We used a litterbag method to investigate litter decomposition and related soil degradative enzyme activities across four seasons in a broad-leaved forest and a coniferous forest on Zijin Mountain in sub-tropical Chin...We used a litterbag method to investigate litter decomposition and related soil degradative enzyme activities across four seasons in a broad-leaved forest and a coniferous forest on Zijin Mountain in sub-tropical China. Across four seasons, we quantified litter mass losses, soil pH values, and related soil degradative enzyme activities. Litter decomposition rates differed significantly by season. Litter decomposi- tion rates of broadleaf forest leaves were higher than for coniferous for- ests needles across four seasons, and maximal differences in litter de- composition rates between the two litter types were found in spring.展开更多
Rhizospheres can promote self-transmissible plasmid transfer,however,the corresponding mechanism has not received much attention.Plant-microbe remediation is an effective way to promote pollutant biodegradation;howeve...Rhizospheres can promote self-transmissible plasmid transfer,however,the corresponding mechanism has not received much attention.Plant-microbe remediation is an effective way to promote pollutant biodegradation;however,some pollutants,such as naphthalene,are harmful to plants and result in inefficient plant-microbe remediation.In this study,trans-fer of a TOL-like plasmid,a self-transmissible plasmid loaded with genetic determinants for pollutant degradation,among different bacteria was examined in bulk and rhizosphere soils as well as addition of maize root exudate and its artificial root exudate(ARE).The results showed that the numbers of transconjugants and recipients as well as bacterial metabolic activities,such as xylE mRNA expression levels and catechol 2,3-dioxygenase(C23O)activ-ities of bacteria,remained high in rhizosphere soils,when compared with bulk soils.The number of transconjugants and bacterial metabolic activities increased with the increasing exudate and ARE concentrations,whereas the populations of donor and recipient bacteria were substantially unaltered at all concentrations.All the experiments consistently showed that a certain number of bacteria is required for self-transmissible plasmid transfer,and that the increased plasmid transfer might predominantly be owing to bacterial metabolic activ-ity stimulated by root exudates and ARE.Furthermore,ARE addition increased naphthalene degradation by transconjugants in both culture medium and soil.Thus,the combined action of a wide variety of components in ARE might contribute to the increased plasmid transfer and naphthalene degradation.These findings suggest that ARE could be an effectively al-ternative for plant-microbe remediation of pollutants in environments where plants cannot survive.展开更多
Fungi are the key agents in litter decomposition in forest ecosystems. However, the specific roles of the interactions between different fungal species during litter decomposition process are unclear. To evaluate the ...Fungi are the key agents in litter decomposition in forest ecosystems. However, the specific roles of the interactions between different fungal species during litter decomposition process are unclear. To evaluate the interactions, two fungi strains with significantly different morphs were isolated from the soils of Quercus acutissima forest and Pinus massoniana forest, and inoculated in the litter powder of Quercus acutissima leaves and Pinus massoniana needles with grown separately and in coexistence equally through a microcosm experiment. The enzyme activities were determined as a proxy for microbial activities. The results showed that the degradative enzymes involved in litter decomposition showed varying dynamics pattern during the incubation period. The interactions between the two fungi strains are synergism, and benefit to each other according to enzyme activities, suggesting that a fungi strain growth was accelerated by the presence of other fungi strain during litter decomposition process. However, the interactions of the two fungi strains were bilateral antagonism inoculated in the litter powder of Quercus acutissima leaves according to cellobiohydrolase activities. The synergism, despite bilateral antagonism in an exceptional case, may be an important factor controlling the fungal colonization and growth on litter substrate. The results implied that more fungal species may accelerate litter decomposition rates due to their mutual cooperation.展开更多
We put forward a new approach for the synthesis of Ag@AgCl plasmonic photocatalyst via a hydrothermal-deposition-photoreduction method. The cetylmethylammonium chloride (CTAC) was used alone as both a source of reac...We put forward a new approach for the synthesis of Ag@AgCl plasmonic photocatalyst via a hydrothermal-deposition-photoreduction method. The cetylmethylammonium chloride (CTAC) was used alone as both a source of reactants and surfactant. The structure of the prepared photocatalyst was determined by XRD, SEM, EDX and UV-Vis spectroscoscopy. The photocatalytic properties were investigated by degradation of an organic pollutant, Rhodamine B, under visible light irradiation. The results reveal that the experimental conditions have a great effect on the morphology of Ag@AgCl crystals. Ag@AgC1 crystal is cubic and the Ag@AgCl sample which is photoreduced for 40 min exhibits the highest photoactivity, and 80.6 % RhB is degraded after irradiation for 2 hours using this catalyst. The high photocatalytic activity observed is attributed to the surface plasmon resonance effect ofAg nanoparticles.展开更多
