期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Optimal Deep Dense Convolutional Neural Network Based Classification Model for COVID-19 Disease 被引量:1
1
作者 A.Sheryl Oliver P.Suresh +2 位作者 A.Mohanarathinam Seifedine Kadry Orawit Thinnukool 《Computers, Materials & Continua》 SCIE EI 2022年第1期2031-2047,共17页
Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images ... Early diagnosis and detection are important tasks in controlling the spread of COVID-19.A number of Deep Learning techniques has been established by researchers to detect the presence of COVID-19 using CT scan images and X-rays.However,these methods suffer from biased results and inaccurate detection of the disease.So,the current research article developed Oppositional-based Chimp Optimization Algorithm and Deep Dense Convolutional Neural Network(OCOA-DDCNN)for COVID-19 prediction using CT images in IoT environment.The proposed methodology works on the basis of two stages such as pre-processing and prediction.Initially,CT scan images generated from prospective COVID-19 are collected from open-source system using IoT devices.The collected images are then preprocessed using Gaussian filter.Gaussian filter can be utilized in the removal of unwanted noise from the collected CT scan images.Afterwards,the preprocessed images are sent to prediction phase.In this phase,Deep Dense Convolutional Neural Network(DDCNN)is applied upon the pre-processed images.The proposed classifier is optimally designed with the consideration of Oppositional-basedChimp Optimization Algorithm(OCOA).This algorithm is utilized in the selection of optimal parameters for the proposed classifier.Finally,the proposed technique is used in the prediction of COVID-19 and classify the results as either COVID-19 or non-COVID-19.The projected method was implemented in MATLAB and the performances were evaluated through statistical measurements.The proposed method was contrasted with conventional techniques such as Convolutional Neural Network-Firefly Algorithm(CNN-FA),Emperor Penguin Optimization(CNN-EPO)respectively.The results established the supremacy of the proposed model. 展开更多
关键词 Deep learning deep dense convolutional neural network covid-19 CT images chimp optimization algorithm
在线阅读 下载PDF
X-Ray Covid-19 Detection Based on Scatter Wavelet Transform and Dense Deep Neural Network
2
作者 Ali Sami Al-Itbi Ahmed Bahaaulddin A.Alwahhab Ali Mohammed Sahan 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期1255-1271,共17页
Notwithstanding the discovery of vaccines for Covid-19, the virus'srapid spread continues due to the limited availability of vaccines, especially inpoor and emerging countries. Therefore, the key issues in the pre... Notwithstanding the discovery of vaccines for Covid-19, the virus'srapid spread continues due to the limited availability of vaccines, especially inpoor and emerging countries. Therefore, the key issues in the presentCOVID-19 pandemic are the early identification of COVID-19, the cautiousseparation of infected cases at the lowest cost and curing the disease in the earlystages. For that reason, the methodology adopted for this study is imaging tools,particularly computed tomography, which have been critical in diagnosing andtreating the disease. A new method for detecting Covid-19 in X-rays and CTimages has been presented based on the Scatter Wavelet Transform and DenseDeep Neural Network. The Scatter Wavelet Transform has been employed as afeature extractor, while the Dense Deep Neural Network is utilized as a binaryclassifier. An extensive experiment was carried out to evaluate the accuracy ofthe proposed method over three datasets: IEEE 80200, Kaggle, andCovid-19 X-ray image data Sets. The dataset used in the experimental part consists of 14142. The numbers of training and testing images are 8290 and 2810,respectively. The analysis of the result refers that the proposed methods achievedhigh accuracy of 98%. The proposed model results show an excellent outcomecompared to other methods in the same domain, such as (DeTraC) CNN, whichachieved only 93.1%, CNN, which achieved 94%, and stacked Multi-ResolutionCovXNet, which achieved 97.4%. The accuracy of CapsNet reached 97.24%. 展开更多
关键词 Covid-19 detection scatter wavelet transform deep learning dense Deep neural network
在线阅读 下载PDF
Renovated Random Attribute-Based Fennec Fox Optimized Deep Learning Framework in Low-Rate DoS Attack Detection in IoT
3
作者 Prasanalakshmi Balaji Sangita Babu +4 位作者 Maode Ma Zhaoxi Fang Syarifah Bahiyah Rahayu Mariyam Aysha Bivi Mahaveerakannan Renganathan 《Computers, Materials & Continua》 2025年第9期5831-5858,共28页
The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptibl... The rapid progression of the Internet of Things(IoT)technology enables its application across various sectors.However,IoT devices typically acquire inadequate computing power and user interfaces,making them susceptible to security threats.One significant risk to cloud networks is Distributed Denial-of-Service(DoS)attacks,where attackers aim to overcome a target system with excessive data and requests.Among these,low-rate DoS(LR-DoS)attacks present a particular challenge to detection.By sending bursts of attacks at irregular intervals,LR-DoS significantly degrades the targeted system’s Quality of Service(QoS).The low-rate nature of these attacks confuses their detection,as they frequently trigger congestion control mechanisms,leading to significant instability in IoT systems.Therefore,to detect the LR-DoS attack,an innovative deep-learning model has been developed for this research work.The standard dataset is utilized to collect the required data.Further,the deep feature extraction process is executed using