The nervous system function requires a precise but plastic neural architecture.The neuronal shape dictates how neurons interact with each other and with other cells,being the morphology of dendrites and axons the cent...The nervous system function requires a precise but plastic neural architecture.The neuronal shape dictates how neurons interact with each other and with other cells,being the morphology of dendrites and axons the central determinant of the functional properties of neurons and neural circuits.The topological and structural morphology of axons and dendrites defines and determines how synapses are conformed.The morphological diversity of axon and dendrite arborization governs the neuron’s inputs,synaptic integration,neuronal computation,signal transmission,and network circuitry,hence defining the particular connectivity and function of the different brain areas.展开更多
Osteogenesis imperfecta(OI)is a group of diseases caused by defects in type I collagen processing which result in skeletal fragility.While these disorders have been regarded as defects in osteoblast function,the role ...Osteogenesis imperfecta(OI)is a group of diseases caused by defects in type I collagen processing which result in skeletal fragility.While these disorders have been regarded as defects in osteoblast function,the role of matrix-embedded osteocytes in OI pathogenesis remains largely unknown.Homozygous human SP7(c.946 C>T,R316C)mutation results in a recessive form of OI characterized by fragility fractures,low bone mineral density and osteocyte dendrite defects.To better understand how the OI-causing R316C mutation affects the function of SP7,we generated Sp7^(R342C)knock-in mice.Consistent with patient phenotypes,Sp7^(R342C/R342C)mice demonstrate increased cortical porosity and reduced cortical bone mineral density.Sp7^(R342C/R342C)mice show osteocyte dendrite defects,increased osteocyte apoptosis,and intracortical bone remodeling with ectopic intracortical osteoclasts and elevated osteocyte Tnfsf11 expression.展开更多
Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemica...Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemical behaviors like dendrite growth and side reactions in practical application.Herein,we report a highly stable anode with collector,Li_(5)Mg@Cu,realized by the melting-rolling process.The Li_(5)Mg@Cu anode delivers ultrahigh cycle stability for 2000 and 1000 h at the current densities of 1 and 2 mA cm^(-2),respectively in symmetric cells.Meanwhile,the Li_(5)Mg@Cu|LFP cell exhibits a high-capacity retention of 91.8% for 1000 cycles and 78.8% for 2000 cycles at 1 C.Moreover,we investigate the suppression effects of Mg on the dendrite growth by studying the performance of Li_(x)Mg@Cu electrodes with different Mg contents(2.0-16.7 at%).The exchange current density,surface energy,Li^(+)diffusion coefficient,and chemical stability of Li_(x)Mg@Cu concretely reveal this improving suppression effect when Mg content becomes higher.In addition,a Mg-rich phase with“hollow brick”morphology forming in the high Mg content Li_(x)Mg@Cu guides the uniform deposition of Li.This study reveals the suppression effects of Mg on Li dendrites growth and offers a perspective for finding the optimal component of Li-Mg alloys.展开更多
The unavoidable dendrite growth and shuttle effect have long been stranglehold challenges limiting the safety and practicality of lithium-sulfur batteries.Herein,we propose a dual-action strategy to address the lithiu...The unavoidable dendrite growth and shuttle effect have long been stranglehold challenges limiting the safety and practicality of lithium-sulfur batteries.Herein,we propose a dual-action strategy to address the lithium dendrite issue in stages by constructing a multifunctional surface-negatively-charged nanodiamond layer with high ductility and robust puncture resistance on polypropylene (PP) separator.The uniformly loaded compact negative layer can not only significantly enhance electron transmission efficiency and promote uniform lithium deposition,but also reduce the formation of dendrite during early deposition stage.Most importantly,under the strong puncture stress encountered during the deterioration of lithium dendrite growth under limiting current,the high ductility and robust puncture resistance(145.88 MPa) of as-obtained nanodiamond layer can effectively prevent short circuits caused by unavoidable lithium dendrite.The Li||Li symmetrical cells assembled with nanodiamond layer modified PP demonstrated a stable cycle of over 1000 h at 2 mA cm^(-2)with a polarization voltage of only 29.3 mV.Additionally,the negative charged layer serves as a physical barrier blocking lithium polysulfide ions,effectively mitigating capacity attenuation.The improved cells achieved a capacity decay of only 0.042%per cycle after 700 cycles at 3 C,demonstrating effective suppression of dendrite growth and capacity attenuation,showing promising prospect.展开更多
The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic framework...The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic frameworks(MOF)is incorporated into a polyethylene oxide(PEO)-based polymer solid electrolyte,leading to the insitu formation of LiF and other compounds at the electrolyte interface.This modification significantly improves lithium-ion transport capabilities and regulates lithium deposition behavior,suppressing the formation of lithium dendrites.展开更多
Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in re...Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.展开更多
Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries.Herein,Gd^(3+)ions are introduced into conventional electrolytes as a microlevelling agent to...Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries.Herein,Gd^(3+)ions are introduced into conventional electrolytes as a microlevelling agent to achieve dendrite-free zinc electrodeposition.Simulation and experimental results demonstrate that these Gd^(3+)ions are preferentially adsorbed onto the zinc surface,which enables dendritefree zinc anodes by activating the microlevelling effect during electrodeposition.In addition,the Gd^(3+)additives effectively inhibit side reactions and facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+),leading to highly reversible zinc plating/stripping.Due to these improvements,the zinc anode demonstrates a significantly prolonged cycle life of 2100 h and achieves an exceptional average Coulombic efficiency of 99.72%over 1400 cycles.More importantly,the Zn//NH_(4)V_(4)O_(10)full cell shows a high capacity retention rate of 85.6%after 1000 cycles.This work not only broadens the application of metallic cations in battery electrolytes but also provides fundamental insights into their working mechanisms.展开更多
Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,saf...Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,safety concerns related to lithium dendrite-induced short circuits and suboptimal electrochemical performance have impeded the commercial viability of lithium metal batteries.Current research efforts primarily focus on altering the solvated structure of Li+by modifying the current collector or introducing electrolyte additives to lower the nucleation barrier,expedite the desolvation process,and suppress the growth of lithium dendrites.Nevertheless,an integrated approach that combines the advantages of these two strategies remains elusive.In this study,we successfully employed metal-organic salt additives with lithophilic properties to accelerate the desolvation process,reduce the nucleation barrier of Li+,and modulate its solvated structure.This approach enhanced the inorganic compound content in the solid electrolyte interphase(SEI)on lithium foil surfaces,leading to stable Li+deposition and stripping.Specifically,Li||Cu cells demonstrated excellent cycle life and Coulombic efficiency(97.28%and 98.59%,respectively)at 0.5 m A/cm^(2)@0.5 m Ah/cm^(2)and 1 m A/cm^(2)@1 m Ah/cm^(2)for 410 and 240 cycles,respectively.Li||Li symmetrical cells showed no short circuit at 1 m A/cm^(2)@1 m Ah/cm^(2)for 1150 h,and Li||LFP full cells retained 68.9%of their capacity(104.6 m Ah/g)after 250 cycles at N/P(1.1:1.0)with a current density of 1C.展开更多
The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as ...The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt(PIS)solid-state electrolytes,aiming to suppress lithium dendrite growth and improve full-cell performance.The Al_(2)O_(3)coating layer not only refines the wettability of polyimide porous film to PIS,but also performs as a high modulus protective layer to suppress the growth of lithium dendrites.The resulting PI/AO@PIS exhibits a small thickness of only 35μm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa.In addition,the PI/AO@PIS delivers a high ionic conductivity of 0.1 m S/cm at 25°C.As a result,the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 m A/cm2without noticeable lithium dendrite formation.Moreover,the PI/AO@PIS-based LiFePO4||Li full cells demonstrate outstanding rate performance(125.7 m Ah/g at 5 C)and impressive cycling stability(96.1%capacity retention at 1 C after 200 cycles).This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.展开更多
Lithium-sulfur batteries(LSBs)are considered as the most promising energy storage technologies owing to their large theoretical energy density(2500Wh/kg)and specific capacity(1675 mAh/g).However,the heavy shuttle effe...Lithium-sulfur batteries(LSBs)are considered as the most promising energy storage technologies owing to their large theoretical energy density(2500Wh/kg)and specific capacity(1675 mAh/g).However,the heavy shuttle effect of polysulfides and the growth of lithium dendrites greatly hinder their further development and commercial application.In this paper,cobalt-molybdenum bimetallic carbides heterostructure(Co_(6)Mo_(6)C_(2)@Co@NC)was successfully prepared through chemical etching procedure of ZIF-67 precursor with sodium molybdate and the subsequent high temperature annealing process.The obtained dodecahedral Co_(6)Mo_(6)C_(2)@Co@NC with hollow and porous structure provides large specific surface area and plentiful active sites,which speeds up the chemisorption and catalytic conversion of polysulfides,thus mitigating the shuttle effect of polysulfides and the generation of lithium dendrites.When applied as the LSBs separator modifier layer,the cell with modified separator present excellent rate capability and durable cycling stability.In particular,the cell with Co_(6)Mo_(6)C_(2)@Co@NC/PP separator can maintain the high capacity of 738 mAh/g at the current density of 2 C and the specific capacity of 782.6 mAh/g after 300 cycles at 0.5 C,with the coulombic efficiency(CE)near to 100%.Moreover,the Co_(6)Mo_(6)C_(2)@Co@NC/PP battery exhibits the impressive capacity of 431 mAh/g in high sulfur loading(4.096 mg/cm^(2))at 0.5 C after 200 cycles.This work paves the way for the development of bimetallic carbides heterostructure multifunctional catalysts for durable Li-S battery applications and reveals the synergistic regulation of polysulfides and lithium dendrites through the optimization of the structure and composition.展开更多
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate...Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.展开更多
The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of den...The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation.展开更多
