The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template ...The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template molec-ularly imprinted sensor(DTMIP/Fe-Mn@C)for iron manganese metal nanomaterials,prepared Fe-Mn@C com-posite materials by a one pot method were coated on the surface of glassy carbon electrodes and covered with molecularly imprinted membranes through electropolymerization and elution methods,achieving real-time de-tection of specific intermediate products 2-methylbutyric acid(2-MBA)and 3-methylbutyric acid(3-MBA)de-graded by azo dyes.In order to determine the detection sensitivity and intensity range of the sensor,optimization experiments were conducted on various parameters that affect the detection performance,such as the type of func-tional monomer and its composition ratio with the template molecule,detection time window,environmental pH value,etc.Finally,o-Phenylenediamine was determined as the functional monomer,with a molar ratio of 1:1:6 to the template molecules 2-MBA and 3-MBA.Electrochemical testing was conducted in a neutral environment with an incubation time of 5 min and pH=7.The results indicate that the sensor has a relatively wide detection range,high sensitivity,obvious recognition features,and excellent stability for 2-MBA and 3-MBA.This new dual template molecularly imprinted sensor can quickly and accurately determine the safety of highly toxic interme-diates in the degradation process of aromatic organic pollutants,providing a theoretical basis and application potential for trace detection and real-time monitoring.展开更多
Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradat...Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.展开更多
Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without ...Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.展开更多
Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite ou...Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown.Here,we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination.Cullin3 facilitated spastin degradation and ubiquitination.RING-box protein 1,but not RING-box protein 2,acted synergistically with Cullin3 protein to regulate spastin degradation.Overexpression of Culin3 or BRX1 markedly suppressed spastin expression,and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth.Moreover,USP14 interacted directly with spastin to mediate its deubiquitination.USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation.Although co-expression of spastin and USP14 did not enhance microtubule severing,it did increase neurite length in hippocampal neurons.Taken together,these findings elucidate the intricate regulatory mechanisms of spastin turnover,highlighting the roles of the Cullin-3–Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation.The dynamic interplay between these factors governs spastin stability and function,ultimately influencing microtubule dynamics and neuronal morphology.These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.展开更多
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti...In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms.展开更多
The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technol...The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants.展开更多
Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing car...Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing carefully designed cells that approximate the structural characteristics of practical batteries,we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under nearpractical operating conditions.While conventional understanding emphasizes the severity of these processes,our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense,real-operation configurations compared to modified cells,possibly due to a more uniform electric field and the suppression of triple-phase boundaries.This study indicates that other components,such as degradation at the cathode current collector interface and configuration mismatches within the full cell,may also represent important barriers to the practical application of AZMBs,particularly during the early stages of electrodeposition.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,...To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau.展开更多
The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role i...The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.展开更多
BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notabl...BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.展开更多
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu...Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability propertie...Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.展开更多
Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents ca...Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.展开更多
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo...Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices.展开更多
With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power ...With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.展开更多
基金supported by the Bingtuan Industrial Technology Research Institute,Bingtuan New materials Research Institute innovation platform project,Research initiation project of Shihezi University(No.RCZK202330)the Science and Technology Program-Regional Innovation Guidance Program(No.2023ZD080)Tianchi Talent Project(No.CZ002735).
文摘The microbial degradation of aromatic organic pollutants is incomplete due to their metabolic characteristics,which can easily produce certain highly toxic intermediates.Therefore,this article designs a dual template molec-ularly imprinted sensor(DTMIP/Fe-Mn@C)for iron manganese metal nanomaterials,prepared Fe-Mn@C com-posite materials by a one pot method were coated on the surface of glassy carbon electrodes and covered with molecularly imprinted membranes through electropolymerization and elution methods,achieving real-time de-tection of specific intermediate products 2-methylbutyric acid(2-MBA)and 3-methylbutyric acid(3-MBA)de-graded by azo dyes.In order to determine the detection sensitivity and intensity range of the sensor,optimization experiments were conducted on various parameters that affect the detection performance,such as the type of func-tional monomer and its composition ratio with the template molecule,detection time window,environmental pH value,etc.Finally,o-Phenylenediamine was determined as the functional monomer,with a molar ratio of 1:1:6 to the template molecules 2-MBA and 3-MBA.Electrochemical testing was conducted in a neutral environment with an incubation time of 5 min and pH=7.The results indicate that the sensor has a relatively wide detection range,high sensitivity,obvious recognition features,and excellent stability for 2-MBA and 3-MBA.This new dual template molecularly imprinted sensor can quickly and accurately determine the safety of highly toxic interme-diates in the degradation process of aromatic organic pollutants,providing a theoretical basis and application potential for trace detection and real-time monitoring.
