Although traditional gamma-gamma density(GGD)logging technology is widely utilized,its potential environmental risks have prompted the development of more environmentally friendly neutron-gamma density(NGD)logging tec...Although traditional gamma-gamma density(GGD)logging technology is widely utilized,its potential environmental risks have prompted the development of more environmentally friendly neutron-gamma density(NGD)logging technology.However,NGD measurements are influenced by both neutron and gamma radiations.In the logging environment,variations in the formation composition indicate different elemental compositions,which affect the neutron-gamma reaction cross-sections and gamma generation.Compared to traditional gamma sources such as Cs-137,these changes significantly affect the generation and transport of neutron-induced inelastic gamma rays and hinder accurate measurements.To address this,a novel method is proposed that incorporates the mass attenuation coefficient function to account for the effects of various lithologies and pore contents on gamma-ray attenuation,thereby achieving more accurate density measurements by clarifying the transport processes of inelastic gamma rays with varying energies and spatial distributions in varied logging environments.The proposed method avoids the complex correction of neutron transport and is verified through Monte Carlo simulations for its applicability across various lithologies and pore contents,demonstrating absolute density errors that are less than 0.02 g/cm^(3)in clean formations and indicating good accuracy.This study clarifies the NGD mechanism and provides theoretical guidance for the application of NGD logging methods.Further studies will be conducted on extreme environmental conditions and tool calibration.展开更多
Atomic spin gyroscopes are promising candidates for next-generation inertial navigation due to extremely high theoretical precision,relatively small size among atomic gyroscopes,and promising potential for miniaturiza...Atomic spin gyroscopes are promising candidates for next-generation inertial navigation due to extremely high theoretical precision,relatively small size among atomic gyroscopes,and promising potential for miniaturization.In particular,the spin-exchange relaxation-free(SERF)atomic gyroscope relies on optical pumping to polarize atoms,enabling rotation sensing through the Faraday optical rotation angle(FORA).However,fluctuations in atomic density introduce systematic errors in FORA measurements,limiting long-term stability.We present a data-driven decoupling method that isolates atomic density fluctuations from the FORA signal by modeling spatially resolved light absorption in the vapor cell.The model accounts for the spatial distribution of spin polarization in the pump-light interaction volume,density-dependent relaxation rates,wall-induced relaxation,and polarization diffusion,and is implemented within a finite-element framework.Compared to the conventional Lambert-Beer law,which assumes one-dimensional homogeneity,our approach captures the full threedimensional density and polarization distribution,significantly improving the accuracy of light absorption modeling.The resulting absorption-density maps are used to train a feedforward neural network,yielding a high-precision estimator for atomic density fluctuations.This estimator enables the construction of a decoupling equation that separates the density contribution from the FORA signal.Experimental validation shows that this method improves the bias instability atσ(100 s)of the gyroscope was improved by 73.1%compared to traditional platinum-resistance-based stabilization.The proposed framework is general and can be extended to other optical pumping-based sensors,such as optically pumped magnetometers.展开更多
In this study,we analyze the impact of the May 2024 geomagnetic storm on the thermospheric mass density by using TianMu-1 constellation satellite(TM02,TM06,TM07,TM11,TM15)observations.These observations reveal intense...In this study,we analyze the impact of the May 2024 geomagnetic storm on the thermospheric mass density by using TianMu-1 constellation satellite(TM02,TM06,TM07,TM11,TM15)observations.These observations reveal intense large-scale traveling atmospheric disturbances(TADs)originating at high latitudes and propagating equatorward.Observations by TM02 captured the evolution of a TAD structure:An initial amplitude of~3.89×10^(-12)kg/m^(3)at hundred-kilometer scale subsequently intensified to 4.78×10^(-12)kg/m^(3),with the spatial extent expanding to the thousand-kilometer level.Significant hemispheric asymmetry was observed:the absolute density was higher predominantly in the northern hemisphere(TM02,TM06,TM07,TM11),whereas the difference in the relative density consistently showed greater enhancements in the southern hemisphere across all satellites,with the maximum north-south density differences exceeding 195%-640%above 60°latitude.In conjunction with SuperDARN(Super Dual Auroral Radar Network)observations,this striking hemispheric asymmetry can likely be attributed to disparities in plasma convection patterns between the two hemispheres.Furthermore,density perturbation characteristics exhibited strong local time(LT)dependence:Near noon(~10.7 LT,TM02 descending),the northern hemisphere onset preceded the southern onset.Conversely,near dusk(~17.6 LT,TM15 descending),the southern onset led the northern onset by approximately 3 hours.Ascending orbits(TM02,TM06,TM07,TM15)typically yielded larger global density enhancements compared with smaller southern-confined enhancements during descending orbits.Satellite TM11 showed comparable perturbations in both ascending and descending orbits.By leveraging its unique orbital architecture,the TianMu-1 constellation enables global near-simultaneous multi-LT sampling,providing a robust data foundation for both scientific research and engineering applications.展开更多