Steviaside containing plant extracts have been used for degradation of persistent chloroorganic pesticides. Reactions between DDT and Steviaside or sum of extractive substances isolated from ground up part of plant St...Steviaside containing plant extracts have been used for degradation of persistent chloroorganic pesticides. Reactions between DDT and Steviaside or sum of extractive substances isolated from ground up part of plant Stevia were studied to give of less toxic DDE. Herein researches on studying interaction sum of polysaccharides of Stevia with DDT in various ratios resulted also. The GC-MS and GLC methods were used for analyzing degradation degree of pesticides and to determine obtained compounds. Treat HCCH by water extract of Stevia basically formed tetrachlorocyclo-hexadiene (HCH) with 86.9% yield and in particularly formed of tri-, tetrachlorobenzenes. The HCH formed in 79.7% on treat pesticide by 80% Steviaside. Degradation of HCCH and DDT by water extract of Stevia in a presence of Ana-basine in a ratio of 2:1:1 occur to degrade of HCCH up to 70-80%, and DDT on 25% - 30%.展开更多
The genetic information encoding metabolic pathways for xenobiotic compounds in bacteria often resides on catabolic plasmids.The aim of the present work was to know the location of the genes for degrading 1,2,4-trichl...The genetic information encoding metabolic pathways for xenobiotic compounds in bacteria often resides on catabolic plasmids.The aim of the present work was to know the location of the genes for degrading 1,2,4-trichlorobenzen.In this paper a 1,2,4-trichlorobenzene-degrading strain THSL-1 was isolated from the soil of Tianjin Chemical Plant using 1,2,4-trichlorobenzene as the sole carbon source.The strain was identified as Pseudomonas stutzeri through morphologic survey and 16S rDNA sequence determination.A plasmid was discovered from strain THSL-1 by using the alkali lysis method.When the plasmid was transformed into E.coli.JM109 by the CaCl2 method,the transformant could grow using 1,2,4-trichlorobenzene as the sole carbon source and had the degradation function of 1,2,4-trichlorobenzene.Therefore,it could be deemed that the plasmid carried the degradative genes of 1,2,4-trichlorobenzene.The average size of the plasmid was finally determined to be 40.2 Kb using selectively three kinds of restricted inscribed enzymes(HindIII,BamHI,and XholI)for single cutting and double cutting the plasmid pTHSL-1,respectively.展开更多
A degradative solvent extraction(DSE)method was proposed to upgrade low-rank coals(LRC)for their cascaded utilizations in a highly-dispersed medium.The derived products exhibited well improved properties in comparison...A degradative solvent extraction(DSE)method was proposed to upgrade low-rank coals(LRC)for their cascaded utilizations in a highly-dispersed medium.The derived products exhibited well improved properties in comparison to the raw LRCs.Previously,the LRCs were pre-dried to eliminate the potential impact of the varied water content of raw LRCs,but in light of the abundant water in fresh coals,the hydrolyzing effect of water on coals under heating,and the energy cost to pre-dry the LRCs,it is consequently essential to clarify the effect of water so as to verify the necessity of pre-drying process.In this study,the roles of inherent water and extra-added water were respectively investigated,using dried,raw and wet coals from two typical LRCs.The results show that increasing the moisture content of raw LRCs contributed to the extraction ability of DSE method without noticeably changing the elemental composition,chemical structure and thermal decomposition behavior of extractable products,thus pre-drying of LRCs before DSE treatment was proven unnecessary.Additionally,the roles of the inherent water were concluded as:1)leading to the formation of stable covalent bond during drying process;and 2)acting as H donor to promote extraction ability,while the added water can only function as H donor.Since excessive water will increase the pressure during DSE treatment and lead to the waste water treatment,the LRCs with a water content between 10%and 30%were consequently recommended for the practical application of DSE treatment.展开更多