Constructing a protective layer on Zn anode surface with high lattice matching to Zn(002)can facilitate preferential growth along the(002)crystal plane and suppress dendritic growth as well as interface side reactions...Constructing a protective layer on Zn anode surface with high lattice matching to Zn(002)can facilitate preferential growth along the(002)crystal plane and suppress dendritic growth as well as interface side reactions.Whereas most of protective layers are complex and costly,making commercial applications challenging.Herein,we introduce a facile method involving the addition of CuCl_(2) electrolyte additives to conventional electrolyte systems,which,through rapid displacement reactions and controlled electrochemical cycling,forms a CuZn_(5) alloy layer with 97.2%lattice matching to the(002)plane(CuZn_(5)@Zn),thus regulating the(002)plane epitaxial deposition.As a result,the symmetric cells with CuZn_(5)@Zn demonstrate an ultra-long cycle life of 3600 h at 1 mA cm^(-2).Under extreme conditions of high current density(20 m A cm^(-2))and high zinc utilization(DOD_(Zn)=50%),stable cycling performance is maintained for 220 and 350 h,respectively.Furthermore,the CuZn_(5)@Zn||NH_(4)V_(4)O_(10)full cell maintains a capacity of 120 m A h g^(-1)even after 10,000 cycles at a high current density of 10 A g^(-1).This work presents a facile and efficient strategy for constructing stable metal anode materials,with implications for the development of next-generation rechargeable batteries.展开更多
The poor interfacial contact is one of the biggest challenges that solid-state lithium batteries suffer from.Reducing the solid-state electrolyte surface energy by transforming the interface from lithiophobic to lithi...The poor interfacial contact is one of the biggest challenges that solid-state lithium batteries suffer from.Reducing the solid-state electrolyte surface energy by transforming the interface from lithiophobic to lithiophilic is effective to promote the interfacial contact, but electronic conductive interphases usually increase the risk of electron attack, thus leading to uncontrollable Li dendrite growth. Herein, we propose a self-assembled thermodynamic stable Li I interphase to simultaneously improve the interfacial contact between the garnet electrolyte Li_7La_(3)Zr_(2)O_(12)(LLZO) and Li anode, and prohibit the electron attack. The direct contact between LLZO and Li and the high temperature Li melting process was ascribed to Zr4+reduction, which facilitated Li dendrite formation and propagation. With the modification of the high lithiophilic I_(2) thin film, the area specific interfacial resistance of LLZO/Li was reduced from 1525 Ω/cm^(2) to 57 Ω/cm^(2). More importantly, LLZO was protected from being reduced due to the outstanding electronic insulativity of the Li I interphase, which leaded to a high critical current density of 1.2/7.0 m A/cm^(2) in the time/capacity-constant modes, respectively.展开更多
With abundant potassium resources and high capacity,potassium metal batteries(PMBs)present a compelling option for the next generation of energy storage technology.However,PMBs suffer from an unstable anode interface ...With abundant potassium resources and high capacity,potassium metal batteries(PMBs)present a compelling option for the next generation of energy storage technology.However,PMBs suffer from an unstable anode interface caused by uncontrolled dendrite growth,which results in unsatisfactory cyclability and safety concerns.Extensive investigations suggest that significant progress has been made in enhancing the interfacial stability of PMBs.The various effective strategies for stabilizing interfaces can ultimately be attributed to the regulation of the sluggish ion transfer kinetics and irregular deposition,i.e.,the arrangement of ion transport behaviors at the interface.Rational modulation of ions transport rate and ions deposition directions makes it possible to obtain a dendrite-free and smooth deposition plane.Herein,the influencing factors and action mechanism of K^(+)interface transport behaviors are discussed to understand the nature of material design for constructing stable anode interfaces,including regulating the solvation and desolvation structures,accelerating K^(+)transport kinetics and controlling K^(+)deposition direction.In addition,the deficiencies and prospects of the research on electrolyte,separators and designed electrode involved in the manufacturing and testing and ion transport process of PMBs are discussed.This review is expected to provide some possible directions for constructing dendrite-free interfaces in advanced PMBs-related research and offer significant insights for prospective experimental research and commercial applications.展开更多
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ...Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.展开更多
Dendritic morphology is typically highly branched,and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received,thus providing the basis for...Dendritic morphology is typically highly branched,and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received,thus providing the basis for information processing in the nervous system.Once dendritic development is aberrantly compromised or damaged,it may lead to abnormal connectivity of the neural network,affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders.Research on the regulation of dendritic developmental processes has flourished,and much progress is now being made in its regulatory mechanisms.Noteworthily,dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone,requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them.Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development,with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly.In this review,we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites.We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.展开更多
