期刊文献+
共找到527,249篇文章
< 1 2 250 >
每页显示 20 50 100
Progress in MOF-based catalyst design and reaction mechanisms for CO_(2)hydrogenation to methanol
1
作者 YU Zhifu JIANG Lei WU Mingbo 《燃料化学学报(中英文)》 北大核心 2026年第1期146-162,共17页
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon... Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies. 展开更多
关键词 CO_(2)hydrogenation metal-organic frameworks(MOFs) catalyst design reaction mechanism METHANOL
在线阅读 下载PDF
Regulatory T cells in neurological disorders and tissue regeneration:Mechanisms of action and therapeutic potentials 被引量:1
2
作者 Jing Jie Xiaomin Yao +5 位作者 Hui Deng Yuxiang Zhou Xingyu Jiang Xiu Dai Yumin Yang Pengxiang Yang 《Neural Regeneration Research》 2026年第4期1277-1291,共15页
Regulatory T cells,a subset of CD4^(+)T cells,play a critical role in maintaining immune tolerance and tissue homeostasis due to their potent immunosuppressive properties.Recent advances in research have highlighted t... Regulatory T cells,a subset of CD4^(+)T cells,play a critical role in maintaining immune tolerance and tissue homeostasis due to their potent immunosuppressive properties.Recent advances in research have highlighted the important therapeutic potential of Tregs in neurological diseases and tissue repair,emphasizing their multifaceted roles in immune regulation.This review aims to summarize and analyze the mechanisms of action and therapeutic potential of Tregs in relation to neurological diseases and neural regeneration.Beyond their classical immune-regulatory functions,emerging evidence points to non-immune mechanisms of regulatory T cells,particularly their interactions with stem cells and other non-immune cells.These interactions contribute to optimizing the repair microenvironment and promoting tissue repair and nerve regeneration,positioning non-immune pathways as a promising direction for future research.By modulating immune and non-immune cells,including neurons and glia within neural tissues,Tregs have demonstrated remarkable efficacy in enhancing regeneration in the central and peripheral nervous systems.Preclinical studies have revealed that Treg cells interact with neurons,glial cells,and other neural components to mitigate inflammatory damage and support functional recovery.Current mechanistic studies show that Tregs can significantly promote neural repair and functional recovery by regulating inflammatory responses and the local immune microenvironment.However,research on the mechanistic roles of regulatory T cells in other diseases remains limited,highlighting substantial gaps and opportunities for exploration in this field.Laboratory and clinical studies have further advanced the application of regulatory T cells.Technical advances have enabled efficient isolation,ex vivo expansion and functionalization,and adoptive transfer of regulatory T cells,with efficacy validated in animal models.Innovative strategies,including gene editing,cell-free technologies,biomaterial-based recruitment,and in situ delivery have expanded the therapeutic potential of regulatory T cells.Gene editing enables precise functional optimization,while biomaterial and in situ delivery technologies enhance their accumulation and efficacy at target sites.These advancements not only improve the immune-regulatory capacity of regulatory T cells but also significantly enhance their role in tissue repair.By leveraging the pivotal and diverse functions of Tregs in immune modulation and tissue repair,regulatory T cells–based therapies may lead to transformative breakthroughs in the treatment of neurological diseases. 展开更多
关键词 demyelinating diseases gene editing immune regulation immune tolerance neural regeneration neurological diseases non-immune mechanisms regulatory T cells stem cells STROKE tissue homeostasis tissue repair
暂未订购
The mechanism of international law empowering international standardization and China’s response
3
作者 Diao Zixuan Duan Yue +1 位作者 Li Ruihan Wang Quanzhi 《China Standardization》 2026年第1期60-62,共3页
As a crucial aspect of international governance,international standardization requires legitimacy grounded in the principles and frameworks established by international law.Building upon an understanding of the common... As a crucial aspect of international governance,international standardization requires legitimacy grounded in the principles and frameworks established by international law.Building upon an understanding of the commonalities between international law and international standardization,this paper explores the mechanism through which international law centered on treaties empowers international standardization. 展开更多
关键词 international law international standardization mechanism
原文传递
Mechanisms and challenges of nanoporous confinement for carbon dioxide electrocatalysis
4
作者 Suxin Bai Puxia Yan +4 位作者 Bingbing Li Xiangfa Zhu Long He Min Kuang Jianping Yang 《Nano Research》 2026年第1期97-114,共18页