A degradative solvent extraction method for upgrading low-rank coal was performed at 200-350◦C for 90 min to obtain a substance dissolved in the solvent at room temperature(Soluble).Because the resulting mixture exhib...A degradative solvent extraction method for upgrading low-rank coal was performed at 200-350◦C for 90 min to obtain a substance dissolved in the solvent at room temperature(Soluble).Because the resulting mixture exhibited a high carbon content without ash,it could be readily used as a fuel.Furthermore,deep eutectic solvents(DESs)have attracted attention for improving the Soluble yield and decreasing the oxygen content in Soluble.DES is known to cleave oxygen-containing functional groups in biomass and is considered effective for deoxidizing low-rank coal.Herein,DES was prepared by mixing choline chloride,FeCl3⋅6H2O,and Adaro subbituminous coal(AD)and then added to 1-methylnaphthalene(1-MN)in a non-polar solvent,followed by degradative solvent extraction in the range of 200-350◦C.The effects of reaction temperature and added DES amount on the product yield and the composition were evaluated.As the reaction temperature and amount of DES added increased,the Soluble yield and carbon content increased.It was also found that the thermal decomposition temperature and oxygen content decreased with the increasing DES amounts.This decrease indicates that DES promotes the deoxygenation and decomposition of AD and increases the soluble yield of the fuel source.展开更多
The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template ...The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template molec-ularly imprinted sensor(DTMIP/Fe-Mn@C)for iron manganese metal nanomaterials,prepared Fe-Mn@C com-posite materials by a one pot method were coated on the surface of glassy carbon electrodes and covered with molecularly imprinted membranes through electropolymerization and elution methods,achieving real-time de-tection of specific intermediate products 2-methylbutyric acid(2-MBA)and 3-methylbutyric acid(3-MBA)de-graded by azo dyes.In order to determine the detection sensitivity and intensity range of the sensor,optimization experiments were conducted on various parameters that affect the detection performance,such as the type of func-tional monomer and its composition ratio with the template molecule,detection time window,environmental pH value,etc.Finally,o-Phenylenediamine was determined as the functional monomer,with a molar ratio of 1:1:6 to the template molecules 2-MBA and 3-MBA.Electrochemical testing was conducted in a neutral environment with an incubation time of 5 min and pH=7.The results indicate that the sensor has a relatively wide detection range,high sensitivity,obvious recognition features,and excellent stability for 2-MBA and 3-MBA.This new dual template molecularly imprinted sensor can quickly and accurately determine the safety of highly toxic interme-diates in the degradation process of aromatic organic pollutants,providing a theoretical basis and application potential for trace detection and real-time monitoring.展开更多
Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradat...Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.展开更多
Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without ...Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.展开更多
Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite ou...Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown.Here,we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination.Cullin3 facilitated spastin degradation and ubiquitination.RING-box protein 1,but not RING-box protein 2,acted synergistically with Cullin3 protein to regulate spastin degradation.Overexpression of Culin3 or BRX1 markedly suppressed spastin expression,and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth.Moreover,USP14 interacted directly with spastin to mediate its deubiquitination.USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation.Although co-expression of spastin and USP14 did not enhance microtubule severing,it did increase neurite length in hippocampal neurons.Taken together,these findings elucidate the intricate regulatory mechanisms of spastin turnover,highlighting the roles of the Cullin-3–Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation.The dynamic interplay between these factors governs spastin stability and function,ultimately influencing microtubule dynamics and neuronal morphology.These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.展开更多
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti...In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms.展开更多
The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technol...The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants.展开更多
Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing car...Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing carefully designed cells that approximate the structural characteristics of practical batteries,we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under nearpractical operating conditions.While conventional understanding emphasizes the severity of these processes,our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense,real-operation configurations compared to modified cells,possibly due to a more uniform electric field and the suppression of triple-phase boundaries.This study indicates that other components,such as degradation at the cathode current collector interface and configuration mismatches within the full cell,may also represent important barriers to the practical application of AZMBs,particularly during the early stages of electrodeposition.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,...To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau.展开更多