Charge density wave,a periodic modulation of electronic charge density often accompanied by a periodic lattice distortion,plays a vital role to induce exotic phenomena in condensed matter physics.In non-magnetic quant...Charge density wave,a periodic modulation of electronic charge density often accompanied by a periodic lattice distortion,plays a vital role to induce exotic phenomena in condensed matter physics.In non-magnetic quantum materials,contrast inversion in scanning tunneling microscopy images,observed between opposite bias polarity,serves as a hallmark of the charge density wave.However,in itinerant ferromagnetic systems,charge density wave formation competes with magnetism:A charge density wave order typically reduces the density of states at the Fermi level,while the Stoner criterion for spontaneous spin polarization requires a high density of states at Fermi level.Therefore,direct real-space observation of such polarity-dependent contrast inversion in ferromagnetic materials remains elusive and experimentally challenging.Here,we demonstrate the observation of a charge density wave in itinerant ferromagnet Fe_(5)GeTe_(2) associated with √3×√3 superlattice,revealed through polarity-dependent scanning tunneling microscopy imaging.Importantly,we observe a gap-like dip at the Fermi level in tunneling spectra,serving additional evidence for the emergence of charge density wave in Fe_(5)GeTe_(2).Interestingly,the strength of charge modulation can be systematically tuned by Fe1 vacancies and impurities,while the spectroscopic intensity shows a high sensitivity to surface degradation.Our finding provides an inspiring insight to charge density wave on the van der Waals ferromagnetic materials.展开更多
The complexity/performance balanced decoder for low-density parity-check (LDPC) codes is preferred in practical wireless communication systems. A low complexity LDPC decoder for the Consultative Committee for Space ...The complexity/performance balanced decoder for low-density parity-check (LDPC) codes is preferred in practical wireless communication systems. A low complexity LDPC decoder for the Consultative Committee for Space Data Systems (CCSDS) standard is achieved in DSP. An ap- proximate decoding algorithm, normalized rain-sum algorithm, is used in the implementation for its low amounts of computation. To reduce the performance loss caused by the approximation, the pa- rameters of the normalized min-sum algorithm are determined by calculating and finding the mini- mum value of thresholds through density evolution. The minimum value which indicates the best per- formance of the decoding algorithm is corresponding with the optimized parameters. In implementa- tion, the memory cost is saved by decomposing the parity-check matrix into submatrices to store and the computation of passing message in decoding is accelerated by using the intrinsic function of DSP. The performance of the decoder with optimized factors is simulated and compared with the ideal BP decoder. The result shows they have about the same performance.展开更多
Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop mor...Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.展开更多
The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered...The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements.展开更多
With the increasing demand for controllable source logging,research on data-processing algorithms that meet accuracy requirements has become key to the development of controllable-source-logging tools.This study theor...With the increasing demand for controllable source logging,research on data-processing algorithms that meet accuracy requirements has become key to the development of controllable-source-logging tools.This study theoretically derives the relationship between the formation density and inelastic gamma count rate to investigate the data-processing methods for deuterium–tritium(D–T)source neutron-gamma density logging while drilling.Then,algorithms for the net inelastic gamma count-rate extraction and neutron transport correction are studied using Monte Carlo simulations.A new method for fast-neutron effect identification and additional correction is proposed to improve the density-calculation accuracy of gas-filled and heavy-mineral formations.Finally,the effectiveness and accuracy of the proposed data-processing methods are verified based on simulated and measured data.The results show that the density-calculation accuracy of water-bearing conventional formations in simulated data is±0.02 g/cm^(3).The accuracy of gas-filled and heavy-mineral formations after the additional fast-neutron effect correction is±0.025 g/cm^(3).For the measured data from the actual tool,the algorithms perform well in the density calculation.The density results obtained using the processing algorithms are consistent with the density data provided by NeoScope.Therefore,the D–T source neutron-gamma density-logging algorithms proposed in this study can obtain relatively accurate data-processing results for a variety of formations.This study provides technical support for engineering applications and the development of logging tools for controllable-source neutron-density logging.展开更多
Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer charact...Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer characteristics to introduce new technologies for indirectly sensing the presence of aircraft.In this paper,the concept of a long-range aircraft detection based on the atmospheric disturbance density field is proposed,and the detection mode of tomographic imaging of the scattering light of an atmospheric disturbance flow field is designed.By modeling the spatial distribution of the disturbance density field,the scattered echo signal images of active light towards the disturbance field at long distance are simulated.On this basis,the characteristics of the disturbance optical signal at the optimal detection resolution are analyzed.The results show that the atmospheric disturbance flow field of the supersonic aircraft presents circular in the light-scattering echo images.The disturbance signal can be further highlighted by differential processing of the adjacent scattering images.As the distance behind the aircraft increases,the diffusion range of the disturbance signal increases,and the signal intensity and contrast with the background decrease.Under the ground-based observation conditions of the aircraft at a height of 10000 m,a Mach number of1.6,and a detection distance of 100 km,the contrast between the disturbance signal and the back-ground was 30 d B at a distance of one time from the rear of the fuselage,and the diffusion diameter of the disturbance signal was 50 m.At a distance eight times the length of the aircraft,the contrast decreased to 10 dB,and the diameter increased to 290 m.The contrast was reduced to 3 dB at a distance nine times the length of the aircraft,and the diameter was diffused to 310 m.These results indicate the possibility of long-range aircraft detection based on the characteristics of the atmospheric density field.展开更多
Pascoflair? 425 mg is a herbal drug based on Passiflora incarnata dry extract and is registered in different countries for the treatment of nervous restlessness and anxiety and also as an aid to sleep. The study was i...Pascoflair? 425 mg is a herbal drug based on Passiflora incarnata dry extract and is registered in different countries for the treatment of nervous restlessness and anxiety and also as an aid to sleep. The study was initiated for the quantitative assessment of the effect of this preparation on brain electric activity and cognition in human volunteers. Quantitative electroencephalographic current source density (CSD) from 16 healthy male and female human volunteers (average age 49 years) was used in a randomized, placebo-controlled crossover study. Data were taken 0.5, 1.5, 3 and 4 hours after administration of the preparations under the conditions of 6 minutes eyes open, 5 minutes d2 concentration test, mathematical calculation test and memory test respectively. During mental load, changes in spectral band power were used to analyse drug-induced effects. All variables were fed into a linear discriminant analysis (LDA) for comparison with other drug profiles. Spectral power in the delta and theta range was significantly attenuated at 3 and 4 hours after administration in comparison with the time-dependent increase normally observed due to circadian rhythm. Discriminant analysis revealed a difference to placebo for all recordings as early as 30 minutes after intake of 3 coated tablets of Pascoflair? 425 mg. Using LDA data location within the poly-dimensional space, verum was projected into the area of the effects of Gingko/Ginseng as reference drugs tested earlier under identical conditions. Psychometric performance was not disrupted. Pascoflair? 425 mg can be regarded as a well characterized plant-derived drug with anxiolytic and calming properties without negative sedative and cognition-attenuating side effects. Current results document the effecttiveness of the preparation as early as after 30 minutes. In addition, they indicate persistence of good mental performance for hours. Trial registration: the study has been registered at ClinicalTrials.gov under NCT01047605.展开更多
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free r...BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical...ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools.展开更多
High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding d...High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding density measurement,differential scanning calorimetry(DSC),photoluminescence(PL)spectroscopy,X-ray excited luminescence(XEL)spectroscopy,and fluorescence decay analysis.The densities of the germanate glasses were greater than 6.1 g/cm^(3).Upon excitations of ultraviolet(UV)light and X-rays,the glasses emitted in-tense green emissions.The fluorescence lifetime of the strongest emission peak at 544 nm,measured under 377 nm excitation,ranged from 1.52 ms to 1.32 ms.In the glass specimens,the maximum XEL integral intensity reached roughly 26%of that of the commercially available Bi_(4)Ge_(3)O_(12)(BGO)crystal.These results indicate that Tb^(3+)-doped high-density germanate scintillating glasses hold potential as scintillation materials for X-ray imaging applications.展开更多