The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific... The carbon dioxide reduction reaction(CO_(2)RR)is a promising strategy for converting CO_(2)into high-value chemicals.However,the rational design of efficient catalysts for steering product selectivity toward specific high-value chemicals continues to be a central goal in electrocatalysis research.Recently,nanoporous confined electrocatalysts have garnered attention due to their unique pore structures,which not only increase the accessibility and utilization of active sites but also promote the enrichment and stabilization of key reaction intermediates and modulate the local reaction microenvironment.These combined effects contribute to improved reaction kinetics and enhanced product selectivity.This review systematically summarizes the mechanistic foundations of nanoporous confinement in CO_(2)RR,emphasizing its role in governing reaction pathways and selectivity.We introduce the fundamental design principles of nanoporous confined electrocatalysts,detailing how their pore size,tortuosity,and connectivity influence CO_(2)diffusion,local concentration gradients,and electrolyte accessibility.Then highlight how confinement-induced spatial regulation facilitates intermediate accumulation,directional proton transfer,and local pH modulation,collectively steering product selectivity toward desired C_(1) and multi-carbon(C_(2+))products.Representative material systems and structure-performance relationships are discussed to illustrate these effects.Finally,we summarize the current challenges in mechanistic understanding and practical implementation,and propose future directions for developing nanoporous systems that integrate controlled transport,catalytic reactivity,and system-level scalability. 展开更多
关键词 NANOPORES confinement effect carbon dioxide reduction mechanismS SELECTIVITY
原文传递
Reducing bentonite usage in iron ore pelletization through synergistic modification with mechanical force and DMSO:Effects and mechanisms
5
作者 Yinrui Dong Yongbin Yang +4 位作者 Lin Wang Qianqian Duan Qian Li Yan Zhang Tao Jiang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期177-190,共14页
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell... Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders. 展开更多
关键词 PELLETS bentonite modification mechanical force dimethyl sulfoxide organic intercalation
在线阅读 下载PDF
Performance and Microscopic Influence Mechanism of Solidified Cadmium Contaminated Soil by Rice Husk Ash Based Geopolymer
6
作者 CHEN Wei HAN Jianhong +5 位作者 YU Hongbao XU Hong WANG Ying FAN Wenxiao ZHAO Lina LIU Peijie 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期171-178,共8页
In order to realize the comprehensive utilization of industrial solid waste rice husk ash and heavy metal cadmium contaminated soil,rice husk ash-based geopolymer prepared by alkaline activator was used to modify cadm... In order to realize the comprehensive utilization of industrial solid waste rice husk ash and heavy metal cadmium contaminated soil,rice husk ash-based geopolymer prepared by alkaline activator was used to modify cadmium contaminated soil.The main physical and chemical properties of rice husk ash were clarified by SEM,XRF and X-ray diffraction.The unconfined compressive strength test and toxicity leaching test were carried out on the modified soil.Combined with FTIR and TG micro-level,the solidification mechanism of rice husk ash-based geopolymer solidified cadmium contaminated soil was discussed.The results show that the strength of geopolymer modified soil is significantly higher than that of plain soil,and the unconfined compressive strength at 7 d age is 4.2 times that of plain soil.The strength of modified soil with different dosage of geopolymer at 28 d age is about 36% to 40% higher than that of modified soil at 7 d age.Geopolymer has a significant effect on the leaching of heavy metals in contaminated soil.When the cadmium content is 100 mg/kg,it meets the standard limit.In the process of complex depolymerization-condensation reaction,on the one hand,geopolymers are cemented and agglomerated to form a complex spatial structure,which affects the macro and micro characteristics of soil.On the other hand,it has significant adsorption,precipitation and replacement effects on heavy metal ions in soil,showing good strength and low heavy metal leaching toxicity. 展开更多
关键词 rice husk ash alkali excitation heavy metals curing mechanism
原文传递
Therapeutic potential of traditional Chinese medicine for the treatment of chemotherapy-induced diarrhea:clinical efficacy and underlying mechanisms
7
作者 Yun-Jing He Wei-Jian Chen Ke Nie 《Traditional Medicine Research》 2026年第1期75-99,共25页
