期刊文献+
共找到297篇文章
< 1 2 15 >
每页显示 20 50 100
Three-D numerical simulation of wind-driven current and density current in the Beibu Gulf 被引量:11
1
作者 夏华永 李树华 侍茂崇 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2001年第4期455-472,共18页
The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly... The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round. 展开更多
关键词 The Beibu Gulf Casulli's difference scheme wind-driven current density current
在线阅读 下载PDF
Research on Characteristics of Density Current Under the Action of Waves
2
作者 Li, DS Shen, Y +1 位作者 Ren, RS Chen, Y 《China Ocean Engineering》 SCIE EI 1997年第1期69-78,共10页
In this paper, the characteristics of density current under the action of waves are described with the help of flume experiment and theoretical analysis. The study shows that turbid water under the action of the waves... In this paper, the characteristics of density current under the action of waves are described with the help of flume experiment and theoretical analysis. The study shows that turbid water under the action of the waves can present three types of motion, i. e. significant stratification, fragile stratification and strong mixing. The motion gf turbid;,ater presents significant stratification when (H/D)/root Delta rho/rho less than or equal to 4.5, generally this state is known as density current. The formulas of motion velocity, thickness, and discharge of density current moving on horizontal bottom are derived by use of basic equations such as momemtum equation, equation of energy conservation and continuity equation of fluid. The time-average velocity and the thickness of density current under the action of waves have a relationship with such parameters as relative density (Delta rho/rho), wave height (H), and water depth (D). When these parameters are determined, the time-average thickness and motion velocity of density current are also determined. The relative thickness of density current (D-t/D) decreases with the increase of Delta rho/rho and increases with the increase of H/D. On the other hand, the motion velocity of density current increases with the increase of Delta rho/rho and decreases with the increase of the relative thickness (D-t/D) of density current. It is shown that the calculated results are in agreement with those of the flume experiment. 展开更多
关键词 turbid current density current gravity current wave action motion velocity thickness
在线阅读 下载PDF
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
3
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
Flow stress softening and deformation mechanism under competition of current density and strain rate in basket structured high-entropy alloy
4
作者 Hu-Shan Li Chao-Gang Ding +7 位作者 Hao Zhang Jing-Yi Wang Yu-Xi Chen Zhi-Qin Yang Jie Xu Bin Guo De-Bin Shan Terence G.Langdon 《Rare Metals》 2025年第4期2705-2719,共15页
Electrically assisted forming(EAF)is a reliable method of reducing the deformation resistance of metallic materials and enhancing their formability.In this study,the mechanical properties and microstructure of Al_(0.5... Electrically assisted forming(EAF)is a reliable method of reducing the deformation resistance of metallic materials and enhancing their formability.In this study,the mechanical properties and microstructure of Al_(0.5)CoCrFeNi high-entropy alloy(HEA)under electrically assisted compression(EAC)were investigated.The results showed that the flow stress decreased with increasing current density in the EAC.Specifically,the flow curves exhibited S-shaped softening at a higher current density,which was dominated by the non-uniform distribution of the Joule heating temperature during EAC.When the flow stress was fixed at 500 MPa and 80 A·mm^(−2),compressible deformation amounts of 63.7%were observed at a strain rate of 1 s−1,indicating full compression of Al_(0.5)CoCrFeNi HEA at low-stress levels.Based on the microstructure,the flowability of Al_(0.5)CoCrFeNi HEA was improved during EAC,and the flow direction shifted from 45°to the horizontal direction.The current density,which influences the Joule heating temperature and strain rate,synergistically affects the stacking fault energy(SFE)and critical resolved shear stress(CRSS),which affect the tendency for twinning behavior.Thererfore,deformation nanoscale twins(DTs)were observed,indicating a shift in the deformation mechanisms from dislocation slip domination to a mixed pattern of dislocation slip and twinning.This study confirmed the deformability of Al_(0.5)CoCrFeNi HEA during EAC and provided an experimental foundation and theoretical support for the formation of HEAs. 展开更多
关键词 High-entropy alloys current density Strain rate Flow stress Deformation twins
原文传递
