We used a litterbag method to investigate litter decomposition and related soil degradative enzyme activities across four seasons in a broad-leaved forest and a coniferous forest on Zijin Mountain in sub-tropical Chin...We used a litterbag method to investigate litter decomposition and related soil degradative enzyme activities across four seasons in a broad-leaved forest and a coniferous forest on Zijin Mountain in sub-tropical China. Across four seasons, we quantified litter mass losses, soil pH values, and related soil degradative enzyme activities. Litter decomposition rates differed significantly by season. Litter decomposi- tion rates of broadleaf forest leaves were higher than for coniferous for- ests needles across four seasons, and maximal differences in litter de- composition rates between the two litter types were found in spring.展开更多
Rhizospheres can promote self-transmissible plasmid transfer,however,the corresponding mechanism has not received much attention.Plant-microbe remediation is an effective way to promote pollutant biodegradation;howeve...Rhizospheres can promote self-transmissible plasmid transfer,however,the corresponding mechanism has not received much attention.Plant-microbe remediation is an effective way to promote pollutant biodegradation;however,some pollutants,such as naphthalene,are harmful to plants and result in inefficient plant-microbe remediation.In this study,trans-fer of a TOL-like plasmid,a self-transmissible plasmid loaded with genetic determinants for pollutant degradation,among different bacteria was examined in bulk and rhizosphere soils as well as addition of maize root exudate and its artificial root exudate(ARE).The results showed that the numbers of transconjugants and recipients as well as bacterial metabolic activities,such as xylE mRNA expression levels and catechol 2,3-dioxygenase(C23O)activ-ities of bacteria,remained high in rhizosphere soils,when compared with bulk soils.The number of transconjugants and bacterial metabolic activities increased with the increasing exudate and ARE concentrations,whereas the populations of donor and recipient bacteria were substantially unaltered at all concentrations.All the experiments consistently showed that a certain number of bacteria is required for self-transmissible plasmid transfer,and that the increased plasmid transfer might predominantly be owing to bacterial metabolic activ-ity stimulated by root exudates and ARE.Furthermore,ARE addition increased naphthalene degradation by transconjugants in both culture medium and soil.Thus,the combined action of a wide variety of components in ARE might contribute to the increased plasmid transfer and naphthalene degradation.These findings suggest that ARE could be an effectively al-ternative for plant-microbe remediation of pollutants in environments where plants cannot survive.展开更多
Fungi are the key agents in litter decomposition in forest ecosystems. However, the specific roles of the interactions between different fungal species during litter decomposition process are unclear. To evaluate the ...Fungi are the key agents in litter decomposition in forest ecosystems. However, the specific roles of the interactions between different fungal species during litter decomposition process are unclear. To evaluate the interactions, two fungi strains with significantly different morphs were isolated from the soils of Quercus acutissima forest and Pinus massoniana forest, and inoculated in the litter powder of Quercus acutissima leaves and Pinus massoniana needles with grown separately and in coexistence equally through a microcosm experiment. The enzyme activities were determined as a proxy for microbial activities. The results showed that the degradative enzymes involved in litter decomposition showed varying dynamics pattern during the incubation period. The interactions between the two fungi strains are synergism, and benefit to each other according to enzyme activities, suggesting that a fungi strain growth was accelerated by the presence of other fungi strain during litter decomposition process. However, the interactions of the two fungi strains were bilateral antagonism inoculated in the litter powder of Quercus acutissima leaves according to cellobiohydrolase activities. The synergism, despite bilateral antagonism in an exceptional case, may be an important factor controlling the fungal colonization and growth on litter substrate. The results implied that more fungal species may accelerate litter decomposition rates due to their mutual cooperation.展开更多
We put forward a new approach for the synthesis of Ag@AgCl plasmonic photocatalyst via a hydrothermal-deposition-photoreduction method. The cetylmethylammonium chloride (CTAC) was used alone as both a source of reac...We put forward a new approach for the synthesis of Ag@AgCl plasmonic photocatalyst via a hydrothermal-deposition-photoreduction method. The cetylmethylammonium chloride (CTAC) was used alone as both a source of reactants and surfactant. The structure of the prepared photocatalyst was determined by XRD, SEM, EDX and UV-Vis spectroscoscopy. The photocatalytic properties were investigated by degradation of an organic pollutant, Rhodamine B, under visible light irradiation. The results reveal that the experimental conditions have a great effect on the morphology of Ag@AgCl crystals. Ag@AgC1 crystal is cubic and the Ag@AgCl sample which is photoreduced for 40 min exhibits the highest photoactivity, and 80.6 % RhB is degraded after irradiation for 2 hours using this catalyst. The high photocatalytic activity observed is attributed to the surface plasmon resonance effect ofAg nanoparticles.展开更多
