期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of different doping elements on performance of Ce-Mn/TiO_(2)catalyst for low temperature denitration 被引量:7
1
作者 Lihua Huang Jian Hua 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第5期689-697,I0002,共10页
Sm and Ho were doped in Ce-Mn/TiO_(2)catalyst respectively to enhance its denitration performance at low temperature.X-ray diffraction(XRD),N2adsorption-desorption,X-ray photoelectron spectroscopy(XPS),NH3-temperature... Sm and Ho were doped in Ce-Mn/TiO_(2)catalyst respectively to enhance its denitration performance at low temperature.X-ray diffraction(XRD),N2adsorption-desorption,X-ray photoelectron spectroscopy(XPS),NH3-temperature programmed desorption(NH3-TPD),H2-temperature programmed reduction(H2-TPR)and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)techniques were used to analyze the structure and performance of catalysts.The results demonstrate that Ho doping increases the amount of acid sites and improves low temperature redox property of Ce-Mn/TiO_(2),which lead to excellent DeNOxperformance of Ho-Ce-Mn/TiO_(2)in the whole reaction temperature range.Sm doping results in decline of redox property,but it is beneficial to increasing the acid sites of Ce-Mn/TiO_(2).The increased surface acid sites and moderate oxidative ability impart Sm-Ce-Mn/TiO_(2)higher denitration activity and N2selectivity at temperature above 150℃.Lewis acid sites and redox property are the main factors affecting the activity of catalysts.Doping of Ho and Sm both improves sulfur resistance performance of Ce-Mn/TiO_(2)by inhibiting the adsorption of SO_(2)and formation of sulfate.Ce-Mn/TiO_(2)modified by Ho shows better sulfur resistance than that doped with Sm because of its more surface acid sites. 展开更多
关键词 Ce-Mn/TiO_(2)catalyst DOPING Sm Ho denitration performance RAREEARTHS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部