Freestanding lamellar nanoporous Ni-Co-Mn alloy:a highly active and stable 3D bifunctional electrode for high-current-density water splitting
5
作者 Shao-Fei Zhang Lu-Yi Shi +7 位作者 Jin Wang Yue Deng Zhi-Yuan Shen Hao Liu Jin-Feng Sun Tian-Tian Li Zhi-Jia Zhang Jian-Li Kang 《Rare Metals》 2025年第1期275-287,共13页
Retaining satisfactory electrocatalytic performance under high current density plays a crucial role in industrial water splitting but is still limited to the enormous energy loss because of insufficient exposure of ac... Retaining satisfactory electrocatalytic performance under high current density plays a crucial role in industrial water splitting but is still limited to the enormous energy loss because of insufficient exposure of active sites caused by the blocked mass/charge transportation at this condition.Herein,we present a freestanding lamellar nanoporous Ni-Co-Mn alloy electrode(Lnp-NCM)designed by a refined variant of the“dealloying-coarsening-dealloying”protocol for highly efficient bifunctional electrocatalyst,where large porous channels distribute on the surface and small porous channels at the interlayer.With its 3D lamellar architecture regulating,the electrocatalytic properties of the electrodes with different distances between lamellas are compared,and faster energy conversion kinetics is achieved with efficient bubble transport channels and abundant electroactive sites.Note that the optimized sample(Lnp-NCM4)is expected to be a potential bifunctional electrocatalyst with low overpotentials of 258 and 439 mV at high current densities of 1000 and 900 mA·cm^(-2)for hydrogen and oxygen evolution reactions(HER and OER),respectively.During overall water splitting in a two-electrode cell with Lnp-NCM4 as cathode and anode,it only needs an ultralow cell voltage of 1.75 V to produce 100 mA·cm^(-2)with remarkable long-term stability over 50 h.This study on lamellar nanoporous electrode design approaches industrial water splitting requirements and paves a way for developing other catalytic systems. 展开更多
关键词 Lamellar nanoporous structure Bifunctional electrode High current density Electrocatalysis
原文传递
Luminescent target interactions in ICP discharges:a diagnostic method for plasma current density
6
作者 Zhe ZHANG Lujia ZHANG +4 位作者 Huibin ZHENG Jiayun QI Zun ZHANG Xiangyang LIU Haibin TANG 《Plasma Science and Technology》 2025年第6期59-68,共10页
Recently,it has been observed that during the operation of an inductively coupled plasma(ICP),a luminescent target(BAM,BaMgAl10O17:Eu)can interact with the plasma beam and emit blue light.After excluding the influence... Recently,it has been observed that during the operation of an inductively coupled plasma(ICP),a luminescent target(BAM,BaMgAl10O17:Eu)can interact with the plasma beam and emit blue light.After excluding the influence of ultraviolet(UV)and electromagnetic wave radiation,the results indicate that the BAM target may undergo luminescent excitation due to collisions with electrons and ions.This led us to investigate the physical mechanism behind this plasma luminescence excitation phenomenon.A spectrometer was used to record the luminescent spectroscopy and peak light intensity.Under excitation by argon plasma,the BAM material emits a continuum spectrum from 400 nm to 550 nm,with the peak light intensity located at 462.58 nm,which is the same as the spectrum excited by UV torchlight.To identify the relationship between the plasma parameters and the luminescent intensity,Langmuir and Faraday probes were employed to determine the local plasma parameters such as electron density,electron temperature,and current density.After normalizing the peak light intensity to the plasma parameters,the most interesting point is that the current density is linearly correlated with the luminescent light intensity.To verify the repeatability and lifetime of the plasma-luminescence interaction,a 600 s lifetime test was conducted in a 200 W ICP discharge environment.The maximum difference for the peak light strength of the luminescent spectrum is 6.5%.From a voltage bias experiment and a theoretical derivation,we initially identified that bombardment by ions plays the dominant role in the luminescence excitation process,which also explains the mechanism by which the current density is proportional to the luminescence intensity.This new finding leads us to reconsider the possibility of applying this plasma luminescence phenomenon to optical plasma diagnostics.The BAM light intensity can potentially be used to predict the current density of a plasma beam for large-area two-dimensional(2D)measurements and can capture high spatial resolution in a single test.We believe that this method may lead to high-efficiency,spatially resolved plasma current density measurement. 展开更多