Steviaside containing plant extracts have been used for degradation of persistent chloroorganic pesticides. Reactions between DDT and Steviaside or sum of extractive substances isolated from ground up part of plant St...Steviaside containing plant extracts have been used for degradation of persistent chloroorganic pesticides. Reactions between DDT and Steviaside or sum of extractive substances isolated from ground up part of plant Stevia were studied to give of less toxic DDE. Herein researches on studying interaction sum of polysaccharides of Stevia with DDT in various ratios resulted also. The GC-MS and GLC methods were used for analyzing degradation degree of pesticides and to determine obtained compounds. Treat HCCH by water extract of Stevia basically formed tetrachlorocyclo-hexadiene (HCH) with 86.9% yield and in particularly formed of tri-, tetrachlorobenzenes. The HCH formed in 79.7% on treat pesticide by 80% Steviaside. Degradation of HCCH and DDT by water extract of Stevia in a presence of Ana-basine in a ratio of 2:1:1 occur to degrade of HCCH up to 70-80%, and DDT on 25% - 30%.展开更多
The genetic information encoding metabolic pathways for xenobiotic compounds in bacteria often resides on catabolic plasmids.The aim of the present work was to know the location of the genes for degrading 1,2,4-trichl...The genetic information encoding metabolic pathways for xenobiotic compounds in bacteria often resides on catabolic plasmids.The aim of the present work was to know the location of the genes for degrading 1,2,4-trichlorobenzen.In this paper a 1,2,4-trichlorobenzene-degrading strain THSL-1 was isolated from the soil of Tianjin Chemical Plant using 1,2,4-trichlorobenzene as the sole carbon source.The strain was identified as Pseudomonas stutzeri through morphologic survey and 16S rDNA sequence determination.A plasmid was discovered from strain THSL-1 by using the alkali lysis method.When the plasmid was transformed into E.coli.JM109 by the CaCl2 method,the transformant could grow using 1,2,4-trichlorobenzene as the sole carbon source and had the degradation function of 1,2,4-trichlorobenzene.Therefore,it could be deemed that the plasmid carried the degradative genes of 1,2,4-trichlorobenzene.The average size of the plasmid was finally determined to be 40.2 Kb using selectively three kinds of restricted inscribed enzymes(HindIII,BamHI,and XholI)for single cutting and double cutting the plasmid pTHSL-1,respectively.展开更多
A degradative solvent extraction(DSE)method was proposed to upgrade low-rank coals(LRC)for their cascaded utilizations in a highly-dispersed medium.The derived products exhibited well improved properties in comparison...A degradative solvent extraction(DSE)method was proposed to upgrade low-rank coals(LRC)for their cascaded utilizations in a highly-dispersed medium.The derived products exhibited well improved properties in comparison to the raw LRCs.Previously,the LRCs were pre-dried to eliminate the potential impact of the varied water content of raw LRCs,but in light of the abundant water in fresh coals,the hydrolyzing effect of water on coals under heating,and the energy cost to pre-dry the LRCs,it is consequently essential to clarify the effect of water so as to verify the necessity of pre-drying process.In this study,the roles of inherent water and extra-added water were respectively investigated,using dried,raw and wet coals from two typical LRCs.The results show that increasing the moisture content of raw LRCs contributed to the extraction ability of DSE method without noticeably changing the elemental composition,chemical structure and thermal decomposition behavior of extractable products,thus pre-drying of LRCs before DSE treatment was proven unnecessary.Additionally,the roles of the inherent water were concluded as:1)leading to the formation of stable covalent bond during drying process;and 2)acting as H donor to promote extraction ability,while the added water can only function as H donor.Since excessive water will increase the pressure during DSE treatment and lead to the waste water treatment,the LRCs with a water content between 10%and 30%were consequently recommended for the practical application of DSE treatment.展开更多
A degradative solvent extraction method for upgrading low-rank coal was performed at 200-350◦C for 90 min to obtain a substance dissolved in the solvent at room temperature(Soluble).Because the resulting mixture exhib...A degradative solvent extraction method for upgrading low-rank coal was performed at 200-350◦C for 90 min to obtain a substance dissolved in the solvent at room temperature(Soluble).Because the resulting mixture exhibited a high carbon content without ash,it could be readily used as a fuel.Furthermore,deep eutectic solvents(DESs)have attracted attention for improving the Soluble yield and decreasing the oxygen content in Soluble.DES is known to cleave oxygen-containing functional groups in biomass and is considered effective for deoxidizing low-rank coal.Herein,DES was prepared by mixing choline chloride,FeCl3⋅6H2O,and Adaro subbituminous coal(AD)and then added to 1-methylnaphthalene(1-MN)in a non-polar solvent,followed by degradative solvent extraction in the range of 200-350◦C.The effects of reaction temperature and added DES amount on the product yield and the composition were evaluated.As the reaction temperature and amount of DES added increased,the Soluble yield and carbon content increased.It was also found that the thermal decomposition temperature and oxygen content decreased with the increasing DES amounts.This decrease indicates that DES promotes the deoxygenation and decomposition of AD and increases the soluble yield of the fuel source.展开更多
Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without ...Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.展开更多
Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite ou...Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown.Here,we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination.Cullin3 facilitated spastin degradation and ubiquitination.RING-box protein 1,but not RING-box protein 2,acted synergistically with Cullin3 protein to regulate spastin degradation.Overexpression of Culin3 or BRX1 markedly suppressed spastin expression,and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth.Moreover,USP14 interacted directly with spastin to mediate its deubiquitination.USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation.Although co-expression of spastin and USP14 did not enhance microtubule severing,it did increase neurite length in hippocampal neurons.Taken together,these findings elucidate the intricate regulatory mechanisms of spastin turnover,highlighting the roles of the Cullin-3–Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation.The dynamic interplay between these factors governs spastin stability and function,ultimately influencing microtubule dynamics and neuronal morphology.These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
Phthalic acid esters(PAEs)are widely released into the environment due to industrial and agricultural activities.This poses significant risks,not only to crops grown on contaminated soil but also to humans.PAEs enter ...Phthalic acid esters(PAEs)are widely released into the environment due to industrial and agricultural activities.This poses significant risks,not only to crops grown on contaminated soil but also to humans.PAEs enter the human body through the food chain,causing potential health hazards.Endophytic bacteria have demonstrated a significant potential as effective bioremediation agents,with specialized mechanisms of PAEs degradation.Endophytic bacteria such as Rhodococcus,Pseudomonas and Sphingomona recognize root exudates,adhere to and penetrate root surfaces,and ultimately colonize crops.They form symbiotic relationships with crops,obtaining nutrients and habitats from crops,meanwhile,promoting plant growth and health through hormone production,nutrient regulation,and the suppression of pathogenic microorganisms.Furthermore,endophytic bacteria efficiently degrade PAEs in soil-crop systems through synergistic interactions with indigenous rhizosphere microflora and regulatory effects on enzyme activity in crops.Here,we review the role of endophytic bacteria in the bioremediation of PAEs-contaminated crops and soils.In addition,we discuss the scarcity of endophytic bacterial strains with a confirmed ability to degrade PAEs,and underscore the lack of the research on the mechanisms of PAEs degradation by these bacteria.This review also points out that future study should investigate the molecular mechanisms underlying the interaction between endophytic bacteria and PAEs to offer novel insights and solutions for environmental protection and sustainable agricultural development.展开更多
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i...The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.展开更多
BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notabl...BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.展开更多
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu...Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability propertie...Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.展开更多
Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents ca...Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.展开更多
基金supported by the National Natural Science Foundation of China(30870419,40971151)Strategic Priority Research Program Climate Change:Carbon Budget and Related Issues of the Chinese Academy of Sciences(XDA05050204)
文摘We used a litterbag method to investigate litter decomposition and related soil degradative enzyme activities across four seasons in a broad-leaved forest and a coniferous forest on Zijin Mountain in sub-tropical China. Across four seasons, we quantified litter mass losses, soil pH values, and related soil degradative enzyme activities. Litter decomposition rates differed significantly by season. Litter decomposi- tion rates of broadleaf forest leaves were higher than for coniferous for- ests needles across four seasons, and maximal differences in litter de- composition rates between the two litter types were found in spring.
基金This work was supported by the Shanghai Municipal Science and Technology Commission(No.16391902100)the Shanghai Construction Group(No.19JCSF-12)the Ministry of Agriculture,P.R.China and Shanghai Engineering Research Center of Plant Germplasm Resources(No.17DZ2252700).