基金supported by the National Key Research and Development Program of China(2025YFE0103800,2023YFE0102600,2024YFE0214200).
文摘Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.
基金supported by the National Natural Science Foundation of China(22375101)the Natural Science of Colleges and Universities in Jiangsu Province(24KJB430027).
文摘Background:The bacterial biofilm poses a significant challenge to traditional antibiotic therapy.There is a great need to develop novel antibiofilm agents combined with biofilm disrupting and bacteria-killing without the dependence of antibiotic.Methods:Herein,we prepared ultrasound/magnetic field-responsive ferroferric oxide nanoparticles(Fe_(3)O_(4))/glucose oxidase microbubbles(FGMB)to form a cascade catalytic system for effective removing methicillin-resistant Staphylococcus aureus biofilms.FGMB were prepared through interfacial self-assembly of Fe_(3)O_(4) nanoparticles(NPs)and glucose oxidase(GOx)at the gas-liquid interface stabilized by surfactants.Under ultrasound/magnetic field stimulation,FGMB disrupted biofilm architecture through microbubble collapse-induced microjets and magnetically driven displacement.Simultaneously,ultrasound-triggered rupture of FGMB released GOx and Fe_(3)O_(4) NPs.Glucose can be oxidized by GOx to generate gluconic acid and hydrogen peroxide which was subsequently catalyzed into hydroxyl radicals by Fe_(3)O_(4) NPs,enabling chemical eradication of biofilm-embedded bacteria.Results:Optical microscopy images demonstrated that FGMB have spherical structure with average size of approximately 17μm.FGMB showed a 65.4%decrease in methicillin-resistant Staphylococcus aureus biofilm biomass and 1.1 log bacterial inactivation efficiency(91.2%),suggesting effective biofilm elimination.In vitro experimental results also indicate that FGMB have good biocompatibility.Conclusion:This antibiofilm strategy integrated dual modes of physical biofilm disruption with chemical bacteria-killing shows great potential as a versatile,non-resistant strategy for bacterial biofilm elimination.
基金supported by the National Natural Science Foundation of China,No.32071033(to MT)Basic and Applied Basic Research Foundation of Guangdong Province,Nos.2023A1515010140(to MT),2022A1515140169(to MT),2022A1515111096(to ZC)+3 种基金Science and Technology Project of Guangzhou,Nos.202201010015(to YL),2023A03J0790(to TJ)Basic and Applied Basic Research Foundation of Guangzhou,No.2023A04J1285(to ZC)Medical Research Foundation of Guangdong Province,No.A2023147(to ZC)Health Science and Technology Project of Guangzhou,No.20221A011039(to TJ)。
文摘Post-translational modification of spastin enables precise spatiotemporal control of its microtubule severing activity.However,the detailed mechanism by which spastin turnover is regulated in the context of neurite outgrowth remains unknown.Here,we found that spastin interacted with ubiquitin and was significantly degraded by K48-mediated poly-ubiquitination.Cullin3 facilitated spastin degradation and ubiquitination.RING-box protein 1,but not RING-box protein 2,acted synergistically with Cullin3 protein to regulate spastin degradation.Overexpression of Culin3 or BRX1 markedly suppressed spastin expression,and inhibited spastin-mediated microtubule severing and promotion of neurite outgrowth.Moreover,USP14 interacted directly with spastin to mediate its deubiquitination.USP14 overexpression significantly increased spastin expression and suppressed its ubiquitination and degradation.Although co-expression of spastin and USP14 did not enhance microtubule severing,it did increase neurite length in hippocampal neurons.Taken together,these findings elucidate the intricate regulatory mechanisms of spastin turnover,highlighting the roles of the Cullin-3–Ring E3 ubiquitin ligase complex and USP14 in orchestrating its ubiquitination and degradation.The dynamic interplay between these factors governs spastin stability and function,ultimately influencing microtubule dynamics and neuronal morphology.These insights shed light on potential therapeutic targets for neurodegenerative disorders associated with spastin defects.