Phthalic acid esters(PAEs)are widely released into the environment due to industrial and agricultural activities.This poses significant risks,not only to crops grown on contaminated soil but also to humans.PAEs enter ...Phthalic acid esters(PAEs)are widely released into the environment due to industrial and agricultural activities.This poses significant risks,not only to crops grown on contaminated soil but also to humans.PAEs enter the human body through the food chain,causing potential health hazards.Endophytic bacteria have demonstrated a significant potential as effective bioremediation agents,with specialized mechanisms of PAEs degradation.Endophytic bacteria such as Rhodococcus,Pseudomonas and Sphingomona recognize root exudates,adhere to and penetrate root surfaces,and ultimately colonize crops.They form symbiotic relationships with crops,obtaining nutrients and habitats from crops,meanwhile,promoting plant growth and health through hormone production,nutrient regulation,and the suppression of pathogenic microorganisms.Furthermore,endophytic bacteria efficiently degrade PAEs in soil-crop systems through synergistic interactions with indigenous rhizosphere microflora and regulatory effects on enzyme activity in crops.Here,we review the role of endophytic bacteria in the bioremediation of PAEs-contaminated crops and soils.In addition,we discuss the scarcity of endophytic bacterial strains with a confirmed ability to degrade PAEs,and underscore the lack of the research on the mechanisms of PAEs degradation by these bacteria.This review also points out that future study should investigate the molecular mechanisms underlying the interaction between endophytic bacteria and PAEs to offer novel insights and solutions for environmental protection and sustainable agricultural development.展开更多
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i...The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.展开更多
基金supported by the National Natural Science Foundation of China(30870419,40971151)Strategic Priority Research Program Climate Change:Carbon Budget and Related Issues of the Chinese Academy of Sciences(XDA05050204)
文摘We used a litterbag method to investigate litter decomposition and related soil degradative enzyme activities across four seasons in a broad-leaved forest and a coniferous forest on Zijin Mountain in sub-tropical China. Across four seasons, we quantified litter mass losses, soil pH values, and related soil degradative enzyme activities. Litter decomposition rates differed significantly by season. Litter decomposi- tion rates of broadleaf forest leaves were higher than for coniferous for- ests needles across four seasons, and maximal differences in litter de- composition rates between the two litter types were found in spring.
基金This work was supported by the Shanghai Municipal Science and Technology Commission(No.16391902100)the Shanghai Construction Group(No.19JCSF-12)the Ministry of Agriculture,P.R.China and Shanghai Engineering Research Center of Plant Germplasm Resources(No.17DZ2252700).
文摘Rhizospheres can promote self-transmissible plasmid transfer,however,the corresponding mechanism has not received much attention.Plant-microbe remediation is an effective way to promote pollutant biodegradation;however,some pollutants,such as naphthalene,are harmful to plants and result in inefficient plant-microbe remediation.In this study,trans-fer of a TOL-like plasmid,a self-transmissible plasmid loaded with genetic determinants for pollutant degradation,among different bacteria was examined in bulk and rhizosphere soils as well as addition of maize root exudate and its artificial root exudate(ARE).The results showed that the numbers of transconjugants and recipients as well as bacterial metabolic activities,such as xylE mRNA expression levels and catechol 2,3-dioxygenase(C23O)activ-ities of bacteria,remained high in rhizosphere soils,when compared with bulk soils.The number of transconjugants and bacterial metabolic activities increased with the increasing exudate and ARE concentrations,whereas the populations of donor and recipient bacteria were substantially unaltered at all concentrations.All the experiments consistently showed that a certain number of bacteria is required for self-transmissible plasmid transfer,and that the increased plasmid transfer might predominantly be owing to bacterial metabolic activ-ity stimulated by root exudates and ARE.Furthermore,ARE addition increased naphthalene degradation by transconjugants in both culture medium and soil.Thus,the combined action of a wide variety of components in ARE might contribute to the increased plasmid transfer and naphthalene degradation.These findings suggest that ARE could be an effectively al-ternative for plant-microbe remediation of pollutants in environments where plants cannot survive.
