Performance-based earthquake engineering is a recent focus of research that has resulted in widely developed design methodologies due to its ability to realistically simulate structural response characteristics. Preci...Performance-based earthquake engineering is a recent focus of research that has resulted in widely developed design methodologies due to its ability to realistically simulate structural response characteristics. Precise prediction of seismic demands is a key component of performance-based design methodologies. This paper presents a seismic demand evaluation of reinforced concrete moment frames with medium ductility. The accuracy of utilizing simplified nonlinear static analysis is assessed by comparison against the results of time history analysis on a number of frames. Displacement profiles, drift demand and maximum plastic rotation were computed to assess seismic demands. Estimated seismic demands were compared to acceptance criteria in FEMA 356. The results indicate that these frames have sufficient capacity to resist interstory drifts that are greater than the limit value.展开更多
The earthqnake emergency material preparation demand analysis can provide the scientific basis for all levels of governments to conduct reasonable and unified configuration of the emergency preparation resources, in o...The earthqnake emergency material preparation demand analysis can provide the scientific basis for all levels of governments to conduct reasonable and unified configuration of the emergency preparation resources, in order to further optimize the earthquake emergency ability construction to provide reference. This paper takes Datong City of Shanxi Province as an example, using the earthquake risk evaluation method, adopting the deterministic method and probabilistic method to conduct earthquake danger analysis, combined with the earthquake emergency rescue case and the previous scholars' research achievements, in order to study and analyze the earthquake emergency material preparation demand in different earthquake dangers.展开更多
Public buildings present substantial demand re sponse(DR)potential,which can participate in the power sys tem operation.However,most public buildings exhibit a high degree of uncertainties due to incomplete informatio...Public buildings present substantial demand re sponse(DR)potential,which can participate in the power sys tem operation.However,most public buildings exhibit a high degree of uncertainties due to incomplete information,varying thermal parameters,and stochastic user behaviors,which hin ders incorporating the public buildings into power system oper ation.To address the problem,this paper proposes an interval DR potential evaluation method and a risk dispatch model to integrate public buildings with uncertainties into power system operation.Firstly,the DR evaluation is developed based on the equivalent thermal parameter(ETP)model,actual outdoor tem perature data,and air conditioning(AC)consumption data.To quantify the uncertainties of public buildings,the interval evalu ation is given employing the linear regression method consider ing the confidence bound.Utilizing the evaluation results,the risk dispatch model is proposed to allocate public building re serve based on the chance constrained programming(CCP).Fi nally,the proposed risk dispatch model is reformulated to a mixed-integer second-order cone programming(MISOCP)for its solution.The proposed evaluation method and the risk dis patch model are validated based on the modified IEEE 39-bus system and actual building data obtained from a southern city in China.展开更多
https://doi. org/10.1016/j. enbuild. 2025.115843Volume 343,15 September 2025(1) Archetypes-based calibration for urban building energy modelling by Moa Mattsson,Itai Danielski,Thomas Olofsson,et al,Abstract:Reducing e...https://doi. org/10.1016/j. enbuild. 2025.115843Volume 343,15 September 2025(1) Archetypes-based calibration for urban building energy modelling by Moa Mattsson,Itai Danielski,Thomas Olofsson,et al,Abstract:Reducing energy use w ithin the building sector is vital to create sustainable cities and mitigate global w arming. Urban building energy modelling (UBEM) is useful to evaluate energy demand and renovation potential in districts.展开更多
The practice of ventilation is continually evolving with new technological advances developed in the mining industry.In recent years the advances in diesel engine technologies,ventilation modeling software,and ventila...The practice of ventilation is continually evolving with new technological advances developed in the mining industry.In recent years the advances in diesel engine technologies,ventilation modeling software,and ventilation management capacities have redefined the historical methods used to evaluate systems.The advances re-evaluate previous methods used to calculate the airflow requirements for the dilution of diesel exhaust fumes.Modeling software has become an integral part of planning and developing ventilation systems in partnership with graphical mine design software packages to generate realistic representations of the mine.Significant advances in ventilation control strategies through remote sensors and monitoring capabilities have been developed to results in cost savings.Though there has been much advancement in mine ventilation technology,the practices and basic ventilation principals enacted through the ventilation engineer cannot be placated with technological advances only.展开更多
文摘Performance-based earthquake engineering is a recent focus of research that has resulted in widely developed design methodologies due to its ability to realistically simulate structural response characteristics. Precise prediction of seismic demands is a key component of performance-based design methodologies. This paper presents a seismic demand evaluation of reinforced concrete moment frames with medium ductility. The accuracy of utilizing simplified nonlinear static analysis is assessed by comparison against the results of time history analysis on a number of frames. Displacement profiles, drift demand and maximum plastic rotation were computed to assess seismic demands. Estimated seismic demands were compared to acceptance criteria in FEMA 356. The results indicate that these frames have sufficient capacity to resist interstory drifts that are greater than the limit value.