Background:Previously,a chronic social defeat stress(CSDS)model has been widely-adopted for assessing depressive-like behaviors in animals.However,there is still room for improvement in the CSDS model to safeguard stu...Background:Previously,a chronic social defeat stress(CSDS)model has been widely-adopted for assessing depressive-like behaviors in animals.However,there is still room for improvement in the CSDS model to safeguard study accuracy and the wel-fare of lab rodents.Our study team developed a novel,standardized apparatus to induce CSDS in rodents and assessed the model's practical adaptability.Methods:An innovative CSDS cage apparatus and water bottle was designed.To evaluate the effectiveness of the newly developed tools,a variety of animal models,including the tail suspension test(TST),sucrose preference test,forced swimming test(FST),novelty-suppressed feeding test,female urine sniffing test,and open field test(OFT),were adopted to assess depressive-like behaviors in mice.Fluoxetine treat-ment was also administered to observe the reversal effect,as part of the validation.Results:The CSDS cage apparatus resulted in the manifestation of depressive-like behaviors in the model mice.Significant reductions in sucrose preference and urine sniffing time were observed,while the OFT revealed decreased central zone total distance,residence time,and frequency of entry.Moreover,increased immobility was found in the FST and TST.Fluoxetine treatment was found to successfully reverse the modeling effect.Conclusion:The CSDS cage apparatus was validated for enhanced usability and ad-dressed the previous challenges of water bottle leakage and lab rodent welfare is-sues.The consistent results from multiple behavioral tests also supported real-world application of the apparatus,offering researchers a promising alternative to conven-tional rodent cages.展开更多
We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic ligh...We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.展开更多
By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pr...By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.展开更多
基金supported by the National Natural Science Foundation of China(U23B20151 and 52171253).
文摘Although traditional gamma-gamma density(GGD)logging technology is widely utilized,its potential environmental risks have prompted the development of more environmentally friendly neutron-gamma density(NGD)logging technology.However,NGD measurements are influenced by both neutron and gamma radiations.In the logging environment,variations in the formation composition indicate different elemental compositions,which affect the neutron-gamma reaction cross-sections and gamma generation.Compared to traditional gamma sources such as Cs-137,these changes significantly affect the generation and transport of neutron-induced inelastic gamma rays and hinder accurate measurements.To address this,a novel method is proposed that incorporates the mass attenuation coefficient function to account for the effects of various lithologies and pore contents on gamma-ray attenuation,thereby achieving more accurate density measurements by clarifying the transport processes of inelastic gamma rays with varying energies and spatial distributions in varied logging environments.The proposed method avoids the complex correction of neutron transport and is verified through Monte Carlo simulations for its applicability across various lithologies and pore contents,demonstrating absolute density errors that are less than 0.02 g/cm^(3)in clean formations and indicating good accuracy.This study clarifies the NGD mechanism and provides theoretical guidance for the application of NGD logging methods.Further studies will be conducted on extreme environmental conditions and tool calibration.
基金supported by the Beijing Natural Science Foundation(Grant No.3252013)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300402)+1 种基金the National Natural Science Foundation of China(Grant No.61673041)Key Area Research and Development Program of Guangdong Province(Grant No.2021B0101410005)。
文摘Atomic spin gyroscopes are promising candidates for next-generation inertial navigation due to extremely high theoretical precision,relatively small size among atomic gyroscopes,and promising potential for miniaturization.In particular,the spin-exchange relaxation-free(SERF)atomic gyroscope relies on optical pumping to polarize atoms,enabling rotation sensing through the Faraday optical rotation angle(FORA).However,fluctuations in atomic density introduce systematic errors in FORA measurements,limiting long-term stability.We present a data-driven decoupling method that isolates atomic density fluctuations from the FORA signal by modeling spatially resolved light absorption in the vapor cell.The model accounts for the spatial distribution of spin polarization in the pump-light interaction volume,density-dependent relaxation rates,wall-induced relaxation,and polarization diffusion,and is implemented within a finite-element framework.Compared to the conventional Lambert-Beer law,which assumes one-dimensional homogeneity,our approach captures the full threedimensional density and polarization distribution,significantly improving the accuracy of light absorption modeling.The resulting absorption-density maps are used to train a feedforward neural network,yielding a high-precision estimator for atomic density fluctuations.This estimator enables the construction of a decoupling equation that separates the density contribution from the FORA signal.Experimental validation shows that this method improves the bias instability atσ(100 s)of the gyroscope was improved by 73.1%compared to traditional platinum-resistance-based stabilization.The proposed framework is general and can be extended to other optical pumping-based sensors,such as optically pumped magnetometers.
