期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Structure deformation of Ni-Fe-Se enables efficient oxygen evolution via RE atoms doping
1
作者 Hong-Rui Zhao Cheng-Zong Yuan +7 位作者 Cong-Hui Li Wen-Kai Zhao Fu-Ling Wu Lei Xin Hong Yin Shu-Feng Ye Xiao-Meng Zhang Yun-Fa Chen 《Rare Metals》 2025年第1期336-348,共13页
The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode compri... The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance. 展开更多
关键词 Ce doping structure deformation Ni-Fe-Se Electron transfer Oxygen evolution
原文传递
Multi-detachment-controlled thrust structures and deep hydrocarbon exploration targets in southern margin of Junggar Basin,NW China
2
作者 YU Baoli JIA Chengzao +6 位作者 LIU Keyu DENG Yong WANG Wei CHEN Peng LI Chao CHEN Jia GUO Boyang 《Petroleum Exploration and Development》 2025年第3期663-679,共17页
For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distr... For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets. 展开更多
关键词 southern margin of Junggar Basin foreland thrust belt trust structure detachment layer structural deformation mechanism structural evolution deep lower assemblages hydrocarbon accumulation deep hydrocarbon exploration target
在线阅读 下载PDF
Tectonically deformed coal types and pore structures in Puhe and Shanchahe coal mines in western Guizhou 被引量:19
3
作者 Li Ming Jiang Bo +3 位作者 Lin Shoufa Wang Jilin Ji Mingjun Qu Zhenghui 《Mining Science and Technology》 EI CAS 2011年第3期353-357,共5页
To evaluate the effect of tectonic deformation on coal reservoir properties, we provide an analysis of the types of tectonically deformed coal, macroand microscopic deformation and discuss pore structural characterist... To evaluate the effect of tectonic deformation on coal reservoir properties, we provide an analysis of the types of tectonically deformed coal, macroand microscopic deformation and discuss pore structural characteristics and connectivity based on samples from the Puhe and Shanchahe coal mines. Our research shows that the tectonically deformed coal mostly includes cataclastic structural coal, mortar structural coal and schistose structural coal of a brittle deformation series. The major pore structures of different types of tectonically deformed coal are transitional pores and micropores. The pore volumes of macropores and visible fracture pores produced by structural deformations vary over a large range and increase with the intensity of tectonic deformation. Mesopores as connecting passages develop well in schistose structural coal. According to the shapes of intrusive mercury curves, tectonically deformed coal can be divided into parallel, open and occluded types. The parallel type has poor connectivity and is relatively closed; the open type reflects uniformly developed open pores with good connectivity while the occluded type is good for coalbed methane enrichment, but has poor connectivity between pores. 展开更多
关键词 Puhe and Shanchahe coal minesTectonically deformed coalPore structure Coalbed methane
在线阅读 下载PDF
Mechanical responses of underground carriageway structures due to construction of metro tunnels beneath the existing structure:A case study
4
作者 Xin Han Fei Ye +3 位作者 Xingbo Han Chao Ren Jing Song Ruliang Zhao 《Deep Underground Science and Engineering》 2024年第2期231-246,共16页
To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and str... To understand the mechanical response pattern of the existing structure and ground due to the construction of metro tunnels underneath,the finite difference method is adopted to study the torsional deformation and stress variation of the existing structure and the effect of underground carriageway structures on the surface subsidence.The curves of the maximum differential subsidence,torsion angle,and distortion of the cross-section of the existing structure show two peaks in succession during traversing of two metro tunnels beneath it.The torsion angle of the existing structure changes when the two tunnels traverse beneath it in opposite directions.The first traversing of the shield tunnel mainly induces the magnitude variation in torsional deformation of the existing structure,but the second traversing of the subsurface tunnel may cause a dynamic change in the magnitude and form of torsional deformation in the existing structure.The shielding effect can reduce the surface subsidence caused by metro tunnel excavation to a certain extent,and the development trend of subsidence becomes slower as the excavation continues. 展开更多
关键词 metro tunnel numerical simulation structural deformation surface subsidence underground carriageway structure
原文传递
Identification of seismic activity and basin inversion based on soft-sediment deformation structures:an example from SE Korea
5
作者 Jinhyun Lee Sambit Prasanajit Naik +3 位作者 Ho-Seok Choi Jinhyeon So Donghwa Yun Young-Seog Kim 《Episodes》 2024年第3期595-610,共16页