Dendrite growth of zinc(Zn)anode at high current density severely affects the fast-charging performance of aqueous zinc metal batteries(AZMBs).While interfacial modification strategies can optimize Zn per formance,cha...Dendrite growth of zinc(Zn)anode at high current density severely affects the fast-charging performance of aqueous zinc metal batteries(AZMBs).While interfacial modification strategies can optimize Zn per formance,challenges such as complicated preparation processes,excessive layer thicknesses,and high voltage hysteresis should be addressed.Herein,we utilize a cost-effective liquid fluorosiloxane,(3,3,3trifluoropropyl)trimethoxysilane,for scalable modification of Zn foil via drop-casting at room tempera ture,resulting in an ultra-thin interphase layer of only 20 nm.The Si-O-Zn bonds formed between flu orosiloxane and Zn ensure interfacial stability,and the Si-O-Si bonds between fluorosiloxane molecule help to homogenize the electric field distribution.Additionally,the abundant highly electronegative flu orine atoms on the anode surface act as zincophilic sites,promoting the uniform deposition of Zn^(2+)Thus,the modified Zn foil(SiFO-Zn)exhibits excellent dendrite suppression,reduced voltage hysteresis and prolonged cycle life at ultra-high current density(40 mA/cm^(2)),achieving a cumulative areal capac ity of 12.9 Ah/cm^(2).Further,the full cell assembled with 10μm-thick Si FO-Zn anode and MnO_(2)cathode achieves 2600 cycles at 5 A/g with minimal capacity degradation,and a large-size(22.5 cm^(-2))pouch cel powers the light-emitting diode even after reverse bending,demonstrating the potential of AZMBs fo fast-charging flexible devices.展开更多
Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Z...Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.展开更多
Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al...Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al-Cu alloy.The effect of fully coupled thermal-solute-convection interaction on the dendrite growth was investigated by incorporating a parallel-adaptive mesh refinement algorithm into the numerical model.By accurately reproducing the latent heat release,solute diffusion and convective transport behaviors at the liquidsolid interface,the interaction mechanism among thermal-solute-convection transport as well as their coupling effects on the dendrite growth dynamics were discussed.The simulation results show that the release of latent heat slows down the dendrite growth rate,and both natural and forced convection disrupt the symmetrical growth of dendrites.Their combination makes the growth of dendrites more complex,capturing important physical aspects such as recalescence,dendrite tip splitting,dendrite tilting,dendrite remelting,and solute plume in the simulation case.Based on the robustness and powerful ability of the numerical model,the formation mechanisms of these physical aspects were revealed.展开更多
基金supported by the Wellcome Trust(grant No.103852).
文摘The nervous system function requires a precise but plastic neural architecture.The neuronal shape dictates how neurons interact with each other and with other cells,being the morphology of dendrites and axons the central determinant of the functional properties of neurons and neural circuits.The topological and structural morphology of axons and dendrites defines and determines how synapses are conformed.The morphological diversity of axon and dendrite arborization governs the neuron’s inputs,synaptic integration,neuronal computation,signal transmission,and network circuitry,hence defining the particular connectivity and function of the different brain areas.
基金support from the National Institute of Health(K99AR081897,R00AR081897)M.N.W.acknowledges funding support from the National Institute of Health(P01DK011794,R01DK116716)+1 种基金the Smith Family Foundation Odyssey Award,and the Chen Institute Massachusetts General Hospital Research Scholar(2024-2029)awardμCT and bone histomorphometry were performed by the Center for Skeletal Research at Massachusetts General Hospital,a NIH-funded program(P30AR066261 and AR075042)led by Mary Bouxsein and Marie Demay).
文摘Osteogenesis imperfecta(OI)is a group of diseases caused by defects in type I collagen processing which result in skeletal fragility.While these disorders have been regarded as defects in osteoblast function,the role of matrix-embedded osteocytes in OI pathogenesis remains largely unknown.Homozygous human SP7(c.946 C>T,R316C)mutation results in a recessive form of OI characterized by fragility fractures,low bone mineral density and osteocyte dendrite defects.To better understand how the OI-causing R316C mutation affects the function of SP7,we generated Sp7^(R342C)knock-in mice.Consistent with patient phenotypes,Sp7^(R342C/R342C)mice demonstrate increased cortical porosity and reduced cortical bone mineral density.Sp7^(R342C/R342C)mice show osteocyte dendrite defects,increased osteocyte apoptosis,and intracortical bone remodeling with ectopic intracortical osteoclasts and elevated osteocyte Tnfsf11 expression.
基金supported by the Qingdao Jiuhuanxinyue New Energy Technology Co.,Ltd.the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515120071)+2 种基金the 21C Innovation Laboratory,Contemporary Amperex Technology Ltd.(Grant No.21C-OP-202112)the financial support from the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515011873)the Shenzhen Science and Technology Program(Grant No.JCYJ20220531095212027).