基金funded by the TianMu-1 Constellation Atmospheric Density Detector(Grant No.E3C1162110).
文摘In this study,we analyze the impact of the May 2024 geomagnetic storm on the thermospheric mass density by using TianMu-1 constellation satellite(TM02,TM06,TM07,TM11,TM15)observations.These observations reveal intense large-scale traveling atmospheric disturbances(TADs)originating at high latitudes and propagating equatorward.Observations by TM02 captured the evolution of a TAD structure:An initial amplitude of~3.89×10^(-12)kg/m^(3)at hundred-kilometer scale subsequently intensified to 4.78×10^(-12)kg/m^(3),with the spatial extent expanding to the thousand-kilometer level.Significant hemispheric asymmetry was observed:the absolute density was higher predominantly in the northern hemisphere(TM02,TM06,TM07,TM11),whereas the difference in the relative density consistently showed greater enhancements in the southern hemisphere across all satellites,with the maximum north-south density differences exceeding 195%-640%above 60°latitude.In conjunction with SuperDARN(Super Dual Auroral Radar Network)observations,this striking hemispheric asymmetry can likely be attributed to disparities in plasma convection patterns between the two hemispheres.Furthermore,density perturbation characteristics exhibited strong local time(LT)dependence:Near noon(~10.7 LT,TM02 descending),the northern hemisphere onset preceded the southern onset.Conversely,near dusk(~17.6 LT,TM15 descending),the southern onset led the northern onset by approximately 3 hours.Ascending orbits(TM02,TM06,TM07,TM15)typically yielded larger global density enhancements compared with smaller southern-confined enhancements during descending orbits.Satellite TM11 showed comparable perturbations in both ascending and descending orbits.By leveraging its unique orbital architecture,the TianMu-1 constellation enables global near-simultaneous multi-LT sampling,providing a robust data foundation for both scientific research and engineering applications.
基金the support by the National Key Research and Development Program of China(No.2024YFA1408104(H.T.Y.))the National Natural Science Foundation of China(Nos.92365203(H.T.Y.),U24A6002(H.T.Y.),12104238(Y.F.L.),and U21A2085(Z.Y.L.(Zhongyuan Liu))+2 种基金Innovation Program for Quantum Science and Technology(No.2021ZD0302502(H.T.Y.))the Natural Science Foundation of Jiangsu Province(Nos.BK20253012(H.T.Y.),BK20233001(H.T.Y.),BK20243011(H.T.Y.),and BK20253027(Y.F.L.))the support from the Jiangsu Key Laboratory of Artificial Functional Materials.
文摘Charge density wave,a periodic modulation of electronic charge density often accompanied by a periodic lattice distortion,plays a vital role to induce exotic phenomena in condensed matter physics.In non-magnetic quantum materials,contrast inversion in scanning tunneling microscopy images,observed between opposite bias polarity,serves as a hallmark of the charge density wave.However,in itinerant ferromagnetic systems,charge density wave formation competes with magnetism:A charge density wave order typically reduces the density of states at the Fermi level,while the Stoner criterion for spontaneous spin polarization requires a high density of states at Fermi level.Therefore,direct real-space observation of such polarity-dependent contrast inversion in ferromagnetic materials remains elusive and experimentally challenging.Here,we demonstrate the observation of a charge density wave in itinerant ferromagnet Fe_(5)GeTe_(2) associated with √3×√3 superlattice,revealed through polarity-dependent scanning tunneling microscopy imaging.Importantly,we observe a gap-like dip at the Fermi level in tunneling spectra,serving additional evidence for the emergence of charge density wave in Fe_(5)GeTe_(2).Interestingly,the strength of charge modulation can be systematically tuned by Fe1 vacancies and impurities,while the spectroscopic intensity shows a high sensitivity to surface degradation.Our finding provides an inspiring insight to charge density wave on the van der Waals ferromagnetic materials.