Chemotherapy-induced diarrhea(CID)is a major concern for cancer patients and is associated with significant morbidity and mortality.Currently,the clinical management of CID is limited.The utilization of antidiarrheal ... Chemotherapy-induced diarrhea(CID)is a major concern for cancer patients and is associated with significant morbidity and mortality.Currently,the clinical management of CID is limited.The utilization of antidiarrheal medications,such as loperamide and octreotide,is relatively limited because of their unsatisfactory efficacy and adverse effects.In recent years,traditional Chinese medicine(TCM)has attracted great interest because of its beneficial effect in treating CID,which has multitarget and low-toxicity therapeutic characteristics.TCM exhibits remarkable therapeutic potential in the prevention and treatment of CID.It can alleviate and treat CID by regulating chemical drug metabolism,improving the integrity of the intestinal barrier,stimulating proliferation while suppressing the apoptosis of intestinal epithelial cells,ameliorating oxidative stress and inflammation and regulating bile acids and aquaporins.However,large-scale,randomized,double-blind clinical trials of TCM for the treatment of CID are lacking,and most preclinical experiments have not been translated to clinical trials.Accordingly,this review highlights the clinical efficacy and molecular mechanisms of TCM against CID via PubMed,Web of Science and China National Knowledge Infrastructure and proposes that future research on TCM against CID should focus on strengthening the connection from bench to bed,which may help to comprehensively evaluate the therapeutic potential of TCM against CID. 展开更多
关键词 traditional Chinese medicine chemotherapy-induced diarrhea clinical efficacy pharmacological mechanism
暂未订购
Investigation into the Effect and Microscopic Mechanism of Retarders on Two-component Backfilling Grout in Shield Engineering
8
作者 CAI Hongwei MIN Fanlu +5 位作者 YUAN Rui LI Zhen ZHANG Jianfeng WANG Dengfeng ZHANG Yazhou YAO Zhanhu 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期84-95,共12页
To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmenta... To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmental Lining,the inorganic retarder sodium pyrophosphate(TSPP)and three organic retarders were added to the A component:sodium citrate(SC),sodium tartrate(ST)and glycerol(GLY).The effect law and microscopic mechanism of viscosity,bleeding rate,setting time,gelling time,compressive strength,and stone rate were investigated.The results revealed that the addition of retarders could enhance the stability and setting time of the A component and increase the gelling time,stone rate,and compressive strength of two-component grout.Among them,the performance of the grout with an SC dosage of 0.1% was superior.The bleeding rate of this grout was reduced to 3.5%,the stone rate of the two-component grout was more than 99%,and the early compressive strength and late compressive strength of this grout were increased by approximately 35% and 7%,respectively.The initial and final setting time of the A component with a TSPP dosage of 0.3% was the longest,which was prolonged to 17 and 26 h,respectively.Microscopic analysis revealed that the four retarders hindered the hydration process of cement through complexation and adsorption,and inhibited the hydration of C_(3)S and the crystallisation of CH.Moreover,they reduced the defects caused by the rapid reaction of water glass and CH on the solid phase structure,enabled the microstructure of the stone body to be denser,and subsequently,enhanced the compressive strength. 展开更多
关键词 backfilling grout two-component grout RETARDER working performance gelling performance microscopic mechanism
原文传递
Advancing device-level strategies for MXene-based green electromagnetic shielding:From attenuation mechanisms to architecture design
9
作者 Siteng Li Jincheng Shu +3 位作者 Yulin Guo Zhifang Liu Yilin Sun Weijia Luo 《Nano Research》 2026年第1期1299-1328,共30页
The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,t... The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,the development of EM shielding devices with high green shielding index(gs)is essential,as they offer absorption-dominant protection that minimizes reflections and safeguards both health and electronics.MXene,with its intrinsic ultra-high electrical conductivity,liquid-phase tunable surface chemistry,low density,large specific surface area,thermal stability,and mechanical stability,has become the leading two-dimensional(2D)material driving the development of green EM shielding devices.In this review we emphasize device-level strategies with engineered architectures for MXene-based green EM shielding.We first examine MXene’s crystal and electronic structure and the fundamental attenuation mechanisms in MXene-based devices.Then we survey fabrication and assembly methods,analyzing three device-level strategies for MXene-based green EM shielded devices:3D architectures,metastructure/meta-surfaces,and external stimulus.Throughout,we highlight how MXene’s distinguished properties enable green EM interference(EMI)shielding devices that minimize secondary interference.Finally,we discuss the challenges faced in the effective utilization of MXene-based in green EM shielding devices,provide insights into these challenges,and offer guidelines for developing the solutions of next-generation green MXene-based EM shielding devices. 展开更多
