关键词 大数据 并行深度卷积神经网络算法 密度峰值聚类 自适应黑寡妇优化算法 并行训练 基准测试 负载均衡
在线阅读 下载PDF
改进的密度峰值聚类算法在岩体结构面优势分组中的应用
8
作者 王述红 高晨翔 侯钦宽 《东北大学学报(自然科学版)》 北大核心 2025年第3期130-137,共8页
岩体稳定性评价依赖于合理的结构面分组,但传统方法存在易受边缘点与异常点影响的弊端.为此,提出一种改进的密度峰值聚类算法用于结构面优势分组.首先,将结构面产状转换为空间坐标,并以单位法向量夹角正弦值的平方作为相似性度量.随后,... 岩体稳定性评价依赖于合理的结构面分组,但传统方法存在易受边缘点与异常点影响的弊端.为此,提出一种改进的密度峰值聚类算法用于结构面优势分组.首先,将结构面产状转换为空间坐标,并以单位法向量夹角正弦值的平方作为相似性度量.随后,基于有效性评价指标构建目标函数,并利用乌鸦算法优化截断距离以获取最佳分组结果.通过模拟数据集验证了该算法能够有效减少人为干预,避免异常点干扰,确保聚类结果更加可靠和合理.结果表明,所提方法不仅与传统方法一致性良好,还具有更高的适用性,为工程中结构面优势分组提供了可靠的参考. 展开更多
关键词 密度峰值聚类 乌鸦算法 有效性评价指标 结构面 优势分组
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
9
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 K-MEANS算法 密度峰值聚类 K近邻
在线阅读 下载PDF
基于密度峰值的top-k空间文本查询
10
作者 李艳红 涂锐 《中南民族大学学报(自然科学版)》 2025年第2期260-268,共9页
由于普通的空间关键词查询通常导致查询结果过多,人们往往倾向于搜索结果集中且文本匹配度较高的地点.提出了一种基于密度峰值的空间文本查询问题,以获取空间对象密度集中且文本相似度较高的空间典型对象.利用TF-IDF结合Cosine相似度评... 由于普通的空间关键词查询通常导致查询结果过多,人们往往倾向于搜索结果集中且文本匹配度较高的地点.提出了一种基于密度峰值的空间文本查询问题,以获取空间对象密度集中且文本相似度较高的空间典型对象.利用TF-IDF结合Cosine相似度评估方法计算查询条件与其他空间关键词的相关度,再基于密度峰值聚类(DPC)算法,在满足空间文本条件的对象中,设计了TS-DPC算法将中间的结果集根据密度要求分为若干簇集,一方面可以获取给定范围内满足密度要求的空间对象簇;另一方面可以获取不同空间对象簇的中心,为研究所需.而后,对该算法进行了优化,提出了TS-DPC-IMP算法,在保持其他参数不变的情况下,通过网格算法,减少了该算法的运行时间. 展开更多
关键词 空间数据库 聚类算法 密度峰值 密度聚类 cosine相似度
在线阅读 下载PDF
密度峰值聚类k匿名分布式网络数据隐私保护方法研究
11
作者 郭艳红 《数字通信世界》 2025年第3期41-42,120,共3页
由于分布式网络数据分散在多个节点上,导致数据隐私泄露的概率较大,为此,本文进行了密度峰值聚类k匿名的分布式网络数据隐私保护方法研究。其充分考虑了分布式网络环境自身的特点,引入了分布式k-NN查询算法,以找到其k个最近邻点,同时保... 由于分布式网络数据分散在多个节点上,导致数据隐私泄露的概率较大,为此,本文进行了密度峰值聚类k匿名的分布式网络数据隐私保护方法研究。其充分考虑了分布式网络环境自身的特点,引入了分布式k-NN查询算法,以找到其k个最近邻点,同时保证查询过程以不泄露数据隐私为目标,构建了针对分布式网络数据的k近邻匿名模型;利用密度峰值聚类算法识别具有高局部密度并且与更高密度点的距离较大的数据点作为聚类中心,对k近邻匿名模型中的节点进行聚类,实现数据保护。在测试结果中,设计方法在不同场景中的保护效果最好,对应的数据泄露概率始终稳定在0.2以下。 展开更多