关键词 inductively coupled plasma plasma-luminescence excitation current density luminescence intensity
在线阅读 下载PDF
Bridge Layer-Enabled Silicon-Based Photoanode With High Photocurrent Density for Efficient and Stable Water Splitting
7
作者 Shuyang Peng Di Liu +5 位作者 Zhiqin Ying Keyu An Chunfa Liu Weng Fai Ip Kin Ho Lo Hui Pan 《Carbon Energy》 2025年第8期60-68,共9页
Photoelectrochemical(PEC)water splitting holds significant promise for sustainable energy harvesting that enables efficient conversion of solar energy into green hydrogen.Nevertheless,achievement of high performance i... Photoelectrochemical(PEC)water splitting holds significant promise for sustainable energy harvesting that enables efficient conversion of solar energy into green hydrogen.Nevertheless,achievement of high performance is often limited by charge carrier recombination,resulting in unsatisfactory saturation current densities.To address this challenge,we present a novel strategy for achieving ultrahigh current density by incorporating a bridge layer between the Si substrate and the NiOOH cocatalyst in this paper.The optimal photoanode(TCO/n-p-Si/TCO/Ni)shows a remarkably low onset potential of 0.92 V vs.a reversible hydrogen electrode and a high saturation current density of 39.6 mA·cm^(-2),which is about 92.7%of the theoretical maximum(42.7 mA·cm^(-2)).In addition,the photoanode demonstrates stable operation for 60 h.Our systematic characterizations and calculations demonstrate that the bridge layer facilitates charge transfer,enhances catalytic performance,and provides corrosion protection to the underlying substrate.Notably,the integration of this photoanode into a PEC device for overall water splitting leads to a reduction of the onset potential.These findings provide a viable pathway for fabricating highperformance industrial photoelectrodes by integrating a substrate and a cocatalyst via a transparent and conductive bridge layer. 展开更多
关键词 bridge layer high current density photoelectrochemical water splitting silicon-based photoelectrode
在线阅读 下载PDF
BiVO_(4) as a precatalyst for CO_(2) electroreduction to formate at large current density
8
作者 Longsheng Zhan Yuchao Wang +6 位作者 Mengjie Liu Xin Zhao Danni Deng Xinran Zheng Jiabi Jiang Xiang Xiong Yongpeng Lei 《Chinese Chemical Letters》 2025年第3期522-525,共4页
The large current density of electrochemical CO_(2)reduction towards industrial application is challenging.Herein,without strong acid and reductant,the synthesized BiVO_(4)with abundant oxygen vacancies(Ovs)exhibited ... The large current density of electrochemical CO_(2)reduction towards industrial application is challenging.Herein,without strong acid and reductant,the synthesized BiVO_(4)with abundant oxygen vacancies(Ovs)exhibited a high formate Faradaic efficiency(FE)of 97.45%(-0.9 V)and a large partial current density of-45.82 mA/cm^(2)(-1.2 V).The good performance benefits from the reconstruction of BiVO_(4)to generate active metal Bi sites,which results in the electron redistribution to boost the OCHO∗formation.In flow cells,near industrial current density of 183.94 mA/cm^(2)was achieved,with the FE of formate above 95%from 20mA/cm^(2)to 180mA/cm^(2).Our work provides a facily synthesized BiVO_(4)precatalyst for CO_(2)electroreduction. 展开更多
关键词 CO_(2) electroreduction Bismuth vanadate FORMATE Oxygen vacancies Large current density
原文传递
Current density in anomalous Hall effect regime under weak scattering
9
作者 Ning Dai Bin Zhou 《Chinese Physics B》 2025年第7期524-532,共9页
A finite equilibrium current density arises in the anomalous Hall effect(AHE)as a result of time-reversal symmetry breaking,affecting both the differential current density and total current.In this paper,we illustrate... A finite equilibrium current density arises in the anomalous Hall effect(AHE)as a result of time-reversal symmetry breaking,affecting both the differential current density and total current.In this paper,we illustrate the equilibrium current density in a ribbon-shaped system within the AHE regime,consisting of two sets of counterpropagating channels arranged in a zebra stripes pattern.While the middle channels are susceptible to scattering,the edge channels remain relatively robust.Despite this difference,all channels exhibit the same differential current density when subjected to a differential voltage across the two ends of the ribbon.When a differential voltage is applied to both sides of the ribbon,it results in a snaking pattern of differential current density forming across it.Furthermore,in a four-terminal device comprising the ribbon and two normal leads,it is found that Hall conductance is independent of ribbon width within certain scattering strengths due to the differences in robustness between middle and edge channels.These findings disclose the details of the AHE transport in a finite-sized system under weak scattering. 展开更多