关键词 MXene attenuation mechanisms architecture design green electromagnetic(EM)shielding
原文传递
Design and experimental validation of a low-impact wing locking/release mechanism based on energy conversion strategy
10
作者 Yanbing Wang Honghao Yue +5 位作者 Jun Wu Xueting Pan Fei Yang Yong Zhao Jicheng Liu Xue Bai 《Defence Technology(防务技术)》 2026年第1期241-256,共16页
Conventional locking/release mechanisms often face challenges in aircraft wing separation processes,such as excessive impact loads and insufficient synchronization.These may cause structural damage to the airframe or ... Conventional locking/release mechanisms often face challenges in aircraft wing separation processes,such as excessive impact loads and insufficient synchronization.These may cause structural damage to the airframe or attitude instability,seriously compromising mission reliability.To address this engineering challenge,this paper proposes a multi-point low-impact locking/release mechanism based on the mobility model and energy conversion strategy.Through establishing a DOF constraint framework system,this paper systematically analyzes the energy transfer and conversion characteristics during the wing separation process,reveals the generation mechanism of impact loads,and conducts research on low-impact design based on energy conversion strategy.Building on this foundation,a single-point locking/release mechanism employing parallel trapezoidal key shaft structure was designed,which increases frictional contact time and reduces the energy release rate,thereby achieving low-impact characteristics.The mechanism's performance was validated through physical prototype development and systematic functional testing(including unlocking force,synchronization,and impact tests).Experimental results demonstrate:(1)Under 14 kN preload condition,the maximum unlocking force was only 92.54 N,showing a linear relationship with preload that satisfies the"strong-connection/weak-unlock"design requirement;(2)Wing separation was completed within 46 ms,with synchronization time difference among three separation mechanisms stably controlled within 12-14 ms,proving rapid and reliable operation;(3)The unlocking impact acceleration ranged between 26 and 73 g,below the 100 g design limit,confirming the effectiveness of the energy conversion strategy.The proposed low-impact locking/release mechanism design method based on energy conversion strategy resolves the traditional challenges of high impact and synchronization deficiencies.The synergistic optimization mechanism of"structural load reduction and performance improvement"provides a highly reliable technical solution for wing separable mechanisms while offering novel design insights for wing connection/separation systems engineering. 展开更多
关键词 Hypersonic vehicle Energy conversion strategy Low-impact Wing separation Locking/release mechanism
在线阅读 下载PDF
Integrating high-resolution mass spectrometry and transcriptomics to explore the therapeutic mechanism of Sanhuang Oil in diabetic foot
11
作者 Ping Sun Yu-Feng Zhang +4 位作者 Shuang Li Wei Zhang Peng-Fei Zhao Chen-Xia Li Chen-Ning Zhang 《Traditional Medicine Research》 2026年第1期19-38,共20页
Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-... Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers. 展开更多
关键词 Sanhuang Oil diabetic foot high-resolution mass spectrometry molecular network analysis mechanism of action
暂未订购
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
12
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
Scutellaria baicalensis Georgi as a potential therapeutic drug intervention in ulcerative colitis:Mechanisms of action and clinical trials
13
作者 Yi Ding Chu-Ye Wang +3 位作者 Ya-Ting Pan Yu-Jia Wang Ai-Guang Zhao Hong-Zhu Wen 《World Journal of Gastroenterology》 2026年第1期88-109,共22页
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized byclinical symptoms of diarrhea and mucopurulent bloody stools, and its incidenceis increasing globally. The etiology and pathogenesis of U... Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized byclinical symptoms of diarrhea and mucopurulent bloody stools, and its incidenceis increasing globally. The etiology and pathogenesis of UC remain elusive. Currenttherapeutic approaches, including anti-inflammatory, immunosuppressiveand immunomodulating agents, are often limited in efficacy and frequently associatedwith adverse drug reactions. Therefore, there is an urgent need to developsafer and more effective treatment strategies to address the limitations of existingtherapies. Scutellaria baicalensis Georgi (HQ), a traditional Chinese medicinal herb,has been employed in the treatment of UC for over 2000 years. Recent studieshave demonstrated that HQ contains multiple active components capable oftreating UC through anti-inflammation, immune modulation, intestinal barrierprotection, antioxidant activity, and regulation of the gut microbiota. This paperreviews recent studies on the mechanism of action and clinical trials of HQ intreating UC based on relevant literature, with the aim of providing valuable insightsinto future treatment approaches. 展开更多