关键词 密度峰值聚类 k匿名 分布式网络 数据隐私保护 分布式k-NN查询算法 k近邻匿名模型 局部密度
在线阅读 下载PDF
基于GWO CFDP算法的速度传感器干扰源识别 被引量:1
12
作者 姜楠 张健穹 +2 位作者 臧杰锋 李相强 王庆峰 《机械与电子》 2025年第3期74-80,共7页
为了准确判断列车行驶时TCU速度传感器的干扰来源,提出了基于灰狼算法(GWO)改进的密度峰值快速聚类(CFDP)算法。首先,对列车实测干扰信号进行特征分析;然后,通过采用2层稀疏自编码网络连同核主成分分析,对预处理后的信号完成特征的自提... 为了准确判断列车行驶时TCU速度传感器的干扰来源,提出了基于灰狼算法(GWO)改进的密度峰值快速聚类(CFDP)算法。首先,对列车实测干扰信号进行特征分析;然后,通过采用2层稀疏自编码网络连同核主成分分析,对预处理后的信号完成特征的自提取与降维;最后,利用所提出的GWO CFDP算法实现4种干扰工况的分类识别。实验结果表明,所提出的干扰源识别算法对4种干扰工况的识别准确率达到99.0%,验证了该算法在干扰源识别领域的有效性和实用价值。 展开更多
关键词 速度传感器 密度峰值聚类 灰狼算法 稀疏自编码 核主成分分析
在线阅读 下载PDF
高密度PCB锡膏喷印的分层路径规划 被引量:1
13
作者 吴振亚 曹鹏彬 +1 位作者 张聪 彭伊丽 《组合机床与自动化加工技术》 北大核心 2025年第1期57-62,68,共7页
针对传统算法求解高密度印制电路板锡膏喷印路径规划问题存在收敛速度慢、易陷入局部最优的不足,提出了一种融合密度峰值聚类算法和蚁群算法的分层路径规划方法。利用密度峰值聚类算法处理分布呈矩形或线形的高密度焊盘,将原始问题分解... 针对传统算法求解高密度印制电路板锡膏喷印路径规划问题存在收敛速度慢、易陷入局部最优的不足,提出了一种融合密度峰值聚类算法和蚁群算法的分层路径规划方法。利用密度峰值聚类算法处理分布呈矩形或线形的高密度焊盘,将原始问题分解为上层聚类中心与下层小规模子问题集合;蚁群算法求解下层子问题获得子路径集合,求解上层聚类中心得到初始全局路径的重组路线;为避免子路径重组过程中陷入局部最优,利用局部搜索算法对初始全局路径进行二次优化,得到最优全局路径。实验结果表明,该分层路径规划方法降低了全局路径求解的复杂度,提升了算法收敛速度,缩短了加工路径总长度,有效提高了高密度印制电路板锡膏喷印的加工效率。 展开更多
关键词 锡膏喷印 分层路径规划 高密度印制电路板 密度峰值聚类 蚁群算法 局部搜索
在线阅读 下载PDF
双粒度空间存储位置调整的历史轨迹索引
14
作者 李彩云 韩京宇 +3 位作者 缪祝青 王彦之 毛毅 张怡婷 《小型微型计算机系统》 北大核心 2025年第8期1838-1846,共9页
为了支持历史轨迹数据的查询,通过学习型索引取代传统索引以减小索引存储代价和提升查询效率受到广泛关注.时空轨迹数据的分布不均匀,单粒度的模型不能兼容疏密不一致的轨迹数据;如果为每个周期数据分别构建一个模型,模型总存储大小线... 为了支持历史轨迹数据的查询,通过学习型索引取代传统索引以减小索引存储代价和提升查询效率受到广泛关注.时空轨迹数据的分布不均匀,单粒度的模型不能兼容疏密不一致的轨迹数据;如果为每个周期数据分别构建一个模型,模型总存储大小线性增长;如果只维护一个模型,模型性能通常会随着历史轨迹的增多而恶化.因此,提出一种双粒度空间存储位置调整的历史轨迹索引,包括嵌入空间识别、初始周期模型构建和后期存储位置调整3个阶段:首先,利用密度峰值聚类算法将所有轨迹数据根据其稀疏性划分到粗细粒度层,在每个粒度层上,利用希尔伯特曲线获取轨迹点的一维排序,保证时空邻近的轨迹点排序值也接近;接着,在初始周期数据上构建分段线性模型;最后,后期数据利用初始周期构建的分段线性模型预测存储位置,采用Kuhn-Munkres算法解决模型预测存储位置产生位置冲突的问题.模拟和真实数据集上的实验表明,与其它的学习型索引相比,不仅提升了查询性能,而且显著降低了索引大小和模型维护成本,有效地支持以读为主的历史轨迹数据查询. 展开更多