Deformed soft-sediment deformation structures(SSDS)can indicate polyphase deformation events and provide valuable insights into the inversion process of a basin.Herein,we present the Miocene–Quaternary deformation in... Deformed soft-sediment deformation structures(SSDS)can indicate polyphase deformation events and provide valuable insights into the inversion process of a basin.Herein,we present the Miocene–Quaternary deformation inversion history of the Bomun sub-basin in the Gyeongju area of SE Korea.The inferred ENE compression direction(σHmax)based on paleostress analysis of the fault system,displacing Miocene sediments and SSDS,corresponds to the current stress field.The widespread occurrence of clear liquefaction structures and the vertical repetition of SSDS indicate substantial seismic activity during the basin opening stage.Brittle deformation features observed at both outcrop-and microstructural-scale along the faults suggest a reactivation as reverse faulting associated with a tilting process.The tectonic history of the study area is distinguished by SSDS associated with seismic activity,and reverse faulting associated with inversion process under ENE orientedσHmax.The Environmental Seismic Intensity Scale(ESI-07)based on the SSDS indicates seismic intensity of IX-X,which might be related with the opening of the Bomun sub-basin.Therefore,detailed analyses of SSDS could provide valuable insights on the dynamics of local geology and contribute to further extensive research on seismic hazards and basin inversion. 展开更多
关键词 Miocene Quaternary seismic activity polyphase deformation events basin inversion soft sediment deformation structures clear liquefaction struc paleostress analysis
在线阅读 下载PDF
Comparative study on the oblique water-entry of high-speed projectile based on rigid-body and elastic-plastic body model 被引量:1
6
作者 Xiangyan Liu Xiaowei Cai +3 位作者 Zhengui Huang Yu Hou Jian Qin Zhihua Chen 《Defence Technology(防务技术)》 2025年第4期133-155,共23页
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc... To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°. 展开更多
关键词 Fluid-structure interaction Rigid-body model Elastic-plastic model Structural deformation Impact loads Structural safety of projectile
在线阅读 下载PDF
New progress and future exploration targets in petroleum geological research of ultra-deep clastic rocks in Kuqa Depression,Tarim Basin,NW China
7
作者 WANG Qinghua YANG Haijun YANG Wei 《Petroleum Exploration and Development》 2025年第1期79-94,共16页
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es... Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment. 展开更多
关键词 Tarim Basin Kuqa Depression ultra-deep layers clastic rock multi-layer structural deformation multilayered migration and accumulation new three-dimensional accumulation model
在线阅读 下载PDF
A Preliminary Study on the Soft–Sediment Deformation Structures in the Late Quaternary Lacustrine Sediments at Tashkorgan, Northeastern Pamir, China 被引量:11
8
作者 LIANG Lianji DAI Fuchu +1 位作者 JIANG Hanchao ZHONG Ning 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第4期1574-1591,共18页
This study identified soft-sediment deformation structures (SSDS) of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan, northeastern Pamir. The observed deformation stru... This study identified soft-sediment deformation structures (SSDS) of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan, northeastern Pamir. The observed deformation structures include sand dykes, liquefied diapir and convolute structures, gravity induced SSDS, and thixotropic pillar and tabular structures. We conducted a preliminary study on the morphology, formation and trigger mechanisms of pillar and tabular structures formed by liquefaction of underlying coarse sand and thixotropy of the upper silty clay. The regional tectonic setting and distribution of lacustrine strata indicate that the most probable trigger for the SSDS in lacustrine sediments was seismic activity, with an approximate earthquake magnitude of M〉6.0; the potential seismogenic fault is the southern part of the Kongur normal fault extensional system. AMS ^4C dating results indicate that the SSDS were formed by seismic events occurring between 26050±100 yrBP and 22710±80 yrBP, implying intense fault activity in this region during the late Pleistocene. This study provides new evidence for understanding tectonic activity and regional geodynamics in western China. 展开更多
关键词 soft-sediment deformation structures lacustrine sediment PAMIR LIQUEFACTION THIXOTROPY paleo-seismicity
在线阅读 下载PDF
The Seismic Induced Soft Sediment Deformation Structures in the Middle Jurassic of Western Qaidamu Basin 被引量:4
9
作者 LI Yong SHAO Zhufu +2 位作者 MAO Cui YANG Yuping LIU Shengxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期979-988,共10页
Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, ... Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, such as convoluted bedding, liquefied sand veins, load and flame structures, slump structures and sliding-overlapping structures. Based on their genesis, soft-sediment deformation structures can be classified as three types: seismic induced structures, vertical loading structures, and horizontal shear structures. Based on their geometry and genesis analysis, they are seismic-induced structures. According to the characteristics of convoluted bedding structures and liquefied sand veins, it can be inferred that there were earthquakes greater than magnitude 6 in the study area during the middle Jurassic. Furthermore, the study of the slump structures and sliding- overlapping structures indicates that there was a southeastern slope during the middle Jurassic. Since the distance from the study area to the Altyn Mountain and the Altyn fault is no more than 10km, it can be also inferred that the Altyn Mountain existed then and that the AItyn strike-slip fault was active during the middle Jurassic. 展开更多