文摘Fungi are the key agents in litter decomposition in forest ecosystems. However, the specific roles of the interactions between different fungal species during litter decomposition process are unclear. To evaluate the interactions, two fungi strains with significantly different morphs were isolated from the soils of Quercus acutissima forest and Pinus massoniana forest, and inoculated in the litter powder of Quercus acutissima leaves and Pinus massoniana needles with grown separately and in coexistence equally through a microcosm experiment. The enzyme activities were determined as a proxy for microbial activities. The results showed that the degradative enzymes involved in litter decomposition showed varying dynamics pattern during the incubation period. The interactions between the two fungi strains are synergism, and benefit to each other according to enzyme activities, suggesting that a fungi strain growth was accelerated by the presence of other fungi strain during litter decomposition process. However, the interactions of the two fungi strains were bilateral antagonism inoculated in the litter powder of Quercus acutissima leaves according to cellobiohydrolase activities. The synergism, despite bilateral antagonism in an exceptional case, may be an important factor controlling the fungal colonization and growth on litter substrate. The results implied that more fungal species may accelerate litter decomposition rates due to their mutual cooperation.
基金Funded partly by the National Natural Science Foundation of China(Nos.51172063,51202056,51372068)Hebei Natural Science Funds for Distinguished Young Scholar(No.B2014209304)+1 种基金Hebei Natural Science Funds for the Joint Research of Iron and Steel(No.B2014209314)Hebei Provincial Foundation for Returned Scholars
文摘We put forward a new approach for the synthesis of Ag@AgCl plasmonic photocatalyst via a hydrothermal-deposition-photoreduction method. The cetylmethylammonium chloride (CTAC) was used alone as both a source of reactants and surfactant. The structure of the prepared photocatalyst was determined by XRD, SEM, EDX and UV-Vis spectroscoscopy. The photocatalytic properties were investigated by degradation of an organic pollutant, Rhodamine B, under visible light irradiation. The results reveal that the experimental conditions have a great effect on the morphology of Ag@AgCl crystals. Ag@AgC1 crystal is cubic and the Ag@AgCl sample which is photoreduced for 40 min exhibits the highest photoactivity, and 80.6 % RhB is degraded after irradiation for 2 hours using this catalyst. The high photocatalytic activity observed is attributed to the surface plasmon resonance effect ofAg nanoparticles.
文摘Steviaside containing plant extracts have been used for degradation of persistent chloroorganic pesticides. Reactions between DDT and Steviaside or sum of extractive substances isolated from ground up part of plant Stevia were studied to give of less toxic DDE. Herein researches on studying interaction sum of polysaccharides of Stevia with DDT in various ratios resulted also. The GC-MS and GLC methods were used for analyzing degradation degree of pesticides and to determine obtained compounds. Treat HCCH by water extract of Stevia basically formed tetrachlorocyclo-hexadiene (HCH) with 86.9% yield and in particularly formed of tri-, tetrachlorobenzenes. The HCH formed in 79.7% on treat pesticide by 80% Steviaside. Degradation of HCCH and DDT by water extract of Stevia in a presence of Ana-basine in a ratio of 2:1:1 occur to degrade of HCCH up to 70-80%, and DDT on 25% - 30%.
基金This work was supported by the National High Technology Research and Development Program of China(863 Program)(Grant Nos.2002AA601170 and 2002A A601150).
