High-locality landslides are located on slopes at high elevations and are characterized by long sliding distances, large gravitational potential energy, high movement velocities, tremendous kinetic energy, and sudden ...High-locality landslides are located on slopes at high elevations and are characterized by long sliding distances, large gravitational potential energy, high movement velocities, tremendous kinetic energy, and sudden onset. Thus, they often cause catastrophic damage to human lives and engineering facilities. It is of great significance to identify active high-locality landslides in their early deformational stages and to reveal their deformational rules for effective disaster mitigation. Due to alpinecanyon landforms, Mao County is a representative source of high-locality landslides. This work employs multisource data(geological, terrain, meteorological, ground sensor, and remote sensing data) and timeseries In SAR technology to recognize active high-locality landslides in Mao County and to reveal their laws of development. Some new viewpoints are suggested.(1) Nineteen active high-locality landslides are identified by the time-series In SAR technique, of which 7 are newly discovered in this work. All these high-locality landslides possessed good concealment during their early deformational stages. The newly discovered HL-16 landslide featured a large scale and a great slope height, posing a large threat to the surrounding buildings and residents.(2) The high-locality landslides in Mao County were mainly triggered by three factors: earthquakes, precipitation, and road construction.(3) Three typical high-locality landslides that were triggered by different factors are highlighted with their deformational rules under the functions of steep terrain, shattered rocks, fissure-water penetration, precipitation, and road construction. This work may provide clues to the prevention and control of high-locality landslides and can be applied to the determination of active high-locality landslides in other hard-hit areas.展开更多
Geobelt deformation is of significance when making prejudgments on potential failure planes in reinforced structures.A failure plane results from two geobelt failure modes,tensile failure and pullout.In order to inves...Geobelt deformation is of significance when making prejudgments on potential failure planes in reinforced structures.A failure plane results from two geobelt failure modes,tensile failure and pullout.In order to investigate the deformation characteristics of geobelts in two failure modes,results from pullout tests on sensor-enabled geobelts(SEGBs)with various lengths in sand are reported here across a range of normal pressures.Self-measurements of SEGB can provide data during the tests regarding distributions of strain,stress,and displacement.Data collected during pullout tests reveal the effects of normal pressures and specimen lengths on failure mode.A critical line considering normal pressure and specimen length is derived to describe the transition between two failure modes,an approach which can be utilized for preliminary predictions of failure mode in pullout tests.Warning criteria established based on critical line and data from the self-measurements of SEGB are proposed for failure mode prediction which can contribute to prejudgments of potential failure plane in geosynthetically reinforced soil structures.展开更多
Field investigation and laboratory work reveal that inhomogeneity of the deformation of the Xiannushan fault is mainly characterized by lateral zonation, longitudinal segmentation and downward stratification. Based on...Field investigation and laboratory work reveal that inhomogeneity of the deformation of the Xiannushan fault is mainly characterized by lateral zonation, longitudinal segmentation and downward stratification. Based on these results, a 3-D deformational structure model of the fault was established and its geometrical and kinematic characteristics in two main deformational stages i.e. the main Yanshanian and Himalayan were discussed. The directions of principal and the differential stresses in these two stages were determined by using conjugate joints, striations of fault planes and microstructures of the fault zone. The direction of σI is N-S in direction with differential stresses of 150-250 MPa in the Yanshanian, and N70E with a differential stress ranging from 80-120 MPa in the Himalayan.展开更多
Under the same conditions of external force, simulations on differences of deformational energy in structural zones, which have different deformational behavior, and that on the distribution of the differences have be...Under the same conditions of external force, simulations on differences of deformational energy in structural zones, which have different deformational behavior, and that on the distribution of the differences have been carried out by means of finite-element method. Shear deformational energy U_w is higher than volume deformational energy U_T by about one order of magnitude, and deformationat energy U_B( = U_w + U_T) and U_w show a trend to be larger→largest→small in quantity in structural zones of different deformational properties, which correspond to compressive, shear, tensile zones, respectively, but U_T shows a trend to be large→small gradually. This has a considerable significance in the study of tectonic heat and mineral liquid migration in association with the research on tectonic additional hydrostatic pressure.展开更多
Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under...Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformat...Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformation,while the mechanism has not been fully understood at the mesoscale.In this work,a model coupling dendrite growth,thermal-solutal-fluid flow,thermal stress and flow-induced dendrite deformation via cellular automaton-finite volume method and finite element method is developed to study the formation of LAGBs in single crystal superalloys.Results reveal that the bending of dendrites is primarily attributed to the thermal-solutal convection-induced dendrite deformation.The mechanical stress of dendrite deformation develops and stabilises as solidification proceeds.As the width of the mushy zone gets stable,stresses are built up and then dendritic elastoplastic bending occurs at some thin primary dendrites with the wider inter-dendritic space.There are three characteristic zones of stress distribution along the solidification direction:(i)no stress concentration in the fully solidified regions;(ii)stress developing in the primary dendrite bridging region,and(iii)stress decrease in the inter-dendritic uncontacted zone.The stresses reach maximum near the initial dendrite bridging position.The lower temperature gradients,the finer primary dendritic trunks and sudden reductions in local dendritic trunk radius jointly promote the elastoplastic deformation of the dendrites.Corresponding measures are suggested to reduce LAGBs.展开更多
Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-...Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.展开更多
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es...Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.展开更多
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc...To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.展开更多
基金supported by the National Key Research and Development Program of China (No.2019YFC1511 304)the National Natural Science Foundation of China (Nos.U21A2013,42311530065)Hunan Provincial Natural Science Foundation of China (No.2021JC0009)。
文摘High-locality landslides are located on slopes at high elevations and are characterized by long sliding distances, large gravitational potential energy, high movement velocities, tremendous kinetic energy, and sudden onset. Thus, they often cause catastrophic damage to human lives and engineering facilities. It is of great significance to identify active high-locality landslides in their early deformational stages and to reveal their deformational rules for effective disaster mitigation. Due to alpinecanyon landforms, Mao County is a representative source of high-locality landslides. This work employs multisource data(geological, terrain, meteorological, ground sensor, and remote sensing data) and timeseries In SAR technology to recognize active high-locality landslides in Mao County and to reveal their laws of development. Some new viewpoints are suggested.(1) Nineteen active high-locality landslides are identified by the time-series In SAR technique, of which 7 are newly discovered in this work. All these high-locality landslides possessed good concealment during their early deformational stages. The newly discovered HL-16 landslide featured a large scale and a great slope height, posing a large threat to the surrounding buildings and residents.(2) The high-locality landslides in Mao County were mainly triggered by three factors: earthquakes, precipitation, and road construction.(3) Three typical high-locality landslides that were triggered by different factors are highlighted with their deformational rules under the functions of steep terrain, shattered rocks, fissure-water penetration, precipitation, and road construction. This work may provide clues to the prevention and control of high-locality landslides and can be applied to the determination of active high-locality landslides in other hard-hit areas.
基金Project supported by the National Key Research and Development Program of China(No.2018YFB1600100)the National Natural Science Foundation of China(Nos.51778346 , 51608461)。
文摘Geobelt deformation is of significance when making prejudgments on potential failure planes in reinforced structures.A failure plane results from two geobelt failure modes,tensile failure and pullout.In order to investigate the deformation characteristics of geobelts in two failure modes,results from pullout tests on sensor-enabled geobelts(SEGBs)with various lengths in sand are reported here across a range of normal pressures.Self-measurements of SEGB can provide data during the tests regarding distributions of strain,stress,and displacement.Data collected during pullout tests reveal the effects of normal pressures and specimen lengths on failure mode.A critical line considering normal pressure and specimen length is derived to describe the transition between two failure modes,an approach which can be utilized for preliminary predictions of failure mode in pullout tests.Warning criteria established based on critical line and data from the self-measurements of SEGB are proposed for failure mode prediction which can contribute to prejudgments of potential failure plane in geosynthetically reinforced soil structures.