文摘Li metal is widely recognized as the desired anode for next-generation energy storage,Li metal batteries,due to its highest theoretical capacity and lowest potential.Nonetheless,it suffers from unstable electrochemical behaviors like dendrite growth and side reactions in practical application.Herein,we report a highly stable anode with collector,Li_(5)Mg@Cu,realized by the melting-rolling process.The Li_(5)Mg@Cu anode delivers ultrahigh cycle stability for 2000 and 1000 h at the current densities of 1 and 2 mA cm^(-2),respectively in symmetric cells.Meanwhile,the Li_(5)Mg@Cu|LFP cell exhibits a high-capacity retention of 91.8% for 1000 cycles and 78.8% for 2000 cycles at 1 C.Moreover,we investigate the suppression effects of Mg on the dendrite growth by studying the performance of Li_(x)Mg@Cu electrodes with different Mg contents(2.0-16.7 at%).The exchange current density,surface energy,Li^(+)diffusion coefficient,and chemical stability of Li_(x)Mg@Cu concretely reveal this improving suppression effect when Mg content becomes higher.In addition,a Mg-rich phase with“hollow brick”morphology forming in the high Mg content Li_(x)Mg@Cu guides the uniform deposition of Li.This study reveals the suppression effects of Mg on Li dendrites growth and offers a perspective for finding the optimal component of Li-Mg alloys.
基金National Natural Science Foundation of China (Grant 52372083, 52173255)Opening Project of the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (JSKC24025)+1 种基金Special Funds for the Trans-formation of Scientific and Technological Achievements in Jiangsu Province(BA2023003)Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment (Co-constructed by Jiangsu Province and Ministry of Education)。
文摘The unavoidable dendrite growth and shuttle effect have long been stranglehold challenges limiting the safety and practicality of lithium-sulfur batteries.Herein,we propose a dual-action strategy to address the lithium dendrite issue in stages by constructing a multifunctional surface-negatively-charged nanodiamond layer with high ductility and robust puncture resistance on polypropylene (PP) separator.The uniformly loaded compact negative layer can not only significantly enhance electron transmission efficiency and promote uniform lithium deposition,but also reduce the formation of dendrite during early deposition stage.Most importantly,under the strong puncture stress encountered during the deterioration of lithium dendrite growth under limiting current,the high ductility and robust puncture resistance(145.88 MPa) of as-obtained nanodiamond layer can effectively prevent short circuits caused by unavoidable lithium dendrite.The Li||Li symmetrical cells assembled with nanodiamond layer modified PP demonstrated a stable cycle of over 1000 h at 2 mA cm^(-2)with a polarization voltage of only 29.3 mV.Additionally,the negative charged layer serves as a physical barrier blocking lithium polysulfide ions,effectively mitigating capacity attenuation.The improved cells achieved a capacity decay of only 0.042%per cycle after 700 cycles at 3 C,demonstrating effective suppression of dendrite growth and capacity attenuation,showing promising prospect.
基金supported by the National Natural Science Foundation of China(Nos.52374302 and 51874099)the Natural Science Foundation of Fujian Province’s Key Project(No.2021J02031)+1 种基金support from the open fund from Academy of Carbon Neutrality of Fujian Normal University(No.TZH_(2)022-06)We also thank the Undergraduate Training Programs for Innovation and Entrepreneurship(No.cxx1-2024363)。
文摘The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic frameworks(MOF)is incorporated into a polyethylene oxide(PEO)-based polymer solid electrolyte,leading to the insitu formation of LiF and other compounds at the electrolyte interface.This modification significantly improves lithium-ion transport capabilities and regulates lithium deposition behavior,suppressing the formation of lithium dendrites.
基金supported by the National Natural Science Foundation of China(No.52401221)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE014)+1 种基金the Basic Scientific Research Fund for Central Universities(No.202112018)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)。
文摘Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.
基金supported by the Scientific Research and Technology Development Project of China National Petroleum Corporation(Grant Nos.2024ZG50,2022DQ03-03)the National Natural Science Foundation of China(Grant Nos.52372252)the Science and Technology Innovation Program of Hunan Province(Grant Nos.2024RC1022).
文摘Dendrite growth represents one of the most significant challenges that impede the development of aqueous zinc-ion batteries.Herein,Gd^(3+)ions are introduced into conventional electrolytes as a microlevelling agent to achieve dendrite-free zinc electrodeposition.Simulation and experimental results demonstrate that these Gd^(3+)ions are preferentially adsorbed onto the zinc surface,which enables dendritefree zinc anodes by activating the microlevelling effect during electrodeposition.In addition,the Gd^(3+)additives effectively inhibit side reactions and facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+),leading to highly reversible zinc plating/stripping.Due to these improvements,the zinc anode demonstrates a significantly prolonged cycle life of 2100 h and achieves an exceptional average Coulombic efficiency of 99.72%over 1400 cycles.More importantly,the Zn//NH_(4)V_(4)O_(10)full cell shows a high capacity retention rate of 85.6%after 1000 cycles.This work not only broadens the application of metallic cations in battery electrolytes but also provides fundamental insights into their working mechanisms.