基金supported by the National Natural Science Foundation of China(Nos.42477406 and 51878617)the Horizontal Scientific Research Project(No.KYY-HX-20220803)the Engineering Research Center of Ministry of Education for Renewable Energy Infrastructure Construction Technology.
文摘In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms.
基金supported by the grants PID2020-113371RA-C22 and TED2021-130845A-C32,funded by MCIN/AEI/10.13039/501100011033.M.Marín-García,R.González-OlmosC.Gómez-Canela are members of the GESPA group(Grup d’Enginyeria i Simulacióde Processos Ambientals)at IQS-URL,which has been acknowledged as a Consolidated Research Group by the Government of Catalonia(No.2021-SGR-00321)+1 种基金In addition,M.Marín-García has been awarded a public grant for the Investigo Programme,aimed at hiring young job seekers to undertake research and innovation projects under the Recovery,Transformation,and Resilience Plan(PRTR),European Union Next Generation,for the year 2022,through the Government of Catalonia and the Spanish Ministry for Work and Social Economy(No.100045ID16)Ana Belén Cuenca for her support and expertise,which helped to confirm the proposed reaction mechanism involved in the UV photolysis of cloperastine.
文摘The increasing production and release of synthetic organic chemicals,including pharmaceuticals,into our envi-ronment has allowed these substances to accumulate in our surface water systems.Current purification technolo-gies have been unable to eliminate these pollutants,resulting in their ongoing release into aquatic ecosystems.This study focuses on cloperastine(CPS),a cough suppressant and antihistamine medication.The environmental impact of CPS usage has become a concern,mainly due to its increased detection during the COVID-19 pandemic.CPS has been found in wastewater treatment facilities,effluents from senior living residences,river waters,and sewage sludge.However,the photosensitivity of CPS and its photodegradation profile remain largely unknown.This study investigates the photodegradation process of CPS under simulated tertiary treatment conditions using UV photolysis,a method commonly applied in some wastewater treatment plants.Several transformation prod-ucts were identified,evaluating their kinetic profiles using chemometric approaches(i.e.,curve fitting and the hard-soft multivariate curve resolution-alternating least squares(HS-MCR-ALS)algorithm)and calculating the reaction quantum yield.As a result,three different transformation products have been detected and correctly identified.In addition,a comprehensive description of the kinetic pathway involved in the photodegradation process of the CPS drug has been provided,including observed kinetic rate constants.
基金the fundamental Research Funds for the central Universities(x2wjD2240360)for the funding supportMeanwhile,Engineering and Physical Sciences Research Council(EPSRC,EP/V027433/3)+2 种基金UK Research and Innovation(UKRI)under the UK government’s Horizon Europe funding(101077226,EP/Y008707/1)Faraday Institution(EP/S003053/1)Degradation project(FIRG001),Royal Society(IEC\NSFC\233361),QUB Agility Fund and Wright Technology and Research Centre(W-Tech,R5240MEE)Funding from UK aid from the UK Government through the Faraday Institution and the Transforming Energy Access Programme(Grant number FIRG050-Device engineering of Zn-based hybrid micro-flow batteries and by-product H2 collection for Emerging Economies)。
文摘Aqueous zinc metal batteries(AZMBs)face significant challenges in achieving reversibility and cycling stability,primarily due to hydrogen evolution reactions(HER)and zinc dendrite growth.In this study,by employing carefully designed cells that approximate the structural characteristics of practical batteries,we revisit this widely held view through in-operando X-ray radiography to examine zinc dendrite formation and HER under nearpractical operating conditions.While conventional understanding emphasizes the severity of these processes,our findings suggest that zinc dendrites and HER are noticeably less pronounced in dense,real-operation configurations compared to modified cells,possibly due to a more uniform electric field and the suppression of triple-phase boundaries.This study indicates that other components,such as degradation at the cathode current collector interface and configuration mismatches within the full cell,may also represent important barriers to the practical application of AZMBs,particularly during the early stages of electrodeposition.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
基金support from the National Natural Science Foundation of China(Grant Nos.42107193,42077245)supported by the Sichuan Science and Technology Program(2025YFNH0008,2025YFNH0004)+1 种基金the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(SKLGP2023Z006)the Everest Scientific Research Program 2.0:Research on mechanism and control of glacial lake outburst chain catastrophe in Qinghai-Xizang Plateau based on man-earth coordination perspective.