文摘The genetic information encoding metabolic pathways for xenobiotic compounds in bacteria often resides on catabolic plasmids.The aim of the present work was to know the location of the genes for degrading 1,2,4-trichlorobenzen.In this paper a 1,2,4-trichlorobenzene-degrading strain THSL-1 was isolated from the soil of Tianjin Chemical Plant using 1,2,4-trichlorobenzene as the sole carbon source.The strain was identified as Pseudomonas stutzeri through morphologic survey and 16S rDNA sequence determination.A plasmid was discovered from strain THSL-1 by using the alkali lysis method.When the plasmid was transformed into E.coli.JM109 by the CaCl2 method,the transformant could grow using 1,2,4-trichlorobenzene as the sole carbon source and had the degradation function of 1,2,4-trichlorobenzene.Therefore,it could be deemed that the plasmid carried the degradative genes of 1,2,4-trichlorobenzene.The average size of the plasmid was finally determined to be 40.2 Kb using selectively three kinds of restricted inscribed enzymes(HindIII,BamHI,and XholI)for single cutting and double cutting the plasmid pTHSL-1,respectively.
基金the National Natural Science Foundation of China(21776109)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCB1805).
文摘A degradative solvent extraction(DSE)method was proposed to upgrade low-rank coals(LRC)for their cascaded utilizations in a highly-dispersed medium.The derived products exhibited well improved properties in comparison to the raw LRCs.Previously,the LRCs were pre-dried to eliminate the potential impact of the varied water content of raw LRCs,but in light of the abundant water in fresh coals,the hydrolyzing effect of water on coals under heating,and the energy cost to pre-dry the LRCs,it is consequently essential to clarify the effect of water so as to verify the necessity of pre-drying process.In this study,the roles of inherent water and extra-added water were respectively investigated,using dried,raw and wet coals from two typical LRCs.The results show that increasing the moisture content of raw LRCs contributed to the extraction ability of DSE method without noticeably changing the elemental composition,chemical structure and thermal decomposition behavior of extractable products,thus pre-drying of LRCs before DSE treatment was proven unnecessary.Additionally,the roles of the inherent water were concluded as:1)leading to the formation of stable covalent bond during drying process;and 2)acting as H donor to promote extraction ability,while the added water can only function as H donor.Since excessive water will increase the pressure during DSE treatment and lead to the waste water treatment,the LRCs with a water content between 10%and 30%were consequently recommended for the practical application of DSE treatment.
基金CHN analysis(LECO,CHN628)for measuring mass fractions of Soluble and Residue was supported by Yukio Enda,Junko Kutsuna in Akita Industrial Technology Center.Appendix A.Supplementary data。
文摘A degradative solvent extraction method for upgrading low-rank coal was performed at 200-350◦C for 90 min to obtain a substance dissolved in the solvent at room temperature(Soluble).Because the resulting mixture exhibited a high carbon content without ash,it could be readily used as a fuel.Furthermore,deep eutectic solvents(DESs)have attracted attention for improving the Soluble yield and decreasing the oxygen content in Soluble.DES is known to cleave oxygen-containing functional groups in biomass and is considered effective for deoxidizing low-rank coal.Herein,DES was prepared by mixing choline chloride,FeCl3⋅6H2O,and Adaro subbituminous coal(AD)and then added to 1-methylnaphthalene(1-MN)in a non-polar solvent,followed by degradative solvent extraction in the range of 200-350◦C.The effects of reaction temperature and added DES amount on the product yield and the composition were evaluated.As the reaction temperature and amount of DES added increased,the Soluble yield and carbon content increased.It was also found that the thermal decomposition temperature and oxygen content decreased with the increasing DES amounts.This decrease indicates that DES promotes the deoxygenation and decomposition of AD and increases the soluble yield of the fuel source.
基金supported by the Bingtuan Industrial Technology Research Institute,Bingtuan New materials Research Institute innovation platform project,Research initiation project of Shihezi University(No.RCZK202330)the Science and Technology Program-Regional Innovation Guidance Program(No.2023ZD080)Tianchi Talent Project(No.CZ002735).