关键词 Ulcerative colitis Scutellaria baicalensis Georgi mechanism of action Clinical trials Traditional Chinese medicine therapy
暂未订购
Towards mechanism-based tau-targeted therapies
14
作者 Lidia Bakota Roland Brandt 《Neural Regeneration Research》 2026年第2期687-688,共2页
Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,ta... Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,tau is not an easy target because it dynamically interacts with microtubules and other cellular components,which presents a challenge for tau-targeted drugs.New cellular models could aid the development of mechanism-based tau-targeted therapies. 展开更多
关键词 tau targeted therapies cellular components mechanism based therapies cellular componentswhich cellular models MICROTUBULES TAUOPATHIES neurodegenerative diseasescollectively
暂未订购
Performance and Mechanism Study of Solidifying Zinc-Contaminated Soil Using Red Mud-Carbide Slag-Phosphogypsum Synergistic Cement
15
作者 ZHANG Jieya YANG Zhen +1 位作者 WU Min DONG Xiaoqiang 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期96-106,共11页
We used solidification/stabilization methods to remediate highly concentrated Zn^(2+)-contaminated soil.An industrial waste mixture of red mud,carbide slag,and phosphogypsum is combined with cement as the curing agent... We used solidification/stabilization methods to remediate highly concentrated Zn^(2+)-contaminated soil.An industrial waste mixture of red mud,carbide slag,and phosphogypsum is combined with cement as the curing agent.The mixing ratios of the four materials are determined by comparing the strength,permeability coefficient,pH,and Zn^(2+)-leaching concentration of the solidified soil.Microscopic characteristics of the solidified uncontaminated soil and solidified Zn^(2+)-contaminated soil were observed using scanning electron microscopy,X-ray diffraction,and Fourier-transform infrared spectroscopy.Furthermore,the heavy metals speciation in both pure cement and mixed-material solidified soil was examined,demonstrating the beneficial role of the mixed-type curing agent in stabilizing heavy metals.The research results indicate that Zn^(2+)degrade the strength of the solidified soil by up to 90%.The permeability coefficient,pH,and Zn^(2+)-leaching concentration of the solidified soil easily meet standard,especially with Zn^(2+)leaching concentration well below the environmental protection limit.Furthermore,most Zn^(2+)exists in forms with lower biological and chemical reactivity.Both the solidified Zn^(2+)-contaminated soil and uncontaminated soil resulted in the formation of hydrated products containing elements such as silicon,aluminum,calcium,and sulfur.Additionally,the solidified Zn^(2+)-contaminated soil produced zinc-containing compounds and a large amount of rod-shaped ettringite. 展开更多
关键词 SOLIDIFICATION/STABILIZATION Zn^(2+)-contaminated soil engineering characteristics environmental indicators solidification mechanism
原文传递
Contrastive mechanisms of lacustrine groundwater discharge and associated pollutant fluxes into two typical inland lakes in Inner Mongoli1,Northwest China
16
作者 Yuanzhen Zhao Xiaohui Ren +5 位作者 Shen Qu Fu Liao Keyi Zhang Muhan Li Juliang Wang Ruihong Yu 《Journal of Environmental Sciences》 2026年第1期661-669,共9页
Lacustrine groundwater discharge(LGD)plays an important role in water resources management.Previous studies have focused on LGD process in a single lake,but the differences in LGD process within the same region have n... Lacustrine groundwater discharge(LGD)plays an important role in water resources management.Previous studies have focused on LGD process in a single lake,but the differences in LGD process within the same region have not been thoroughly investigated.In this study,multiple tracers(hydrochemistry,𝛿D,𝛿18O and 222Rn)were used to compare mechanisms of LGD in Daihai and Ulansuhai Lake in Inner Mongoli1,Northwest China.The hydrochemical types showed a trend from groundwater to lake water,indicating a hydraulic connection between them.In addition,the𝛿D and𝛿18O values of sediment pore water were between the groundwater and lake water,indicating the LGD processes.The radon mass balance model was used to estimate the average groundwater discharge rates of Daihai and Ulansuhai Lake,which were 2.79 mm/day and 3.02 mm/day,respectively.The total nitrogen(TN),total phosphorus(TP),and fluoride inputs associated with LGD in Daihai Lake accounted for 97.52%,96.59%,and 95.84%of the total inputs,respectively.In contrast,TN,TP and fluoride inputs in Ulansuhai Lake were 53.56%,40.98%,and 36.25%,respectively.This indicates that the pollutant inputs associated with LGD posed a potential threat to the ecological stability of Daihai and Ulansuhai Lake.By comparison,the differences of LGD process and associated pollutant flux were controlled by hydrogeological conditions,lakebed permeability and human activities.This study provides a reference for water resources management in Daihai and Ulansuhai Lake basins while improving the understanding of LGD in the Yellow River basin. 展开更多