关键词 Soft-sediments deformation structure sliding-overlapping structure paleoseismology AItyn strike-slip fault
在线阅读 下载PDF
Earthquake-induced Soft-sediment Deformation Structures in the Dengfeng Area,Henan Province,China:Constraints on Qinling Tectonic Evolution during the Early Cambrian 被引量:3
10
作者 YANG Wentao WANG Min QI Yong'an 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期1835-1846,共12页
Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist ... Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist of fluidized deformation, synsedimentary faults, seismo-folds and plastic deformation; the Mantou Formation is dominated by small-scale horst faults, intruded dikes, fluidized veins, and seismo-cracks. These structures are demonstrated to be earthquake-related by analysis of trigger mechanisms, and may indicate the activity of the Qinling tectonic belt during the early Cambrian. Furthermore, the assemblages of soft-sediment deformation structures altered with time: large-scale, intense deformation in the Zhushadong Formation alters to small-scale, weak deformation in the Mantou Formation. This striking feature may have been caused by changes in hypocentral depth from deep-focus to shallow-focus earthquakes, indicating that the Qinling tectonic belt developed from the subduction of the Shangdan Ocean to the extension of the Erlangping back-arc basin. This study suggests that soft-sediment deformation structures can be used to reveal the activity of a tectonic belt, and, more importantly, changes in deformation assemblages can track the evolution of a tectonic belt. 展开更多
关键词 soft-sediment deformation structures SEISMITES Qinling tectonic belt Cambrian Southern North China Block
在线阅读 下载PDF
MPS-FEM Coupled Method for Study of Wave-Structure Interaction 被引量:4
11
作者 Guanyu Zhang Xiang Chen Decheng Wan 《Journal of Marine Science and Application》 CSCD 2019年第4期387-399,共13页
Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynam... Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained. 展开更多
关键词 MPS-FEM coupled method Fluid-structure interaction(FSI) Regular wave Wave impact pressure structure deformation response
在线阅读 下载PDF
Lacustrine sedimentary responses to earthquakes—soft-sediment deformation structures since late Pleistocene:A review of current understanding 被引量:3
12
作者 Long Guo Zhongtai He Linlin Li 《Earthquake Research Advances》 CSCD 2023年第2期46-53,共8页
The traces left by earthquakes in lacustrine sediments are studied to determine the occurrence of ancient earthquakes by identifying seismically induced soft-sediment deformation structures(SSDS).Dating can help recon... The traces left by earthquakes in lacustrine sediments are studied to determine the occurrence of ancient earthquakes by identifying seismically induced soft-sediment deformation structures(SSDS).Dating can help reconstruct the relative frequency of earthquakes.Identifying seismically induced seismites,which carry abundant seismic information from numerous SSDS,is both critical and challenging.Studying the deformation mechanism of SSDS and learning about the common criteria of seismically induced SSDS improve the identification of earthquake triggers.With better research into SSDS,seismic events can be effectively captured,and temporal constraints can be carried out by 14C dating and optically stimulated luminescence(OSL)dating to identify and date the occurrence of ancient earthquakes.The present contribution primarily addresses the meaning and mechanism of SSDS and their relationship with earthquake magnitude as well as the common criteria of the SSDS induced by earthquakes. 展开更多
关键词 Soft-sediment deformation structures Lacustrine sediments EARTHQUAKES LIQUEFACTION
在线阅读 下载PDF
Deformed coal types and pore characteristics in Hancheng coalmines in Eastern Weibei coalfields 被引量:9
13
作者 xue Guangwu Liu Hongfu Li Wei 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期681-686,共6页