文摘The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template molec-ularly imprinted sensor(DTMIP/Fe-Mn@C)for iron manganese metal nanomaterials,prepared Fe-Mn@C com-posite materials by a one pot method were coated on the surface of glassy carbon electrodes and covered with molecularly imprinted membranes through electropolymerization and elution methods,achieving real-time de-tection of specific intermediate products 2-methylbutyric acid(2-MBA)and 3-methylbutyric acid(3-MBA)de-graded by azo dyes.In order to determine the detection sensitivity and intensity range of the sensor,optimization experiments were conducted on various parameters that affect the detection performance,such as the type of func-tional monomer and its composition ratio with the template molecule,detection time window,environmental pH value,etc.Finally,o-Phenylenediamine was determined as the functional monomer,with a molar ratio of 1:1:6 to the template molecules 2-MBA and 3-MBA.Electrochemical testing was conducted in a neutral environment with an incubation time of 5 min and pH=7.The results indicate that the sensor has a relatively wide detection range,high sensitivity,obvious recognition features,and excellent stability for 2-MBA and 3-MBA.This new dual template molecularly imprinted sensor can quickly and accurately determine the safety of highly toxic interme-diates in the degradation process of aromatic organic pollutants,providing a theoretical basis and application potential for trace detection and real-time monitoring.
基金supported by the National Key Research and Development Program of China(2025YFE0103800,2023YFE0102600,2024YFE0214200).
文摘Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.
基金supported by the National Natural Science Foundation of China(22375101)the Natural Science of Colleges and Universities in Jiangsu Province(24KJB430027).
文摘Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.
基金supported by the National Natural Science Foundation of China,No.32071033(to MT)Basic and Applied Basic Research Foundation of Guangdong Province,Nos.2023A1515010140(to MT),2022A1515140169(to MT),2022A1515111096(to ZC)+3 种基金Science and Technology Project of Guangzhou,Nos.202201010015(to YL),2023A03J0790(to TJ)Basic and Applied Basic Research Foundation of Guangzhou,No.2023A04J1285(to ZC)Medical Research Foundation of Guangdong Province,No.A2023147(to ZC)Health Science and Technology Project of Guangzhou,No.20221A011039(to TJ)。
文摘Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown.Here,we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination.Cullin3 facilitated spastin degradation and ubiquitination.RING-box protein 1,but not RING-box protein 2,acted synergistically with Cullin3 protein to regulate spastin degradation.Overexpression of Culin3 or BRX1 markedly suppressed spastin expression,and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth.Moreover,USP14 interacted directly with spastin to mediate its deubiquitination.USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation.Although co-expression of spastin and USP14 did not enhance microtubule severing,it did increase neurite length in hippocampal neurons.Taken together,these findings elucidate the intricate regulatory mechanisms of spastin turnover,highlighting the roles of the Cullin-3–Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation.The dynamic interplay between these factors governs spastin stability and function,ultimately influencing microtubule dynamics and neuronal morphology.These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.
基金supported by the National Natural Science Foundation of China(Nos.42477406 and 51878617)the Horizontal Scientific Research Project(No.KYY-HX-20220803)the Engineering Research Center of Ministry of Education for Renewable Energy Infrastructure Construction Technology.
文摘In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms.
基金supported by the grants PID2020-113371RA-C22 and TED2021-130845A-C32,funded by MCIN/AEI/10.13039/501100011033.M.Marín-García,R.González-OlmosC.Gómez-Canela are members of the GESPA group(Grup d’Enginyeria i Simulacióde Processos Ambientals)at IQS-URL,which has been acknowledged as a Consolidated Research Group by the Government of Catalonia(No.2021-SGR-00321)+1 种基金In addition,M.Marín-García has been awarded a public grant for the Investigo Programme,aimed at hiring young job seekers to undertake research and innovation projects under the Recovery,Transformation,and Resilience Plan(PRTR),European Union Next Generation,for the year 2022,through the Government of Catalonia and the Spanish Ministry for Work and Social Economy(No.100045ID16)Ana Belén Cuenca for her support and expertise,which helped to confirm the proposed reaction mechanism involved in the UV photolysis of cloperastine.
文摘The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants.