文摘Rhizospheres can promote self-transmissible plasmid transfer,however,the corresponding mechanism has not received much attention.Plant-microbe remediation is an effective way to promote pollutant biodegradation;however,some pollutants,such as naphthalene,are harmful to plants and result in inefficient plant-microbe remediation.In this study,trans-fer of a TOL-like plasmid,a self-transmissible plasmid loaded with genetic determinants for pollutant degradation,among different bacteria was examined in bulk and rhizosphere soils as well as addition of maize root exudate and its artificial root exudate(ARE).The results showed that the numbers of transconjugants and recipients as well as bacterial metabolic activities,such as xylE mRNA expression levels and catechol 2,3-dioxygenase(C23O)activ-ities of bacteria,remained high in rhizosphere soils,when compared with bulk soils.The number of transconjugants and bacterial metabolic activities increased with the increasing exudate and ARE concentrations,whereas the populations of donor and recipient bacteria were substantially unaltered at all concentrations.All the experiments consistently showed that a certain number of bacteria is required for self-transmissible plasmid transfer,and that the increased plasmid transfer might predominantly be owing to bacterial metabolic activ-ity stimulated by root exudates and ARE.Furthermore,ARE addition increased naphthalene degradation by transconjugants in both culture medium and soil.Thus,the combined action of a wide variety of components in ARE might contribute to the increased plasmid transfer and naphthalene degradation.These findings suggest that ARE could be an effectively al-ternative for plant-microbe remediation of pollutants in environments where plants cannot survive.
文摘Fungi are the key agents in litter decomposition in forest ecosystems. However, the specific roles of the interactions between different fungal species during litter decomposition process are unclear. To evaluate the interactions, two fungi strains with significantly different morphs were isolated from the soils of Quercus acutissima forest and Pinus massoniana forest, and inoculated in the litter powder of Quercus acutissima leaves and Pinus massoniana needles with grown separately and in coexistence equally through a microcosm experiment. The enzyme activities were determined as a proxy for microbial activities. The results showed that the degradative enzymes involved in litter decomposition showed varying dynamics pattern during the incubation period. The interactions between the two fungi strains are synergism, and benefit to each other according to enzyme activities, suggesting that a fungi strain growth was accelerated by the presence of other fungi strain during litter decomposition process. However, the interactions of the two fungi strains were bilateral antagonism inoculated in the litter powder of Quercus acutissima leaves according to cellobiohydrolase activities. The synergism, despite bilateral antagonism in an exceptional case, may be an important factor controlling the fungal colonization and growth on litter substrate. The results implied that more fungal species may accelerate litter decomposition rates due to their mutual cooperation.
基金Funded partly by the National Natural Science Foundation of China(Nos.51172063,51202056,51372068)Hebei Natural Science Funds for Distinguished Young Scholar(No.B2014209304)+1 种基金Hebei Natural Science Funds for the Joint Research of Iron and Steel(No.B2014209314)Hebei Provincial Foundation for Returned Scholars
文摘We put forward a new approach for the synthesis of Ag@AgCl plasmonic photocatalyst via a hydrothermal-deposition-photoreduction method. The cetylmethylammonium chloride (CTAC) was used alone as both a source of reactants and surfactant. The structure of the prepared photocatalyst was determined by XRD, SEM, EDX and UV-Vis spectroscoscopy. The photocatalytic properties were investigated by degradation of an organic pollutant, Rhodamine B, under visible light irradiation. The results reveal that the experimental conditions have a great effect on the morphology of Ag@AgCl crystals. Ag@AgC1 crystal is cubic and the Ag@AgCl sample which is photoreduced for 40 min exhibits the highest photoactivity, and 80.6 % RhB is degraded after irradiation for 2 hours using this catalyst. The high photocatalytic activity observed is attributed to the surface plasmon resonance effect ofAg nanoparticles.
文摘Steviaside containing plant extracts have been used for degradation of persistent chloroorganic pesticides. Reactions between DDT and Steviaside or sum of extractive substances isolated from ground up part of plant Stevia were studied to give of less toxic DDE. Herein researches on studying interaction sum of polysaccharides of Stevia with DDT in various ratios resulted also. The GC-MS and GLC methods were used for analyzing degradation degree of pesticides and to determine obtained compounds. Treat HCCH by water extract of Stevia basically formed tetrachlorocyclo-hexadiene (HCH) with 86.9% yield and in particularly formed of tri-, tetrachlorobenzenes. The HCH formed in 79.7% on treat pesticide by 80% Steviaside. Degradation of HCCH and DDT by water extract of Stevia in a presence of Ana-basine in a ratio of 2:1:1 occur to degrade of HCCH up to 70-80%, and DDT on 25% - 30%.