关键词 Lacustrine groundwater discharge 222Rn mass balance model Pollutant fluxes Contrastive mechanisms Daihai and Ulansuhai Lake
原文传递
Metal organic frameworks for photocatalytic CO_(2) reduction to CO with high selectivity: Mechanism and strategy
17
作者 Ling Ma Yanxin Sun +7 位作者 Yingbo Zhang Yongmin Nie Yubo Zhang Yupeng Rao Chunxia Wang Guoyong Huang Xinchen Kang Shengming Xu 《Nano Research》 2026年第1期462-489,共28页
Photocatalytic carbon dioxide(CO_(2))reduction offers an alternative strategy for converting CO_(2)into high-value added gaseous fuels,thereby paving the way for the development of clean and renewable energy.Metal-org... Photocatalytic carbon dioxide(CO_(2))reduction offers an alternative strategy for converting CO_(2)into high-value added gaseous fuels,thereby paving the way for the development of clean and renewable energy.Metal-organic frameworks(MOFs),characterized by their highly porous structure,exceptional CO_(2)adsorption capacity,and tunable architecture,have emerged as promising candidates for photocatalytic CO_(2)reduction.This review systematically examines the recent advancement in MOFs-based photocatalysts for CO_(2)reduction to CO.It begins with the overview of the fundamental mechanisms and processes of MOFs towards photocatalytic CO_(2)reduction.Subsequently,common strategies for the modulation of MOFs-based photocatalysts are summarized,including metallic site modification,functionalized ligand incorporation,morphological control,defect engineering,and heterostructure construction.Notably,the review analyzes the critical factors contributing to the high selectivity of CO_(2)photoreduction to CO from both thermodynamic and kinetic perspectives.The conclusion addresses current challenges and future perspectives in designing highly efficient photocatalysts with abundant active sites,providing valuable insights for their continued development. 展开更多
关键词 metal organic frameworks(MOFs) photocatalytic CO_(2)reduction mechanism rational design MOF-based materials
原文传递
Double Ionization to CO_(2) Produces Molecular Oxygen:A Roaming Mechanism
18
作者 Qibo Ma Xintai Hao +5 位作者 Jiaqi Zhou Xiaorui Xue Qingrui Zeng Peng Li Lei Wang Xueguang Ren 《Chinese Physics Letters》 2026年第1期17-25,共9页
Abiotic oxygen formation predates photosynthesis,sustaining early chemical evolution,yet its elementary mechanisms remain contested.Here,we show the production pathways for molecular oxygen from doubly ionized carbon ... Abiotic oxygen formation predates photosynthesis,sustaining early chemical evolution,yet its elementary mechanisms remain contested.Here,we show the production pathways for molecular oxygen from doubly ionized carbon dioxide upon electron-impact.Through fragment ions and electron coincidence momentum imaging,we unambiguously determine the ionization mechanism by measuring the projectile energy loss in association with the C^(+) +O_(2)^(+) channel.Further potential energy and trajectory calculations enable us to elucidate the dynamical details of this fragmentation process,in which a bond rearrangement pathway is found to proceed via the structural deformation to a triangular intermediate.Moreover,we demonstrate a further roaming pathway for the formation of O_(2)^(+) from CO_(2)^(+) 2,in which a frustrated C-O bond cleavage leaves the O atom without sufficient energy to escape.The O atom then wanders around varied configuration spaces of the flat potential energy regions and forms a C-O-O_(2)^(+) intermediate prior to the final products C^(+) +O_(2)^(+).Considering the large quantities of free electrons in interstellar space,the processes revealed here are expected to be significant and should be incorporated into atmospheric evolution models. 展开更多
关键词 carbon dioxide projectile energy loss abiotic oxygen double ionization fragment ions potential energy trajectory calculations ionization mechanism electron coincidence momentum imagingwe
原文传递
Effect and mechanism of Ti−O solid solution layer on interfacial bonding strength of cold roll bonded titanium/stainless steel laminated composite plate
19
作者 Zhi-yan YANG Xue-feng LIU +1 位作者 Hong-ting CHEN Xin MA 《Transactions of Nonferrous Metals Society of China》 2026年第1期171-182,共12页
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str... Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective. 展开更多
关键词 titanium/stainless steel laminated composite plate Ti−O solid solution hardened layer interlocking interface formation mechanism interfacial bonding strength
在线阅读 下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets 被引量:5
20
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部