基金supported by Yunnan Natural Science Foundation Project(No.202202AG050003)Yunnan Fundamental Research Projects(Nos.202101BE070001-018 and 202201AT070070)+1 种基金the National Youth Talent Support Program of Yunnan Province China(No.YNQR-QNRC-2020-011)Yunnan Engineering Research Center Innovation Ability Construction and Enhancement Projects(No.2023-XMDJ-00617107)。
文摘Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,safety concerns related to lithium dendrite-induced short circuits and suboptimal electrochemical performance have impeded the commercial viability of lithium metal batteries.Current research efforts primarily focus on altering the solvated structure of Li+by modifying the current collector or introducing electrolyte additives to lower the nucleation barrier,expedite the desolvation process,and suppress the growth of lithium dendrites.Nevertheless,an integrated approach that combines the advantages of these two strategies remains elusive.In this study,we successfully employed metal-organic salt additives with lithophilic properties to accelerate the desolvation process,reduce the nucleation barrier of Li+,and modulate its solvated structure.This approach enhanced the inorganic compound content in the solid electrolyte interphase(SEI)on lithium foil surfaces,leading to stable Li+deposition and stripping.Specifically,Li||Cu cells demonstrated excellent cycle life and Coulombic efficiency(97.28%and 98.59%,respectively)at 0.5 m A/cm^(2)@0.5 m Ah/cm^(2)and 1 m A/cm^(2)@1 m Ah/cm^(2)for 410 and 240 cycles,respectively.Li||Li symmetrical cells showed no short circuit at 1 m A/cm^(2)@1 m Ah/cm^(2)for 1150 h,and Li||LFP full cells retained 68.9%of their capacity(104.6 m Ah/g)after 250 cycles at N/P(1.1:1.0)with a current density of 1C.
基金the financial support from the 261Project of MIIT and Natural Science Foundation of Jiangsu Province(No.BK20240179)。
文摘The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt(PIS)solid-state electrolytes,aiming to suppress lithium dendrite growth and improve full-cell performance.The Al_(2)O_(3)coating layer not only refines the wettability of polyimide porous film to PIS,but also performs as a high modulus protective layer to suppress the growth of lithium dendrites.The resulting PI/AO@PIS exhibits a small thickness of only 35μm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa.In addition,the PI/AO@PIS delivers a high ionic conductivity of 0.1 m S/cm at 25°C.As a result,the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 m A/cm2without noticeable lithium dendrite formation.Moreover,the PI/AO@PIS-based LiFePO4||Li full cells demonstrate outstanding rate performance(125.7 m Ah/g at 5 C)and impressive cycling stability(96.1%capacity retention at 1 C after 200 cycles).This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.
基金supported by National Natural Science Foundation of China(Nos.52472194,52101243)Natural Science Foundation of Guangdong Province,China(No.2023A1515012619)the Science and Technology Planning Project of Guangzhou(No.202201010565).
文摘Lithium-sulfur batteries(LSBs)are considered as the most promising energy storage technologies owing to their large theoretical energy density(2500Wh/kg)and specific capacity(1675 mAh/g).However,the heavy shuttle effect of polysulfides and the growth of lithium dendrites greatly hinder their further development and commercial application.In this paper,cobalt-molybdenum bimetallic carbides heterostructure(Co_(6)Mo_(6)C_(2)@Co@NC)was successfully prepared through chemical etching procedure of ZIF-67 precursor with sodium molybdate and the subsequent high temperature annealing process.The obtained dodecahedral Co_(6)Mo_(6)C_(2)@Co@NC with hollow and porous structure provides large specific surface area and plentiful active sites,which speeds up the chemisorption and catalytic conversion of polysulfides,thus mitigating the shuttle effect of polysulfides and the generation of lithium dendrites.When applied as the LSBs separator modifier layer,the cell with modified separator present excellent rate capability and durable cycling stability.In particular,the cell with Co_(6)Mo_(6)C_(2)@Co@NC/PP separator can maintain the high capacity of 738 mAh/g at the current density of 2 C and the specific capacity of 782.6 mAh/g after 300 cycles at 0.5 C,with the coulombic efficiency(CE)near to 100%.Moreover,the Co_(6)Mo_(6)C_(2)@Co@NC/PP battery exhibits the impressive capacity of 431 mAh/g in high sulfur loading(4.096 mg/cm^(2))at 0.5 C after 200 cycles.This work paves the way for the development of bimetallic carbides heterostructure multifunctional catalysts for durable Li-S battery applications and reveals the synergistic regulation of polysulfides and lithium dendrites through the optimization of the structure and composition.
基金financially supported by the National Natural Science Foundation of China(22168019 and 52074141)the Major Science and Technology Projects in Yunnan Province(202202AB080014)+1 种基金The authors are grateful to the National Natural Science Foundation of Chinathe Major Science and Technology Projects in Yunnan Province for their support.
文摘Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.
基金supported by Open Foundation of the State Key Laboratory of Refractories and Metallurgy(No.G201711)the National Natural Science Foundation of China(Nos.52104317 and 51874001).