基金This work was supported by the National High Technology Research and Development Program of China(863 Program)(Grant Nos.2002AA601170 and 2002A A601150).
文摘The genetic information encoding metabolic pathways for xenobiotic compounds in bacteria often resides on catabolic plasmids.The aim of the present work was to know the location of the genes for degrading 1,2,4-trichlorobenzen.In this paper a 1,2,4-trichlorobenzene-degrading strain THSL-1 was isolated from the soil of Tianjin Chemical Plant using 1,2,4-trichlorobenzene as the sole carbon source.The strain was identified as Pseudomonas stutzeri through morphologic survey and 16S rDNA sequence determination.A plasmid was discovered from strain THSL-1 by using the alkali lysis method.When the plasmid was transformed into E.coli.JM109 by the CaCl2 method,the transformant could grow using 1,2,4-trichlorobenzene as the sole carbon source and had the degradation function of 1,2,4-trichlorobenzene.Therefore,it could be deemed that the plasmid carried the degradative genes of 1,2,4-trichlorobenzene.The average size of the plasmid was finally determined to be 40.2 Kb using selectively three kinds of restricted inscribed enzymes(HindIII,BamHI,and XholI)for single cutting and double cutting the plasmid pTHSL-1,respectively.
基金the National Natural Science Foundation of China(21776109)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCB1805).
文摘A degradative solvent extraction(DSE)method was proposed to upgrade low-rank coals(LRC)for their cascaded utilizations in a highly-dispersed medium.The derived products exhibited well improved properties in comparison to the raw LRCs.Previously,the LRCs were pre-dried to eliminate the potential impact of the varied water content of raw LRCs,but in light of the abundant water in fresh coals,the hydrolyzing effect of water on coals under heating,and the energy cost to pre-dry the LRCs,it is consequently essential to clarify the effect of water so as to verify the necessity of pre-drying process.In this study,the roles of inherent water and extra-added water were respectively investigated,using dried,raw and wet coals from two typical LRCs.The results show that increasing the moisture content of raw LRCs contributed to the extraction ability of DSE method without noticeably changing the elemental composition,chemical structure and thermal decomposition behavior of extractable products,thus pre-drying of LRCs before DSE treatment was proven unnecessary.Additionally,the roles of the inherent water were concluded as:1)leading to the formation of stable covalent bond during drying process;and 2)acting as H donor to promote extraction ability,while the added water can only function as H donor.Since excessive water will increase the pressure during DSE treatment and lead to the waste water treatment,the LRCs with a water content between 10%and 30%were consequently recommended for the practical application of DSE treatment.
基金CHN analysis(LECO,CHN628)for measuring mass fractions of Soluble and Residue was supported by Yukio Enda,Junko Kutsuna in Akita Industrial Technology Center.Appendix A.Supplementary data。
文摘A degradative solvent extraction method for upgrading low-rank coal was performed at 200-350◦C for 90 min to obtain a substance dissolved in the solvent at room temperature(Soluble).Because the resulting mixture exhibited a high carbon content without ash,it could be readily used as a fuel.Furthermore,deep eutectic solvents(DESs)have attracted attention for improving the Soluble yield and decreasing the oxygen content in Soluble.DES is known to cleave oxygen-containing functional groups in biomass and is considered effective for deoxidizing low-rank coal.Herein,DES was prepared by mixing choline chloride,FeCl3⋅6H2O,and Adaro subbituminous coal(AD)and then added to 1-methylnaphthalene(1-MN)in a non-polar solvent,followed by degradative solvent extraction in the range of 200-350◦C.The effects of reaction temperature and added DES amount on the product yield and the composition were evaluated.As the reaction temperature and amount of DES added increased,the Soluble yield and carbon content increased.It was also found that the thermal decomposition temperature and oxygen content decreased with the increasing DES amounts.This decrease indicates that DES promotes the deoxygenation and decomposition of AD and increases the soluble yield of the fuel source.
基金supported by the National Natural Science Foundation of China(22375101)the Natural Science of Colleges and Universities in Jiangsu Province(24KJB430027).
文摘Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.