文摘The earthqnake emergency material preparation demand analysis can provide the scientific basis for all levels of governments to conduct reasonable and unified configuration of the emergency preparation resources, in order to further optimize the earthquake emergency ability construction to provide reference. This paper takes Datong City of Shanxi Province as an example, using the earthquake risk evaluation method, adopting the deterministic method and probabilistic method to conduct earthquake danger analysis, combined with the earthquake emergency rescue case and the previous scholars' research achievements, in order to study and analyze the earthquake emergency material preparation demand in different earthquake dangers.
基金supported by the National Science Fund for Distinguished Young Scholars(No.52125702)the Key Science and Technology Project of China Southern Power Grid Corporation(No.090000KK52220020).
文摘Public buildings present substantial demand re sponse(DR)potential,which can participate in the power sys tem operation.However,most public buildings exhibit a high degree of uncertainties due to incomplete information,varying thermal parameters,and stochastic user behaviors,which hin ders incorporating the public buildings into power system oper ation.To address the problem,this paper proposes an interval DR potential evaluation method and a risk dispatch model to integrate public buildings with uncertainties into power system operation.Firstly,the DR evaluation is developed based on the equivalent thermal parameter(ETP)model,actual outdoor tem perature data,and air conditioning(AC)consumption data.To quantify the uncertainties of public buildings,the interval evalu ation is given employing the linear regression method consider ing the confidence bound.Utilizing the evaluation results,the risk dispatch model is proposed to allocate public building re serve based on the chance constrained programming(CCP).Fi nally,the proposed risk dispatch model is reformulated to a mixed-integer second-order cone programming(MISOCP)for its solution.The proposed evaluation method and the risk dis patch model are validated based on the modified IEEE 39-bus system and actual building data obtained from a southern city in China.
文摘https://doi. org/10.1016/j. enbuild. 2025.115843Volume 343,15 September 2025(1) Archetypes-based calibration for urban building energy modelling by Moa Mattsson,Itai Danielski,Thomas Olofsson,et al,Abstract:Reducing energy use w ithin the building sector is vital to create sustainable cities and mitigate global w arming. Urban building energy modelling (UBEM) is useful to evaluate energy demand and renovation potential in districts.
文摘The practice of ventilation is continually evolving with new technological advances developed in the mining industry.In recent years the advances in diesel engine technologies,ventilation modeling software,and ventilation management capacities have redefined the historical methods used to evaluate systems.The advances re-evaluate previous methods used to calculate the airflow requirements for the dilution of diesel exhaust fumes.Modeling software has become an integral part of planning and developing ventilation systems in partnership with graphical mine design software packages to generate realistic representations of the mine.Significant advances in ventilation control strategies through remote sensors and monitoring capabilities have been developed to results in cost savings.Though there has been much advancement in mine ventilation technology,the practices and basic ventilation principals enacted through the ventilation engineer cannot be placated with technological advances only.