关键词 学习型索引 密度峰值聚类 希尔伯特 Kuhn-Munkres算法
在线阅读 下载PDF
基于改进变色龙算法的交通控制子区划分方法 被引量:1
15
作者 张添翼 闫飞 《计算机工程与设计》 北大核心 2025年第1期15-22,共8页
为缓解城市拥堵情况,提出一种基于改进变色龙(Chameleon)算法的交通控制子区划分方法。综合考虑交叉口间距、交通车流量等因素影响,计算各相邻交叉口的流量关联度,构建相似性矩阵;引入密度峰值聚类算法改进变色龙算法,通过度量公式得到... 为缓解城市拥堵情况,提出一种基于改进变色龙(Chameleon)算法的交通控制子区划分方法。综合考虑交叉口间距、交通车流量等因素影响,计算各相邻交叉口的流量关联度,构建相似性矩阵;引入密度峰值聚类算法改进变色龙算法,通过度量公式得到子区划分结果。选取义乌市某区域路网进行模型验证分析,结果表明该方法与常用的固定配时法及谱聚类法相比在平均排队长度上降低7.9%和6.2%,停车次数降低32.6%和16.5%,平均延误时间降低17.8%和11.9%,该划分方法能使城市路网子区划分合理,控制效果显著。 展开更多
关键词 城市交通 信号控制 交叉口关联度 控制子区 变色龙算法 密度峰值聚类 模型验证
在线阅读 下载PDF
电力电费数据异常值检测方法研究 被引量:1
16
作者 刘峥 戚家伟 +2 位作者 都静静 王坤 郭越 《信息技术》 2025年第7期144-149,共6页
以往的电力电费数据异常值检测方法仅提取了单一的电力电费数据特征,导致检测效果较差。为此,研究电力电费数据异常值检测方法。首先,对采集到的电力电费数据进行规范处理,并利用密度峰值聚类算法确定电力电费数据的聚类中心。其次,通... 以往的电力电费数据异常值检测方法仅提取了单一的电力电费数据特征,导致检测效果较差。为此,研究电力电费数据异常值检测方法。首先,对采集到的电力电费数据进行规范处理,并利用密度峰值聚类算法确定电力电费数据的聚类中心。其次,通过计算电力电费数据的密度函数,提取多个电力电费数据特征,由此构建电力电费数据异常值特征曲线。最后,通过计算电力电费数据的异常分值,实现对电力电费数据的异常值检测。实验结果表明,F1得分平均值约为0.97,误检率最高,仅为0.1。这说明所提方法的检测性能较好,具有实用性。 展开更多
关键词 密度峰值聚类算法 电力电费数据 数据聚类 异常值检测 检测方法
在线阅读 下载PDF
基于密度峰值聚类算法的商城配送中心选址分析
17
作者 林泓安 王鑫鑫 《物流工程与管理》 2025年第2期7-10,共4页
随着电子商务的迅速发展,商城配送中心选址已成为提升配送效率、降低成本和增强客户满意度的关键。文中将密度峰值聚类(Density Peak Clustering,DPC)算法应用于商城配送中心选址问题中,通过分析历史订单数据,自动识别订单分布的密集区... 随着电子商务的迅速发展,商城配送中心选址已成为提升配送效率、降低成本和增强客户满意度的关键。文中将密度峰值聚类(Density Peak Clustering,DPC)算法应用于商城配送中心选址问题中,通过分析历史订单数据,自动识别订单分布的密集区域,同时引入相似度策略处理复杂数据结构并提高聚类准确性。实验结果表明,改进的DPC算法在Flame数据集上聚类效果优越,相比于K-Means、I-DBSCAN和MeanShift算法,能更有效地识别高密度区域,为商城配送中心选址提供科学依据,从而优化配送中心位置,提高配送效率和客户满意度。 展开更多