关键词 anomalous Hall effect quantum transport current density non-equilibrium Green’s function
原文传递
Thermal strain engineering in cobalt-coordinated Mo_(2)N for efficient ampere-level current density alkaline fresh/seawater hydrogen evolution electrocatalysis
10
作者 Yuwen Hu Meilian Tu +7 位作者 Tuzhi Xiong Yanxiang He Muhammad Mushtaq Hao Yang Zeba Khanam Yongchao Huang Jianqiu Deng M.-Sadeeq Balogun 《Journal of Energy Chemistry》 2025年第4期282-293,共12页
Lattice-strain engineering has demonstrated its capability to influence the electronic structure and catalytic performance of electrocatalysts.Herein,we present a facile method for inducing thermal strain in cobalt/mo... Lattice-strain engineering has demonstrated its capability to influence the electronic structure and catalytic performance of electrocatalysts.Herein,we present a facile method for inducing thermal strain in cobalt/molybdenum nitride rod-shaped structures(denoted Co/Mo_(2)N)via ammonia-assisted reduction,which effectively modulating the HER performance.The optimized Co/Mo_(2)N-500,characterized by 3%tensile lattice strain,demonstrates exceptional HER activity with lower overpotentials of140 mV and 184 mV at high current density of 1000 mA cm^(-2)in alkaline freshwater and seawater electrolytes,respectively.Co/Mo_(2)N also exhibits excellent long-term durability even at a high current density of 300 mA cm^(-2),surpassing its counterparts and benchmark Pt/C catalyst.Density functional theory calculations validate that the tensile strain optimizes the d-band states,water dissociation,and hydrogen adsorption kinetics of the strained Mo_(2)N in Co/Mo_(2)N,thereby improving its catalytic efficacy.This work provides valuable insights into controlling lattice strain to develop highly efficient electrocatalysts towards advanced electrocatalytic applications. 展开更多
关键词 Co/Mo_(2)N Thermal strain engineering Hydrogen evolution reaction Ampere-level current density Seawater splitting
在线阅读 下载PDF
High critical current density in Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12) electrolyte via interfacial engineering with complex hydride 被引量:1
11
作者 Ying-Tong Lv Teng-Fei Zhang +8 位作者 Zhao-Tong Hu Guang-Lin Xia Ze-Ya Huang Zhen-Hua Liu Li-Hua Que Cai-Ting Yuan Fang-Qin Guo Takayuki Ichikawa Xue-Bin Yu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期692-701,共10页
Garnet-type solid-state batteries(SSBs)are considered to be one of the most promising candidates to realize next-generation lithium metal batteries with high energy density and safety.However,the dendrite-induced shor... Garnet-type solid-state batteries(SSBs)are considered to be one of the most promising candidates to realize next-generation lithium metal batteries with high energy density and safety.However,the dendrite-induced short-circuit and the poor interfacial contact impeded the practical application.Herein,interface engineering to achieve low interfacial resistance without high temperature calcination was developed,which Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)was simply coated with complex hydride(Li_(4)(BH_(4))_(3)I(3L1L))in various mass ratios n(Li_(4)(BH_(4))_(3)I)-(100−n)LLZTO(10≤n≤40).The interfacial conductivity increases by more than three orders of magnitude from 8.29×10^(−6)S·cm^(−1)to 1.10×10^(−2)S·cm^(−1).Symmetric Li cells exhibit a high critical current density(CCD)of 4.0 mA·cm^(−2) and an excellent cycling stability for 200 h at 4.0 mA·cm^(−2).SSBs with polymeric sulfur-polyacrylonitrile(SPAN)cathode achieve a high discharge capacity of 1149 mAh·g^(−1) with a capacity retention of 91%after 100 cycles(0.2 C).This attempt guides a simple yet efficient strategy for obtaining a stable Li/LLZTO interface,which would promote the development of solid-state batteries. 展开更多
关键词 Hydrides Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO) Critical current density Solid-state electrolytes(SSEs) Lithium-sulfur batteries
原文传递
Thermal-driven gigantic enhancement in critical current density of high-entropy alloy superconductors
12
作者 Jihyun Kim Soon-Gil Jung +4 位作者 Yoonseok Han Jin Hee Kim Jong-Soo Rhyee Sunmog Yeo Tuson Park 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第22期60-67,共8页