the Residual Autoencoder with Sparse Attention(ResAE-SA),which helps derive the significant feature required for detection.Ultimately,the Adaptive Dense Recurrent Neural Network(ADRNN)is implemented to detect LR-DoS effectively.To enhance the detection process,the parameters present in the ADRNN are optimized using the Renovated Random Attribute-based Fennec Fox Optimization(RRA-FFA).The proposed optimization reduces the False Discovery Rate and False Positive Rate,maximizing the Matthews Correlation Coefficient from 23,70.8,76.2,84.28 in Dataset 1 and 70.28,73.8,74.1,82.6 in Dataset 2 on EPC-ADRNN,DPO-ADRNN,GTO-ADRNN,FFA-ADRNN respectively to 95.8 on Dataset 1 and 91.7 on Dataset 2 in proposed model.At batch size 4,the accuracy of the designed RRA-FFA-ADRNN model progressed by 9.2%to GTO-ADRNN,11.6%to EFC-ADRNN,10.9%to DPO-ADRNN,and 4%to FFA-ADRNN for Dataset 1.The accuracy of the proposed RRA-FFA-ADRNN is boosted by 12.9%,9.09%,11.6%,and 10.9%over FFCNN,SVM,RNN,and DRNN,using Dataset 2,showing a better improvement in accuracy with that of the proposed RRA-FFA-ADRNN model with 95.7%using Dataset 1 and 94.1%with Dataset 2,which is better than the existing baseline models. 展开更多
关键词 Detecting low-rate DoS attacks adaptive dense recurrent neural network residual autoencoder with sparse attention renovated random attribute-based fennec fox optimization
在线阅读 下载PDF
A Hybrid DNN-RBFNN Model for Intrusion Detection System
4
作者 Wafula Maurice Oboya Anthony Waititu Gichuhi Anthony Wanjoya 《Journal of Data Analysis and Information Processing》 2023年第4期371-387,共17页
Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural N... Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions. 展开更多
关键词 dense neural network (DNN) Radial Basis Function neural network (RBFNN) Intrusion Detection System (IDS) Denial of Service (DoS) Remote to Local (R2L) User-to-Root (U2R)
在线阅读 下载PDF
Deep learning assisted real-time and portable refractometer using aπ-phase-shifted tilted fiber Bragg grating sensor
5
作者 ZIQI LIU CHANG LIU +2 位作者 TUAN GUO ZHAOHUI LI ZHENGYONG LIU 《Photonics Research》 2025年第8期2202-2212,共11页
In this work,we demonstrate aπ-phase-shifted tilted fiber Bragg grating(π-PSTFBG)-based sensor for measuring the refractive index(RI)of NaCl solutions,achieving a real-time and online measurement system by employing... In this work,we demonstrate aπ-phase-shifted tilted fiber Bragg grating(π-PSTFBG)-based sensor for measuring the refractive index(RI)of NaCl solutions,achieving a real-time and online measurement system by employing a densely connected convolutional neural network(D-CNN)model to demodulate the full spectrum.The proposedπ-PSTFBG sensor is prepared by using the advanced fiber grating inscription system based on a two-beam interferometry method,which could introduce deeper features of dip-splitting for all the lossy dips in the spectrum,giving the possibility of fully measuring the change of RI.This enhanced feature gives relatively higher prediction accuracy(R^(2) of 99.67%)using the well-trained D-CNN model compared with the results achieved by pure TFBG or that with a gold coating.As a further demonstration from a practical view,a prototype integrated with the proposed D-CNN algorithm is developed to conduct RI measurement of NaCl solutions in real time using aπ-PSTFBG-based RI sensor.The results show that the proposed real-time demodulation system is capable of measuring RI with an average error of 1.6×10^(-4)RIU in a short response time of<1 s.The demonstrated spectral demodulation approach powered by deep learning shows great potential in real-time analysis for chemical solutions and point-of-care medical testing based on RI changes,especially for the portable requirements. 展开更多
关键词 measurement system phase shifted tilted fiber bragg grating densely connected convolutional neural network d cnn model real time measurement portable refractometer demodulate full spectrumthe advanced fiber grating inscription system refractive index
原文传递
A combination of learning and non-learning based method for enhancement, compression and reconstruction of underwater images 被引量:1
6
作者 Rashmi S.Nair Sandanam Domnic 《Aquaculture and Fisheries》 2022年第2期201-210,共10页
Complex nature of underwater environment poses biggest challenge towards image acquisition and transmission of underwater images.This paper proposes an integrated approach which consists of a non-learning enhancement ... Complex nature of underwater environment poses biggest challenge towards image acquisition and transmission of underwater images.This paper proposes an integrated approach which consists of a non-learning enhancement method with deep Convolutional Neural Networks(CNN)for compression and reconstruction of the image.The proposed method does color and contrast correction for image enhancement.The enhanced images are down-sampled using 9-layer CNN followed by Discrete Wavelet Transform(DWT).The decompression is done by using Inverse DWT.Further,the sub-pixel up-sampled image is de-blurred using a three-layer CNN.Residual Dense CNN(RD-CNN)is used to improve the quality of the reconstructed image after deblurring.The quality of the reconstructed images is measured using Peak Signal to Noise Ratio(PSNR)and Structural Similarity Index Metric(SSIM).The proposed model provides better image enhancement,compression,and reconstruction quality than the existing state-of-the-art methods and Super Resolution CNN(SRCNN)respectively. 展开更多
关键词 Convolutional neural network Discrete wavelet transform Residual dense convolutional neural network Peak signal to noise ratio Structural similarity index metric Super resolution CNN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部