基金the fundamental Research Funds for the central Universities(x2wjD2240360)for the funding supportMeanwhile,Engineering and Physical Sciences Research Council(EPSRC,EP/V027433/3)+2 种基金UK Research and Innovation(UKRI)under the UK government’s Horizon Europe funding(101077226,EP/Y008707/1)Faraday Institution(EP/S003053/1)Degradation project(FIRG001),Royal Society(IEC\NSFC\233361),QUB Agility Fund and Wright Technology and Research Centre(W-Tech,R5240MEE)Funding from UK aid from the UK Government through the Faraday Institution and the Transforming Energy Access Programme(Grant number FIRG050-Device engineering of Zn-based hybrid micro-flow batteries and by-product H2 collection for Emerging Economies)。
文摘Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing carefully designed cells that approximate the structural characteristics of practical batteries,we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under nearpractical operating conditions.While conventional understanding emphasizes the severity of these processes,our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense,real-operation configurations compared to modified cells,possibly due to a more uniform electric field and the suppression of triple-phase boundaries.This study indicates that other components,such as degradation at the cathode current collector interface and configuration mismatches within the full cell,may also represent important barriers to the practical application of AZMBs,particularly during the early stages of electrodeposition.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
基金support from the National Natural Science Foundation of China(Grant Nos.42107193,42077245)supported by the Sichuan Science and Technology Program(2025YFNH0008,2025YFNH0004)+1 种基金the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(SKLGP2023Z006)the Everest Scientific Research Program 2.0:Research on mechanism and control of glacial lake outburst chain catastrophe in Qinghai-Xizang Plateau based on man-earth coordination perspective.
文摘To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau.
基金supported by the National Natural Science Foundation of China(No.22161132011)Jiangsu Provincial Special Fund for S&T Innovation in Carbon Emission Peak and Neutrality(No.20220013)+1 种基金the National Key Research and Development Program of China(Nos.2023YFE0110800 and 2023YFC3708100)the Fundamental Research Funds for the Central Universities(No.QTPY2024001).
文摘Phthalic acid esters(PAEs)are widely released into the environment due to industrial and agricultural activities.This poses significant risks,not only to crops grown on contaminated soil but also to humans.PAEs enter the human body through the food chain,causing potential health hazards.Endophytic bacteria have demonstrated a significant potential as effective bioremediation agents,with specialized mechanisms of PAEs degradation.Endophytic bacteria such as Rhodococcus,Pseudomonas and Sphingomona recognize root exudates,adhere to and penetrate root surfaces,and ultimately colonize crops.They form symbiotic relationships with crops,obtaining nutrients and habitats from crops,meanwhile,promoting plant growth and health through hormone production,nutrient regulation,and the suppression of pathogenic microorganisms.Furthermore,endophytic bacteria efficiently degrade PAEs in soil-crop systems through synergistic interactions with indigenous rhizosphere microflora and regulatory effects on enzyme activity in crops.Here,we review the role of endophytic bacteria in the bioremediation of PAEs-contaminated crops and soils.In addition,we discuss the scarcity of endophytic bacterial strains with a confirmed ability to degrade PAEs,and underscore the lack of the research on the mechanisms of PAEs degradation by these bacteria.This review also points out that future study should investigate the molecular mechanisms underlying the interaction between endophytic bacteria and PAEs to offer novel insights and solutions for environmental protection and sustainable agricultural development.
基金supported by the National Natural Science Foundation of China,Nos.92049120 and 81870897STI2030-Major Projects,No.2021ZD0204001+6 种基金Guangdong Key Project for Development of New Tools for the Diagnosis and Treatment of Autism,No.2018B030335001the Natural Science Foundation of Jiangsu Province,No.BK20181436the National Major Scientific and Technological Special Project for Significant New Drug Development,No.2019ZX09301102the Discipline Construction Program of the Second Affiliated Hospital of Soochow University,No.XKTJ-TD202003Sino-German Cooperation Mobility Programme,No.M-0679the Science and Technology Project of Suzhou,No.SKY2022161Research Project of Neurological Diseases of the Second Affiliated Hospital of Soochow University Medical Center,No.ND2023A01(all to QHM)。
文摘The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.