基金supported by the National Natural Science Foundation of China,No.32071033(to MT)Basic and Applied Basic Research Foundation of Guangdong Province,Nos.2023A1515010140(to MT),2022A1515140169(to MT),2022A1515111096(to ZC)+3 种基金Science and Technology Project of Guangzhou,Nos.202201010015(to YL),2023A03J0790(to TJ)Basic and Applied Basic Research Foundation of Guangzhou,No.2023A04J1285(to ZC)Medical Research Foundation of Guangdong Province,No.A2023147(to ZC)Health Science and Technology Project of Guangzhou,No.20221A011039(to TJ)。
文摘Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown.Here,we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination.Cullin3 facilitated spastin degradation and ubiquitination.RING-box protein 1,but not RING-box protein 2,acted synergistically with Cullin3 protein to regulate spastin degradation.Overexpression of Culin3 or BRX1 markedly suppressed spastin expression,and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth.Moreover,USP14 interacted directly with spastin to mediate its deubiquitination.USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation.Although co-expression of spastin and USP14 did not enhance microtubule severing,it did increase neurite length in hippocampal neurons.Taken together,these findings elucidate the intricate regulatory mechanisms of spastin turnover,highlighting the roles of the Cullin-3–Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation.The dynamic interplay between these factors governs spastin stability and function,ultimately influencing microtubule dynamics and neuronal morphology.These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
基金supported by the National Natural Science Foundation of China(No.22161132011)Jiangsu Provincial Special Fund for S&T Innovation in Carbon Emission Peak and Neutrality(No.20220013)+1 种基金the National Key Research and Development Program of China(Nos.2023YFE0110800 and 2023YFC3708100)the Fundamental Research Funds for the Central Universities(No.QTPY2024001).
文摘Phthalic acid esters(PAEs)are widely released into the environment due to industrial and agricultural activities.This poses significant risks,not only to crops grown on contaminated soil but also to humans.PAEs enter the human body through the food chain,causing potential health hazards.Endophytic bacteria have demonstrated a significant potential as effective bioremediation agents,with specialized mechanisms of PAEs degradation.Endophytic bacteria such as Rhodococcus,Pseudomonas and Sphingomona recognize root exudates,adhere to and penetrate root surfaces,and ultimately colonize crops.They form symbiotic relationships with crops,obtaining nutrients and habitats from crops,meanwhile,promoting plant growth and health through hormone production,nutrient regulation,and the suppression of pathogenic microorganisms.Furthermore,endophytic bacteria efficiently degrade PAEs in soil-crop systems through synergistic interactions with indigenous rhizosphere microflora and regulatory effects on enzyme activity in crops.Here,we review the role of endophytic bacteria in the bioremediation of PAEs-contaminated crops and soils.In addition,we discuss the scarcity of endophytic bacterial strains with a confirmed ability to degrade PAEs,and underscore the lack of the research on the mechanisms of PAEs degradation by these bacteria.This review also points out that future study should investigate the molecular mechanisms underlying the interaction between endophytic bacteria and PAEs to offer novel insights and solutions for environmental protection and sustainable agricultural development.
基金supported by the National Natural Science Foundation of China,Nos.92049120 and 81870897STI2030-Major Projects,No.2021ZD0204001+6 种基金Guangdong Key Project for Development of New Tools for the Diagnosis and Treatment of Autism,No.2018B030335001the Natural Science Foundation of Jiangsu Province,No.BK20181436the National Major Scientific and Technological Special Project for Significant New Drug Development,No.2019ZX09301102the Discipline Construction Program of the Second Affiliated Hospital of Soochow University,No.XKTJ-TD202003Sino-German Cooperation Mobility Programme,No.M-0679the Science and Technology Project of Suzhou,No.SKY2022161Research Project of Neurological Diseases of the Second Affiliated Hospital of Soochow University Medical Center,No.ND2023A01(all to QHM)。
文摘The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
文摘BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.
基金supported by the Start-up Fund for new faculty from the Hong Kong Polytechnic University(PolyU)(A0043215)(to SA)the General Research Fund and Research Impact Fund from the Hong Kong Research Grants Council(15106018,R5032-18)(to DYT)+1 种基金the Research Center for SHARP Vision in PolyU(P0045843)(to SA)the InnoHK scheme from the Hong Kong Special Administrative Region Government(to DYT).
文摘Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
基金supported by the National Key R&D Program of China(No.2022YFC3901800)the National Natural Science Foundation of China(No.22176041)Guangzhou Science and Technology Planning Project(No.2023A04J0918)。
文摘Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.
基金supported by Natural Science Foundation of Hunan Province(2021JJ31081,2024JJ5619)the Science Fund of State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle(No 32215004).
文摘Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.