文摘The impact of heavy reduction on dendritic morphology was explored by combining experimental research and numerical simulation in metallurgy,including a detailed three-dimensional(3D)analysis and reconstruction of dendritic solidification structures.Combining scanning electron microscopy and energy-dispersive scanning analysis and ANSYS simulation,the high-precision image processing software Mimics Research was utilized to conduct the extraction of dendritic morphologies.Reverse engineering software NX Imageware was employed for the 3D reconstruction of two-dimensional dendritic morphologies,restoring the dendritic characteristics in three-dimensional space.The results demonstrate that in a two-dimensional plane,dendrites connect with each other to form irregularly shaped“ring-like”structures.These dendrites have a thickness greater than 0.1 mm along the Z-axis direction,leading to the envelopment of molten steel by dendrites in a 3D space of at least 0.1 mm.This results in obstructed flow,confirming the“bridging”of dendrites in three-dimensional space,resulting in a tendency for central segregation.Dense and dispersed tiny dendrites,under the influence of heat flow direction,interconnect and continuously grow,gradually forming primary and secondary dendrites in three-dimensional space.After the completion of dendritic solidification and growth,these microdendrites appear dense and dispersed on the two-dimensional plane,providing the nuclei for the formation of new dendrites.When reduction occurs at a solid fraction of 0.46,there is a noticeable decrease in dendritic spacing,resulting in improved central segregation.
基金financially supported by the National Key R&D Program of China(2022YFB3807700)the National Natural Science Foundation of China(Grant no.52125405 and U22A20108)+4 种基金the support from the Hubei Provincial Natural Science Foundation of China(Grant No.2023AFB155)the opening project of State Key Laboratory of Metastable Materials Science and Technology(Yanshan University)(opening project number:202401,202404)the Thailand Science Research and Innovation Fund Chulalongkorn University(INDF67620003)the National Science,Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant no.B05F640153)the National Research Council of Thailand(NRCT)and Chulalongkorn University(N42A660383)。
文摘Constructing a protective layer on Zn anode surface with high lattice matching to Zn(002)can facilitate preferential growth along the(002)crystal plane and suppress dendritic growth as well as interface side reactions.Whereas most of protective layers are complex and costly,making commercial applications challenging.Herein,we introduce a facile method involving the addition of CuCl_(2) electrolyte additives to conventional electrolyte systems,which,through rapid displacement reactions and controlled electrochemical cycling,forms a CuZn_(5) alloy layer with 97.2%lattice matching to the(002)plane(CuZn_(5)@Zn),thus regulating the(002)plane epitaxial deposition.As a result,the symmetric cells with CuZn_(5)@Zn demonstrate an ultra-long cycle life of 3600 h at 1 mA cm^(-2).Under extreme conditions of high current density(20 m A cm^(-2))and high zinc utilization(DOD_(Zn)=50%),stable cycling performance is maintained for 220 and 350 h,respectively.Furthermore,the CuZn_(5)@Zn||NH_(4)V_(4)O_(10)full cell maintains a capacity of 120 m A h g^(-1)even after 10,000 cycles at a high current density of 10 A g^(-1).This work presents a facile and efficient strategy for constructing stable metal anode materials,with implications for the development of next-generation rechargeable batteries.
基金supported by National Natural Science Youth Foundation of China (No.22209104)National Natural Science Foundation of China (No.22179077)。
文摘The poor interfacial contact is one of the biggest challenges that solid-state lithium batteries suffer from.Reducing the solid-state electrolyte surface energy by transforming the interface from lithiophobic to lithiophilic is effective to promote the interfacial contact, but electronic conductive interphases usually increase the risk of electron attack, thus leading to uncontrollable Li dendrite growth. Herein, we propose a self-assembled thermodynamic stable Li I interphase to simultaneously improve the interfacial contact between the garnet electrolyte Li_7La_(3)Zr_(2)O_(12)(LLZO) and Li anode, and prohibit the electron attack. The direct contact between LLZO and Li and the high temperature Li melting process was ascribed to Zr4+reduction, which facilitated Li dendrite formation and propagation. With the modification of the high lithiophilic I_(2) thin film, the area specific interfacial resistance of LLZO/Li was reduced from 1525 Ω/cm^(2) to 57 Ω/cm^(2). More importantly, LLZO was protected from being reduced due to the outstanding electronic insulativity of the Li I interphase, which leaded to a high critical current density of 1.2/7.0 m A/cm^(2) in the time/capacity-constant modes, respectively.
基金financially supported by the National Natural Science Foundation of China(No.52272194)Liaoning Revitalization Talents Program(No.XLYC2007155)the Fundamental Research Funds for the Central Universities(Nos.N2025018 and N2025009)。
文摘With abundant potassium resources and high capacity,potassium metal batteries(PMBs)present a compelling option for the next generation of energy storage technology.However,PMBs suffer from an unstable anode interface caused by uncontrolled dendrite growth,which results in unsatisfactory cyclability and safety concerns.Extensive investigations suggest that significant progress has been made in enhancing the interfacial stability of PMBs.The various effective strategies for stabilizing interfaces can ultimately be attributed to the regulation of the sluggish ion transfer kinetics and irregular deposition,i.e.,the arrangement of ion transport behaviors at the interface.Rational modulation of ions transport rate and ions deposition directions makes it possible to obtain a dendrite-free and smooth deposition plane.Herein,the influencing factors and action mechanism of K^(+)interface transport behaviors are discussed to understand the nature of material design for constructing stable anode interfaces,including regulating the solvation and desolvation structures,accelerating K^(+)transport kinetics and controlling K^(+)deposition direction.In addition,the deficiencies and prospects of the research on electrolyte,separators and designed electrode involved in the manufacturing and testing and ion transport process of PMBs are discussed.This review is expected to provide some possible directions for constructing dendrite-free interfaces in advanced PMBs-related research and offer significant insights for prospective experimental research and commercial applications.