Based on SEM observance,the methods of low-temperature nitrogen and isothermal adsorption were used to test and analyze the coal samples of Hancheng,and pore structure characteristics of tectonic coals were discussed.... Based on SEM observance,the methods of low-temperature nitrogen and isothermal adsorption were used to test and analyze the coal samples of Hancheng,and pore structure characteristics of tectonic coals were discussed.The results indicate that in the same coal rank,stratification and crack are well developed in cataclastic coal,which is mostly filled by mineral substance in the geohydrologic element abundance,results in pore connectivity variation.Granulated and mylonitic coal being of these characteristics,as develop microstructures and exogenous fractures as well as large quantity of pores resulted from gas generation and strong impermeability,stimulate the recovery of seepage coal,improve coal connectivity and enhance reservoir permeability.Absorption pore(micro-pore) is dominant in coal pore for different coal body structure,the percentage of which pore aperture is from 1 to 100 nm is 71.44% to 88.15%,including large of micro-pore with the 74.56%-94.70%;with the deformation becoming more intense in the same coal rank,mesopore enlarge further,open-end pores become thin-neck-bottle-shaped pores step by step,specific surface area of micro-pore for cataclastic coal is 0.0027 m 2 /g,while mylonitic coal increases to 7.479 m 2 /g,micro-pore gradually play a dominant role in effecting pore structural parameters. 展开更多
关键词 deformed coal Pore structure Hg-injection Isotherm adsorption
在线阅读 下载PDF
Dynamic Analysis of Deformational Structures of the Xianniishan Fault Zone in the Three Gorges of the Yangtze River 被引量:1
14
作者 WU Shuren Institute of Geomechanics,CAGS, Beijing 100081and WU Ganguo China University of Geosciences, Beijing 100083 Liu Xinzhu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第2期163-172,共10页
Field investigation and laboratory work reveal that inhomogeneity of the deformation of the Xiannushan fault is mainly characterized by lateral zonation, longitudinal segmentation and downward stratification. Based on... Field investigation and laboratory work reveal that inhomogeneity of the deformation of the Xiannushan fault is mainly characterized by lateral zonation, longitudinal segmentation and downward stratification. Based on these results, a 3-D deformational structure model of the fault was established and its geometrical and kinematic characteristics in two main deformational stages i.e. the main Yanshanian and Himalayan were discussed. The directions of principal and the differential stresses in these two stages were determined by using conjugate joints, striations of fault planes and microstructures of the fault zone. The direction of σI is N-S in direction with differential stresses of 150-250 MPa in the Yanshanian, and N70E with a differential stress ranging from 80-120 MPa in the Himalayan. 展开更多
关键词 three gorges of the Yangtze River Xiannushan fault fault deformation structure differential stress
在线阅读 下载PDF
STRAIN INDUCED STRUCTURAL TRANSITION OF INTERFACES AND TWINS IN A HOT-DEFORMED DUAL-PHASE TIAL ALLOY 被引量:2
15
作者 CHEN GuoFiang WANG Jinguo ZHANG Lichun and YE Hengqiang(State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, P. R. China Laboratory of Atomic Imaging of Solids, Institute of Metal Researc 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第Z1期273-286,共14页
The structure characteristics of a2/γinterfaces and the features of deformation twins in a quasi-isothermal forged Ti-45Al-10Nb alloy were studied by highresolution transmission electron microscopy. Three types of st... The structure characteristics of a2/γinterfaces and the features of deformation twins in a quasi-isothermal forged Ti-45Al-10Nb alloy were studied by highresolution transmission electron microscopy. Three types of strain induced a2/γinterfaces and two types of strain induced twin boundaries were identified The most,important features are high density of ledges and the existence of I/3[111] Frank partial dislocation. Mechanisms for the formation these interfaces were proposed Two types of deformation twins were observed These deformation twins always start from the ledges it seems that ledges at interfaces are important features of interfacial structure for the mechanical behavior of alloys. 展开更多
关键词 strain induced structural transition interfacial structure deformation twins intermetallic TiAl alloy HREM
在线阅读 下载PDF
Deformation tests and failure process analysis of an anchorage structure 被引量:4
16
作者 Zhao Tongbin Yin Yanchun +1 位作者 Tan Yunliang Song Yimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期237-242,共6页
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T... In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock. 展开更多
关键词 Anchorage structure Digital speckle correlation methods Deformation field Interface stress Failure process
在线阅读 下载PDF
Effect of temperature and stress on molecular structure and carbon monoxide generation of lignite from Kailuan mining area 被引量:2
17
作者 Xiao Cangyan Wei Chongtao +1 位作者 Guo Li Wen Shen Jian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期437-441,共5页