基金Supported by the National Natural Science Foundation of China (61205116)
文摘The complexity/performance balanced decoder for low-density parity-check (LDPC) codes is preferred in practical wireless communication systems. A low complexity LDPC decoder for the Consultative Committee for Space Data Systems (CCSDS) standard is achieved in DSP. An ap- proximate decoding algorithm, normalized rain-sum algorithm, is used in the implementation for its low amounts of computation. To reduce the performance loss caused by the approximation, the pa- rameters of the normalized min-sum algorithm are determined by calculating and finding the mini- mum value of thresholds through density evolution. The minimum value which indicates the best per- formance of the decoding algorithm is corresponding with the optimized parameters. In implementa- tion, the memory cost is saved by decomposing the parity-check matrix into submatrices to store and the computation of passing message in decoding is accelerated by using the intrinsic function of DSP. The performance of the decoder with optimized factors is simulated and compared with the ideal BP decoder. The result shows they have about the same performance.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD0403305)National Natural Science Foundation of China(32101845)+1 种基金the National Key Research and Development Program of China(2023YFE0105000)the China Agriculture Research System(CARS-04).
文摘Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.
基金National Natural Science Foundation of China(52104294)Fundamental Research Funds for the Central Universities(FRF-TP-19-079A1)。
文摘The soaring demand for smart portable electronics and electric vehicles is propelling the advancements in high-energy–density lithium-ion batteries.Lithium manganese iron phosphate(LiMn_(x)Fe_(1-x)PO_(4))has garnered significant attention as a promising positive electrode material for lithium-ion batteries due to its advantages of low cost,high safety,long cycle life,high voltage,good high-temperature performance,and high energy density.Although LiMn_(x)Fe_(1-x)PO_(4)has made significant breakthroughs in the past few decades,there are still facing great challenges in poor electronic conductivity and Li-ion diffusion,manganese dissolution affecting battery cycling performance,as well as low tap density.This review systematically summarizes the reaction mechanisms,various synthesis methods,and electrochemical properties of LiMn_(x)Fe_(1-x)PO_(4)to analyze reaction processes accurately and guide material preparation.Later,the main challenges currently faced are concluded,and the corresponding various modification strategies are discussed to enhance the reaction kinetics and electrochemical performance of LiMn_(x)Fe_(1-x)PO_(4),including multi-scale particle regulation,heteroatom doping,surface coating,as well as microscopic morphology design.Finally,in view of the current research challenges faced by intrinsic reaction processes,kinetics,and energy storage applications,the promising research directions are anticipated.More importantly,it is expected to provide key insights into the development of high-performance and stable LiMn_(x)Fe_(1-x)PO_(4)materials,to achieve practical energy storage requirements.
基金supported by the Natural Science Foundation of Shandong(ZR2022MD019)Technology Development Project of China Oilfield Services Limited(G2317A-0414T077)+3 种基金Science and Technology Project of China National O shore Oil Corporation(CNOOC-KJ GJHXJSGG YF 2022-01)Open Fund Project of CNPC Logging(CNLC2022-9C06)Fundamental Research Foundation for Central Universities(22CX01001A-2)China National Petroleum Corporation Scientific Research and Technology Development Project(2021DJ3801)。
文摘With the increasing demand for controllable source logging,research on data-processing algorithms that meet accuracy requirements has become key to the development of controllable-source-logging tools.This study theoretically derives the relationship between the formation density and inelastic gamma count rate to investigate the data-processing methods for deuterium–tritium(D–T)source neutron-gamma density logging while drilling.Then,algorithms for the net inelastic gamma count-rate extraction and neutron transport correction are studied using Monte Carlo simulations.A new method for fast-neutron effect identification and additional correction is proposed to improve the density-calculation accuracy of gas-filled and heavy-mineral formations.Finally,the effectiveness and accuracy of the proposed data-processing methods are verified based on simulated and measured data.The results show that the density-calculation accuracy of water-bearing conventional formations in simulated data is±0.02 g/cm^(3).The accuracy of gas-filled and heavy-mineral formations after the additional fast-neutron effect correction is±0.025 g/cm^(3).For the measured data from the actual tool,the algorithms perform well in the density calculation.The density results obtained using the processing algorithms are consistent with the density data provided by NeoScope.Therefore,the D–T source neutron-gamma density-logging algorithms proposed in this study can obtain relatively accurate data-processing results for a variety of formations.This study provides technical support for engineering applications and the development of logging tools for controllable-source neutron-density logging.