基金supported by the Key Program of Natural Science Foundation of Gansu Province (23JRRA789)the Major Science and Technology Project of Gansu Province (22ZD6GA008)。
文摘Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.
基金supported by the National Natural Science Foundation of China(32100784)the Natural Science Foundation of Jiangsu Province(BK20221458)the Fundamental Research Funds for the Central Universities(also known as the Southeast University Zhishan Young Scholars Program,2242024RCB0031)。
文摘Dendritic morphology is typically highly branched,and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received,thus providing the basis for information processing in the nervous system.Once dendritic development is aberrantly compromised or damaged,it may lead to abnormal connectivity of the neural network,affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders.Research on the regulation of dendritic developmental processes has flourished,and much progress is now being made in its regulatory mechanisms.Noteworthily,dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone,requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them.Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development,with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly.In this review,we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites.We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
基金supported by the National Natural Science Foundation of China(Nos.22075048,52201201)Shaanxi Yanchang Petroleum Co.,Ltd.(No.18529),Yiwu Research Institute of Fudan University(No.20-1-06)+2 种基金the Shanghai International Collaboration Research Project(No.19520713900)the State Key Laboratory of Molecular Engineering of Polymers(Fudan University,No.K2024-36)the State Key Lab of Advanced Metals and Materials(No.2022Z-11)。
文摘Dendrite growth of zinc(Zn)anode at high current density severely affects the fast-charging performance of aqueous zinc metal batteries(AZMBs).While interfacial modification strategies can optimize Zn per formance,challenges such as complicated preparation processes,excessive layer thicknesses,and high voltage hysteresis should be addressed.Herein,we utilize a cost-effective liquid fluorosiloxane,(3,3,3trifluoropropyl)trimethoxysilane,for scalable modification of Zn foil via drop-casting at room tempera ture,resulting in an ultra-thin interphase layer of only 20 nm.The Si-O-Zn bonds formed between flu orosiloxane and Zn ensure interfacial stability,and the Si-O-Si bonds between fluorosiloxane molecule help to homogenize the electric field distribution.Additionally,the abundant highly electronegative flu orine atoms on the anode surface act as zincophilic sites,promoting the uniform deposition of Zn^(2+)Thus,the modified Zn foil(SiFO-Zn)exhibits excellent dendrite suppression,reduced voltage hysteresis and prolonged cycle life at ultra-high current density(40 mA/cm^(2)),achieving a cumulative areal capac ity of 12.9 Ah/cm^(2).Further,the full cell assembled with 10μm-thick Si FO-Zn anode and MnO_(2)cathode achieves 2600 cycles at 5 A/g with minimal capacity degradation,and a large-size(22.5 cm^(-2))pouch cel powers the light-emitting diode even after reverse bending,demonstrating the potential of AZMBs fo fast-charging flexible devices.
基金supported by grants from the National Key Research and Development Program of China(No.2021YFF0500600)the Haihe Laboratory of Sustainable Chemical Transformations,and the Fundamental Research Funds for the Central Universities.We appreciate Neware Technology Co.,Ltd for their battery test systems in the TJU Nanoyang-Neware Joint Laboratory for Energy Innovation.
文摘Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.
基金financially supported by the National Natural Science Foundation of China(Grant No.52275370)the Key R&D Program of Hubei Province,China(Grant No.2022BAD100 and No.2021BAA048)the Open Fund of Hubei Longzhong Laboratory,China(Grant No.2022ZZ-04)。
文摘Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al-Cu alloy.The effect of fully coupled thermal-solute-convection interaction on the dendrite growth was investigated by incorporating a parallel-adaptive mesh refinement algorithm into the numerical model.By accurately reproducing the latent heat release,solute diffusion and convective transport behaviors at the liquidsolid interface,the interaction mechanism among thermal-solute-convection transport as well as their coupling effects on the dendrite growth dynamics were discussed.The simulation results show that the release of latent heat slows down the dendrite growth rate,and both natural and forced convection disrupt the symmetrical growth of dendrites.Their combination makes the growth of dendrites more complex,capturing important physical aspects such as recalescence,dendrite tip splitting,dendrite tilting,dendrite remelting,and solute plume in the simulation case.Based on the robustness and powerful ability of the numerical model,the formation mechanisms of these physical aspects were revealed.