期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Delete-group Jackknife Estimate in Partially Linear Regression Models with Heteroscedasticity 被引量:1
1
作者 Jin-hong You Gemai Chen 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第4期599-610,共12页
Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametri... Consider a partially linear regression model with an unknown vector parameter , an unknown function g(·), and unknown heteroscedastic error variances. Chen, You<SUP>[23]</SUP> proposed a semiparametric generalized least squares estimator (SGLSE) for , which takes the heteroscedasticity into account to increase efficiency. For inference based on this SGLSE, it is necessary to construct a consistent estimator for its asymptotic covariance matrix. However, when there exists within-group correlation, the traditional delta method and the delete-1 jackknife estimation fail to offer such a consistent estimator. In this paper, by deleting grouped partial residuals a delete-group jackknife method is examined. It is shown that the delete-group jackknife method indeed can provide a consistent estimator for the asymptotic covariance matrix in the presence of within-group correlations. This result is an extension of that in [21]. 展开更多
关键词 Partially linear regression model asymptotic variance HETEROSCEDASTICITY delete-group jackknife semiparametric generalized least squares estimator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部