In order to analyze the origin of carbon monoxide(CO) in coal seams, stress–strain experiments under temperature of 50, 150 and 250 °C were conducted using lignite from Kailuan mining area. Fourier transform inf... In order to analyze the origin of carbon monoxide(CO) in coal seams, stress–strain experiments under temperature of 50, 150 and 250 °C were conducted using lignite from Kailuan mining area. Fourier transform infrared spectroscopy and elemental analysis were carried out before and after deformation of the samples. The results indicated that CO generated at 150 and 250 °C; the gas component was mostly oxygen(O_2), with small amount of carbon dioxide(CO_2), methane(CH_4) and hydrogen(H_2). At 50 °C, O_2 and a little CO_2 were observed and no CO was found. The carbon content of the coal samples increased slightly after deformation, and the oxygen content, H/C ratio, and O/C ratio decreased. The molecular structure of coal displayed different evolution characteristics at various temperatures. At 50 and 150 °C, the falling off of side chains, broken of ether bond and directional realignment of the aliphatic chains resulting in the formation of long chains were the main performance of coal molecular structure evolution. While at 250 °C, the side chains fell off and short chains formed. Furthermore, at both 150 and 250 °C, condensed degree of aromatic ring increased. Under the action of temperature and pressure, CO forms in two ways.The first is that ether bond breaks, oxygen and carbon atoms combine together and forms CO, or O_2 forming in the broken of ether–oxygen bond leads to the oxidation of free radicals and resulting in the formation of CO. And the second is that CO derives from falling off of C=O group. 展开更多
关键词 Lignite Molecular structure Carbon monoxide generation Deformation Temperature
在线阅读 下载PDF
ROLE OF UNDERGROUND STRUCTURE DEFORMATION VELOCITY IN THE ANALYSIS OF BLAST-RESISTANT STRUCTURES
18
作者 ZHAO Xiao-bing(赵晓兵) +1 位作者 FANG Qin(方秦) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第4期487-492,共6页
The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role... The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role of deformation velocity of the structure will truthfully describe the actual situation of structural vibration. With the one-dimensional plane wave theory, the expression of load on the structural periphery is developed, and the generalized variation principle for the dynamic analysis of underground arched-bar structures is given. At the same time, the results of the numerical calculation are compared. 展开更多
关键词 blast-resistant structure dynamic analysis structural deformation velocity generalized variation principle
在线阅读 下载PDF
Structure and Deformation of Intermetallic Beryllides
19
作者 TG.Nieh(Lawrence Livermore National Laboratory, P.O.Box 808, L-350, Livermore, CA 94551, USA ) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第6期391-405,共15页
Intermetallic beryllides are potential light-weight, high-temperature structural materials. In this paper. the processing techniques, microstructure. deformation, and oxidation properties of intermetallic beryllides a... Intermetallic beryllides are potential light-weight, high-temperature structural materials. In this paper. the processing techniques, microstructure. deformation, and oxidation properties of intermetallic beryllides are described. In addition to nickel beryllides (NiBe). which is treated as a model system.other high beryllium-containing refractory beryllides, such as Nb2 Be17. VBe12. are also studied.The room temperature deformation and high-temperature creep properties of these beryllides are repor4ed. At room temperature. NiBe exhibits certain tensile ductility (~ 1 .3%). but all other beryllides are essentially brittle. Nonetheless, these beryllides become ductile at temperatures above approximately 1000℃. Their creep properties are presented. The creep properties are compared with those of intermetallic aluminides. Also. a comparison is made between the ductile-to-brittle transition behaviour of intermetallic beryllides and that of aluminides. Although beryllides are generally oxidation resistant at high temperatures, some beryllides, e.g., ZrBe13, suffer the pest reaction during oxidation at intermediate tem peratures. The pest mechanisms are proposed 展开更多
关键词 BEO RES AIME structure and Deformation of Intermetallic Beryllides MPa
在线阅读 下载PDF
Deformation and Dislocation Structure in L1_2 Titanium Trialuminide Alloys
20
作者 Gengxiang HU Shipu CHEN +1 位作者 Xiaohua WU Yonghua RONG and Xiaofu CHEN(Dept. of Materials Science, Shanghai Jiao Tong University, Shanghai, 200030, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第6期435-440,共6页
The deformation behaviour and the nature of dislocations of the Al3Ti-base L12 alloya modified with Fe and Mn etc, were investigated. The results show that the deformation and fracture character istics are closely rel... The deformation behaviour and the nature of dislocations of the Al3Ti-base L12 alloya modified with Fe and Mn etc, were investigated. The results show that the deformation and fracture character istics are closely related to the alloy compositions. The effect of hot-working process on the room tem perature ductility is remarkable, not only resulting in an appreciable improvement of compressive properties but also showing a 0.28% plastic strain in tensile test. The SISF dissociation of a < 110>dislocations on {111} planes was found at room temperature. The determined dissociation scheme is consistent with the mechanical behaviour of these alloys in the lower temperature region. 展开更多
关键词 TI CHEN Deformation and Dislocation structure in L12 Titanium Trialuminide Alloys
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部