关键词 密度峰值聚类算法 相似度策略 商城配送选址 P-中心问题
在线阅读 下载PDF
基于人工智能技术的电力信息运维数据整合平台 被引量:1
18
作者 郭蕊 李奕霏 高育栋 《自动化技术与应用》 2025年第6期76-79,共4页
为保证电力信息运维数据整合效果,设计一种基于人工智能技术的电力信息运维数据整合平台。采用基于密度峰值的聚类算法找出数据中的异常值,采用人工智能技术中的机器学习算法清洗数据,以消除数据中的异常点,避免异常值对整合过程产生影... 为保证电力信息运维数据整合效果,设计一种基于人工智能技术的电力信息运维数据整合平台。采用基于密度峰值的聚类算法找出数据中的异常值,采用人工智能技术中的机器学习算法清洗数据,以消除数据中的异常点,避免异常值对整合过程产生影响。最终,经数据编码、抽象及重组后,运用深度学习算法集成电力运维数据。实验结果证明,该方法精度高、效率高、覆盖广,具有一定的实用价值。 展开更多
关键词 密度峰值聚类法 自回归模型 数据清洗 深度学习算法 数据编码 抽象矩阵
在线阅读 下载PDF
基于高斯分布的自适应密度峰值聚类算法
19
作者 李启文 王治和 +1 位作者 杜辉 鲁德鹏 《计算机工程》 北大核心 2025年第4期137-148,共12页
密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度... 密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度和相对距离的乘积θ_(i),通过Z-score标准化方法,将θ_(i)映射到符合高斯分布的二维空间中,利用高斯分布的标准偏差来自适应选取聚类中心,得到聚类中心集合;其次,将其余数据点分配到离其最近的聚类中心所在的簇中,得到初步划分结果;最后,设计缝合因子模型,计算簇间缝合系数,当缝合系数大于阈值时合并初步划分结果中最相似簇并更新相似度矩阵,直至完成合并得到最终结果。在人工数据集和真实数据集上的实验结果表明,与DBSCAN算法、DPC算法和ICKDC算法对比,所提算法的聚类准确度更高,聚类性能更佳。 展开更多
关键词 密度峰值聚类算法 高斯分布 Z-score标准化 缝合因子 簇间相似度
在线阅读 下载PDF
空分复用弹性光网络中异常入侵行为自动检测
20
作者 任雁 王文溥 李咸静 《激光杂志》 北大核心 2025年第9期173-177,共5页
由于网络结构的复杂性和传输数据的高维特征,空分复用弹性光网络容易受到各种形式的网络攻击,导致网络性能下降。为了有效提升空分复用弹性光网络的安全性,提出一种空分复用弹性光网络中异常入侵行为自动检测方法。利用信息增益比对空... 由于网络结构的复杂性和传输数据的高维特征,空分复用弹性光网络容易受到各种形式的网络攻击,导致网络性能下降。为了有效提升空分复用弹性光网络的安全性,提出一种空分复用弹性光网络中异常入侵行为自动检测方法。利用信息增益比对空分复用弹性光网络的原始数据特征集展开有序排列,运用遗传算法对排列后的特征展开特征选择,组建可疑行为特征集。在可疑行为特征集中,使用自适应密度峰值聚类和反向K近邻,设定簇半径并迭代优化,最终实现空分复用弹性光网络中异常入侵行为自动检测。实验结果表明,所提方法的异常入侵行为自动检出率在99.5%以上,且ROC曲线的面积相对较大。说明所提方法可以显著提升异常入侵行为检测结果的准确性,有效确保网络的稳定运行和数据的安全。 展开更多
关键词 空分复用弹性光网络 异常入侵行为 自动检测 遗传算法 自适应密度峰值聚类
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部