The high-entropy alloy(HEA)superconductor,Ta_(1/6)Nb_(2/6)Hf_(1/6)Zr_(1/6)Ti_(1/6)(Ta-Nb-Hf-Zr-Ti),is systematically studied to examine changes in superconducting critical properties,critical temperature(T_(c)),critic... The high-entropy alloy(HEA)superconductor,Ta_(1/6)Nb_(2/6)Hf_(1/6)Zr_(1/6)Ti_(1/6)(Ta-Nb-Hf-Zr-Ti),is systematically studied to examine changes in superconducting critical properties,critical temperature(T_(c)),critical cur-rent density(J_(c)),and upper critical field(H_(c2)),concerning thermal treatment conditions.Annealing condi-tion affects Jc more significantly than T_(c)and H_(c2),with a large improvement of flux pinning force density(F_(p)).The Jc of bare sample is reduced to 10 A cm^(-2)at an applied magnetic field of approximately 1.5 T,whereas the sample annealed at 550℃for 12 h exhibits J_(c)>100 kA cm^(-2)up to around 4 T.Furthermore,the Vickers hardness(HVIT)of the Ta-Nb-Hf-Zr-Ti HEA superconductor notably increases from∼384 to 528 HVIT following a 24-h annealing at 500℃.These results demonstrate that thermal annealing is a powerful process to optimize both the superconducting and mechanical properties of high-entropy alloy superconductors. 展开更多
关键词 High-entropy alloy superconductor Ta-Nb-Hf-Zr-Ti ANNEALING Critical current density HARDNESS
原文传递
Influence of Current Density on the Photocatalytic Activity of Nd:TiO_(2) Coatings
13
作者 施渊吉 ZHANG Zhen +2 位作者 DAI Yunzhong LI Jingxiao CHEN Zeyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期32-38,共7页
The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on... The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on quantity and increased on scale with the increasing current density.AFM results revealed that the roughness of the coatings increased with the increasing current density.Phase and composition analysis showed that the Nd:TiO_(2) coatings were mainly composed of anatase and rutile phase.And the anatase phase content has reached the maximum value at the current density of 250 m A/cm^(2).XPS results indicated that Ti2p spin-orbit components of the Nd:TiO_(2) coatings are shifted towards higher binding energy,compared with the pure TiO_(2) coating,suggesting that some of the Nd^(3+)ions are combined with TiO_(2) lattice and led to dislocation.Photocatalytic test showed that the photocatalytic activity of Nd:TiO_(2) coatings varied in the same pattern with the anatase content variation in Nd:TiO_(2) coatings.The photocatalytic experiment results show that the photocatalytic activity of Nd:TiO_(2) coatings can be greatly enhanced with moderate amount of Nd^(3+).However,excessive amount of Nd^(3+)does not have an effective impact on the photoctalytic activity improvement. 展开更多
关键词 PEO current density AFM XPS Nd:TiO_(2) PHOTOCATALYTIC
原文传递
Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density:A review
14
作者 Zhipeng Li Xiaobin Liu +5 位作者 Qingping Yu Xinyue Qu Jun Wan Zhenyu Xiao Jingqi Chi Lei Wang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期33-60,共28页
The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past... The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER. 展开更多
关键词 ELECTROCATALYST High current density Hydrogen evolution reaction Water electrolysis
在线阅读 下载PDF
Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad–Shafranov solutions across multiple tokamaks
15
作者 张瀚予 周利娜 +6 位作者 刘钺强 郝广周 王硕 杨旭 苗雨田 段萍 陈龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期17-28,共12页
Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that... Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density. 展开更多
关键词 plasma equilibrium deep learning safety factor profile current density profile TOKAMAK
在线阅读 下载PDF
A review of efficient electrocatalysts for the oxygen evolution reaction at large current density
16
作者 Youtao Yao Jiahui Lyu +5 位作者 Xingchuan Li Cheng Chen Francis Verpoort John Wang Zhenghui Pan Zongkui Kou 《DeCarbon》 2024年第3期24-40,共17页
Within the framework of achieving global carbon neutrality,utilizing electrocatalytic water splitting to produce“green hydrogen”holds significant promise as an effective solution.The strategic development of economi... Within the framework of achieving global carbon neutrality,utilizing electrocatalytic water splitting to produce“green hydrogen”holds significant promise as an effective solution.The strategic development of economic,efficient,and robust anode oxygen evolution reaction(OER)catalysts is one of the imminent bottlenecks for scalable application of electrolyzing water into hydrogen and oxygen,particularly under actual yet harsh operating conditions such as large current density(LCD).In this review,we intend to summarize the advances and challenges in the understanding of the electrocatalytic OER at LCD.Initially,the impact of LCD on the electron transfer,mass transportation efficiency and catalyst stability is identified and summarized.Furthermore,five basic principles for catalyst design,namely the dimension of the materials,surface chemistry,creation of electron transfer pathways,synergy among nano-,micro-,and macroscale structures,and catalyst-support interaction,are systematically discussed.Specifically,the correlation between the synergistic function of the multiscale structures and the catalyst-support interaction is highlighted to direct improvements in catalyst efficiency and durability at the LCD.Finally,an outlook is prospected to further our understanding of these topics and provide related researchers with potential research areas. 展开更多