文摘To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau.
基金supported by the National Natural Science Foundation of China,Nos.92049120 and 81870897STI2030-Major Projects,No.2021ZD0204001+6 种基金Guangdong Key Project for Development of New Tools for the Diagnosis and Treatment of Autism,No.2018B030335001the Natural Science Foundation of Jiangsu Province,No.BK20181436the National Major Scientific and Technological Special Project for Significant New Drug Development,No.2019ZX09301102the Discipline Construction Program of the Second Affiliated Hospital of Soochow University,No.XKTJ-TD202003Sino-German Cooperation Mobility Programme,No.M-0679the Science and Technology Project of Suzhou,No.SKY2022161Research Project of Neurological Diseases of the Second Affiliated Hospital of Soochow University Medical Center,No.ND2023A01(all to QHM)。
文摘The endoplasmic reticulum,a key cellular organelle,regulates a wide variety of cellular activities.Endoplasmic reticulum autophagy,one of the quality control systems of the endoplasmic reticulum,plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover,remodeling,and proteostasis.In this review,we briefly describe the endoplasmic reticulum quality control system,and subsequently focus on the role of endoplasmic reticulum autophagy,emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements.We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases.In summary,this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders.This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
文摘BACKGROUND Gastric cancer(GC)is a prevalent malignancy with a substantial health burden and high mortality rate,despite advances in prevention,early detection,and treatment.Compared with the global average,Asia,notably China,reports disproportionately high GC incidences.The disease often progresses asymptoma-tically in the early stages,leading to delayed diagnosis and compromised out-comes.Thus,it is crucial to identify early diagnostic biomarkers and enhance treatment strategies to improve patient outcomes and reduce mortality.METHODS Retrospectively analyzed the clinical data of 148 patients with GC treated at the Civil Aviation Shanghai Hospital between December 2022 and December 2023.The associations of coagulation indices-partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen,fibrinogen degradation products(FDP),fasting blood glucose,and D-dimer(D-D)with TNM stage and distant metastasis were examined.RESULTS Prolongation of APTT,PT,and TT was significantly correlated with the GC TNM stage.Hence,abnormal coagulation system activation was closely related to disease progression.Elevated FDP and D-D were significantly associated with distant metastasis in GC(P<0.05),suggesting that increased fibrinolytic activity contributes to increased metastatic risk.CONCLUSION Our Results reveal coagulation indices,FDPs as GC biomarkers,reflecting abnormal coagulation/fibrinolysis,aiding disease progression,metastasis prediction,and helping clinicians assess thrombotic risk for early intervention and personalized treatment plans.
基金supported by the Start-up Fund for new faculty from the Hong Kong Polytechnic University(PolyU)(A0043215)(to SA)the General Research Fund and Research Impact Fund from the Hong Kong Research Grants Council(15106018,R5032-18)(to DYT)+1 种基金the Research Center for SHARP Vision in PolyU(P0045843)(to SA)the InnoHK scheme from the Hong Kong Special Administrative Region Government(to DYT).
文摘Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
基金supported by the National Key R&D Program of China(No.2022YFC3901800)the National Natural Science Foundation of China(No.22176041)Guangzhou Science and Technology Planning Project(No.2023A04J0918)。
文摘Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.
基金supported by Natural Science Foundation of Hunan Province(2021JJ31081,2024JJ5619)the Science Fund of State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle(No 32215004).
文摘Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.
基金supported by the National Natural Science Foundation of China(No.52207229)the Key Research and Development Program of Ningxia Hui Autonomous Region of China(No.2024BEE02003)+1 种基金the financial support from the AEGiS Research Grant 2024,University of Wollongong(No.R6254)the financial support from the China Scholarship Council(No.202207550010).
文摘Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices.
基金financially supported by the National Key Research and Development Program of China(2023YFB3809300)。
文摘With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.