文摘Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer characteristics to introduce new technologies for indirectly sensing the presence of aircraft.In this paper,the concept of a long-range aircraft detection based on the atmospheric disturbance density field is proposed,and the detection mode of tomographic imaging of the scattering light of an atmospheric disturbance flow field is designed.By modeling the spatial distribution of the disturbance density field,the scattered echo signal images of active light towards the disturbance field at long distance are simulated.On this basis,the characteristics of the disturbance optical signal at the optimal detection resolution are analyzed.The results show that the atmospheric disturbance flow field of the supersonic aircraft presents circular in the light-scattering echo images.The disturbance signal can be further highlighted by differential processing of the adjacent scattering images.As the distance behind the aircraft increases,the diffusion range of the disturbance signal increases,and the signal intensity and contrast with the background decrease.Under the ground-based observation conditions of the aircraft at a height of 10000 m,a Mach number of1.6,and a detection distance of 100 km,the contrast between the disturbance signal and the back-ground was 30 d B at a distance of one time from the rear of the fuselage,and the diffusion diameter of the disturbance signal was 50 m.At a distance eight times the length of the aircraft,the contrast decreased to 10 dB,and the diameter increased to 290 m.The contrast was reduced to 3 dB at a distance nine times the length of the aircraft,and the diameter was diffused to 310 m.These results indicate the possibility of long-range aircraft detection based on the characteristics of the atmospheric density field.
文摘Pascoflair? 425 mg is a herbal drug based on Passiflora incarnata dry extract and is registered in different countries for the treatment of nervous restlessness and anxiety and also as an aid to sleep. The study was initiated for the quantitative assessment of the effect of this preparation on brain electric activity and cognition in human volunteers. Quantitative electroencephalographic current source density (CSD) from 16 healthy male and female human volunteers (average age 49 years) was used in a randomized, placebo-controlled crossover study. Data were taken 0.5, 1.5, 3 and 4 hours after administration of the preparations under the conditions of 6 minutes eyes open, 5 minutes d2 concentration test, mathematical calculation test and memory test respectively. During mental load, changes in spectral band power were used to analyse drug-induced effects. All variables were fed into a linear discriminant analysis (LDA) for comparison with other drug profiles. Spectral power in the delta and theta range was significantly attenuated at 3 and 4 hours after administration in comparison with the time-dependent increase normally observed due to circadian rhythm. Discriminant analysis revealed a difference to placebo for all recordings as early as 30 minutes after intake of 3 coated tablets of Pascoflair? 425 mg. Using LDA data location within the poly-dimensional space, verum was projected into the area of the effects of Gingko/Ginseng as reference drugs tested earlier under identical conditions. Psychometric performance was not disrupted. Pascoflair? 425 mg can be regarded as a well characterized plant-derived drug with anxiolytic and calming properties without negative sedative and cognition-attenuating side effects. Current results document the effecttiveness of the preparation as early as after 30 minutes. In addition, they indicate persistence of good mental performance for hours. Trial registration: the study has been registered at ClinicalTrials.gov under NCT01047605.
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
文摘BACKGROUND Various stone factors can affect the net results of shock wave lithotripsy(SWL).Recently a new factor called variation coefficient of stone density(VCSD)is being considered to have an impact on stone free rates.AIM To assess the role of VCSD in determining success of SWL in urinary calculi.METHODS Charts review was utilized for collection of data variables.The patients were subjected to SWL,using an electromagnetic lithotripter.Mean stone density(MSD),stone heterogeneity index(SHI),and VCSD were calculated by generating regions of interest on computed tomography(CT)images.Role of these factors were determined by applying the relevant statistical tests for continuous and categorical variables and a P value of<0.05 was gauged to be statistically significant.RESULTS There were a total of 407 patients included in the analysis.The mean age of the subjects in this study was 38.89±14.61 years.In total,165 out of the 407 patients could not achieve stone free status.The successful group had a significantly lower stone volume as compared to the unsuccessful group(P<0.0001).Skin to stone distance was not dissimilar among the two groups(P=0.47).MSD was significantly lower in the successful group(P<0.0001).SHI and VCSD were both significantly higher in the successful group(P<0.0001).CONCLUSION VCSD,a useful CT based parameter,can be utilized to gauge stone fragility and hence the prediction of SWL outcomes.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金National Defense Science and Technology Project Management Center(2021-JCJQ-JJ-0092)。
文摘ZGH401 alloy was prepared under varying laser power levels and scanning speeds by the orthogonal test method using selective laser melting(SLM).The effect of different energy densities on microstructure and mechanical properties of the formed alloy was investigated.The microstructure of ZGH401 was analyzed by scanning electron microscope,electron back-scattered diffraction,and electron probe microanalysis.The results show that the defects of the as-built ZGH401 are gradually reduced,the relative density is correspondingly enhanced with increasing the energy density,and the ultimate density can reach 99.6%.An increase in laser power leads to a corresponding rise in hardness of ZGH401,while a faster scanning speed reduces the residual stress in asbuilt ZGH401 samples.In addition,better tensile properties are achieved at room temperature due to more grain boundaries perpendicular to the build direction than parallel to the build direction.The precipitated phases are identified as carbides and Laves phases via chemical composition analysis,with fewer carbides observed at the molten pool boundaries than within the molten pools.