关键词 Oxygen evolution reaction ELECTROCATALYST Large current density Green hydrogen Water splitting
在线阅读 下载PDF
Effects of current density on microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy 被引量:10
17
作者 项南 宋仁国 +3 位作者 庄俊杰 宋若希 陆筱雅 苏旭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期806-813,共8页
Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density o... Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings. 展开更多
关键词 6063 aluminum alloy ceramic coating plasma electrolytic oxidation(PEO) current density MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Effects of current density on preparation and performance of Al/conductive coating/α-PbO_2-Ce O_2-TiO_2/β-Pb O_2-MnO_2-WC-ZrO_2 composite electrode materials 被引量:1
18
作者 杨海涛 陈步明 +5 位作者 郭忠诚 刘焕荣 张永春 黄惠 徐瑞东 付仁春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3394-3404,共11页
Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique... Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique. The effects of current density on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated by energy dispersive X-ray spectroscopy(EDXS), anode polarization curves, quasi-stationary polarization(Tafel) curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). Results reveal that the composite electrode obtained at 1 A/dm2 possesses the lowest overpotential(0.610 V at 500 A/m2) for oxygen evolution, the best electrocatalytic activity, the longest service life(360 h at 40 °C in 150 g/L H2SO4 solution under 2 A/cm2), and the lowest cell voltage(2.75 V at 500 A/m2). Furthermore, with increasing current density, the coating exhibits grain growth and the decrease of content of Mn O2. Only a slight effect on crystalline structure is observed. 展开更多
关键词 composite electrode material A1 substrate β-PbO2-MnO2-WC-ZrO2 electrochemical co-deposition current density
在线阅读 下载PDF
A DBRTD with a High PVCR and a Peak Current Density at Room Temperature
19
作者 易里成荣 谢常青 +2 位作者 王从舜 刘明 叶甜春 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第10期1871-1874,共4页
AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs double-barrier resonant tunneling diodes (DBRTDs) grown on a semi-insulated GaAs substrate with molecular beam epitaxy is demonstrated. By sandwiching the In0.1 Ga0.9 As layer betwee... AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs double-barrier resonant tunneling diodes (DBRTDs) grown on a semi-insulated GaAs substrate with molecular beam epitaxy is demonstrated. By sandwiching the In0.1 Ga0.9 As layer between GaAs layers, potential wells beside the two sides of barrier are deepened, resulting in an increase of the peak-to-valley current ratio (PVCR) and a peak current density. A special shape of collector is designed in order to reduce contact resistance and non-uniformity of the current;as a result the total chrrent density in the device is increased. The use of thin barriers is also helpful for the improvement of the PVCR and the peak current density in DBRTDs. The devices exhibit a maximum PVCR of 13.98 and a peak current density of 89kA/cm^2 at room temperature. 展开更多
关键词 resonant tunneling diode peak-to-valley current ratio peak current density
在线阅读 下载PDF
Effect of current density on corrosion resistance of micro-arc oxide coatings on magnesium alloy 被引量:13
20
作者 杨悦 吴化 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期688-692,共5页
Oxide coatings were prepared on magnesium alloys in electrolyte solution of Na2SiO3 at different current densities(3,4 and 5 A/cm 2 )with micro-arc oxidation process.X-ray diffractometry(XRD)results show that the oxid... Oxide coatings were prepared on magnesium alloys in electrolyte solution of Na2SiO3 at different current densities(3,4 and 5 A/cm 2 )with micro-arc oxidation process.X-ray diffractometry(XRD)results show that the oxide coatings formed on magnesium alloys are mainly composed of MgO and MgAl2O4 phases;in addition,the content of MgO increases with increasing the current density.The morphology and surface roughness of the coatings were characterized by confocal laser scanning microscopy (CLSM).The results show that the surface roughness(Ra)decreases with increasing the current density.Moreover,the electrochemical corrosion results prove that the MgO coating produced in the electrolyte Na2SiO3 at current density of 5 A/cm 2 shows the best corrosion resistance. 展开更多
关键词 magnesium alloy micro-arc oxidation current density corrosion resistance
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部