文摘High-density germanate glasses doped with Tb^(3+)ions were synthesized via the melt-quenching meth-od.The physical and luminescent properties of these glasses were characterized through various techniques,in-cluding density measurement,differential scanning calorimetry(DSC),photoluminescence(PL)spectroscopy,X-ray excited luminescence(XEL)spectroscopy,and fluorescence decay analysis.The densities of the germanate glasses were greater than 6.1 g/cm^(3).Upon excitations of ultraviolet(UV)light and X-rays,the glasses emitted in-tense green emissions.The fluorescence lifetime of the strongest emission peak at 544 nm,measured under 377 nm excitation,ranged from 1.52 ms to 1.32 ms.In the glass specimens,the maximum XEL integral intensity reached roughly 26%of that of the commercially available Bi_(4)Ge_(3)O_(12)(BGO)crystal.These results indicate that Tb^(3+)-doped high-density germanate scintillating glasses hold potential as scintillation materials for X-ray imaging applications.
基金National Natural Science Foundation of China,Grant/Award Number:82204958 and 82305065Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2020ZD17+2 种基金Traditional Chinese Medicine Emotional Disease and Brain Steady State Regulation Innovation Team,Grant/Award Number:2023KJ191Medical and Health Science and Technology Development Plan Project of Shandong Province,Grant/Award Number:202105010467Traditional Chinese Medicine Science and Technology Project of Shandong Province,Grant/Award Number:Q-2022059。
文摘Background:Previously,a chronic social defeat stress(CSDS)model has been widely-adopted for assessing depressive-like behaviors in animals.However,there is still room for improvement in the CSDS model to safeguard study accuracy and the wel-fare of lab rodents.Our study team developed a novel,standardized apparatus to induce CSDS in rodents and assessed the model's practical adaptability.Methods:An innovative CSDS cage apparatus and water bottle was designed.To evaluate the effectiveness of the newly developed tools,a variety of animal models,including the tail suspension test(TST),sucrose preference test,forced swimming test(FST),novelty-suppressed feeding test,female urine sniffing test,and open field test(OFT),were adopted to assess depressive-like behaviors in mice.Fluoxetine treat-ment was also administered to observe the reversal effect,as part of the validation.Results:The CSDS cage apparatus resulted in the manifestation of depressive-like behaviors in the model mice.Significant reductions in sucrose preference and urine sniffing time were observed,while the OFT revealed decreased central zone total distance,residence time,and frequency of entry.Moreover,increased immobility was found in the FST and TST.Fluoxetine treatment was found to successfully reverse the modeling effect.Conclusion:The CSDS cage apparatus was validated for enhanced usability and ad-dressed the previous challenges of water bottle leakage and lab rodent welfare is-sues.The consistent results from multiple behavioral tests also supported real-world application of the apparatus,offering researchers a promising alternative to conven-tional rodent cages.
文摘We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.
基金supported by the National Key R&D Program of China under Grant No.2025YFB3003603the National Natural Science Foundation of China under Grant Nos.12135002 and 12105209.
文摘By adopting stochastic density functional theory(SDFT)and mixed stochastic-deterministic density functional theory(MDFT)methods,we perform first-principles calculations to predict the shock Hugoniot curves of boron(pressure P=7.9×10^(3)-1.6×10^(6) GPa and temperature T=25-2800 eV),silicon(P=2.6×10^(3)-7.9×10^(5) GPa and T=21.5-1393 eV),and aluminum(P=5.2×10^(3)-9.0×10^(5) GPa and T=25-1393 eV)over wide ranges of pressure and temperature.In particular,we systematically investigate the impact of different cutoff radii in norm-conserving pseudopotentials on the calculated properties at elevated temperatures,such as pressure,ionization energy,and equation of state.By comparing the SDFT and MDFT results with those of other first-principles methods,such as extended first-principles molecular dynamics and path integral Monte Carlo methods,we find that the SDFT and MDFT methods show satisfactory precision,which advances our understanding of first-principles methods when applied to studies of matter at extremely high pressures and temperatures.