文摘Field investigation and laboratory work reveal that inhomogeneity of the deformation of the Xiannushan fault is mainly characterized by lateral zonation, longitudinal segmentation and downward stratification. Based on these results, a 3-D deformational structure model of the fault was established and its geometrical and kinematic characteristics in two main deformational stages i.e. the main Yanshanian and Himalayan were discussed. The directions of principal and the differential stresses in these two stages were determined by using conjugate joints, striations of fault planes and microstructures of the fault zone. The direction of σI is N-S in direction with differential stresses of 150-250 MPa in the Yanshanian, and N70E with a differential stress ranging from 80-120 MPa in the Himalayan.
文摘Under the same conditions of external force, simulations on differences of deformational energy in structural zones, which have different deformational behavior, and that on the distribution of the differences have been carried out by means of finite-element method. Shear deformational energy U_w is higher than volume deformational energy U_T by about one order of magnitude, and deformationat energy U_B( = U_w + U_T) and U_w show a trend to be larger→largest→small in quantity in structural zones of different deformational properties, which correspond to compressive, shear, tensile zones, respectively, but U_T shows a trend to be large→small gradually. This has a considerable significance in the study of tectonic heat and mineral liquid migration in association with the research on tectonic additional hydrostatic pressure.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea Program(No.RS-2025-02603127,Innovation Research Center for Zero-carbon Fuel Gas Turbine Design,Manufacture,and Safety)。
文摘Understanding the temperature dependent deformation behavior of Mg alloys is crucial for their expanding use in the aerospace sector.This study investigates the deformation mechanisms of hot-rolled AZ61 Mg alloy under uniaxial tension along rolling direction(RD)and transverse direction(TD)at-50,25,50,and 150℃.Results reveal a transition from high strength with limited elongation at-50℃ to significant softening and maximum ductility at 150℃.TD samples consistently showed 2%-6%higher strength than RD;however,this yield anisotropy diminished at 150℃ due to the shift from twinning to thermally activated slip and recovery.Fractography indicated a change from semi-brittle to fully ductile fracture with increasing temperature.Electron backscattered diffraction(EBSD)analysis confirmed twinning-driven grain refinement at low temperatures,while deformation at high temperatures involved grain elongation along shear zones,enabling greater strain accommodation before material failure.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52074182,52304406 and U23A20612)the Natural Science Foundation of Shanghai(Grant Nos.22ZR1430700 and 23TS1401900)+1 种基金the National Science and Technology Major Project(No.2017-VII-0008-0102)Neng Ren acknowledges the Startup Fund for Young Faculty at SJTU.
文摘Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformation,while the mechanism has not been fully understood at the mesoscale.In this work,a model coupling dendrite growth,thermal-solutal-fluid flow,thermal stress and flow-induced dendrite deformation via cellular automaton-finite volume method and finite element method is developed to study the formation of LAGBs in single crystal superalloys.Results reveal that the bending of dendrites is primarily attributed to the thermal-solutal convection-induced dendrite deformation.The mechanical stress of dendrite deformation develops and stabilises as solidification proceeds.As the width of the mushy zone gets stable,stresses are built up and then dendritic elastoplastic bending occurs at some thin primary dendrites with the wider inter-dendritic space.There are three characteristic zones of stress distribution along the solidification direction:(i)no stress concentration in the fully solidified regions;(ii)stress developing in the primary dendrite bridging region,and(iii)stress decrease in the inter-dendritic uncontacted zone.The stresses reach maximum near the initial dendrite bridging position.The lower temperature gradients,the finer primary dendritic trunks and sudden reductions in local dendritic trunk radius jointly promote the elastoplastic deformation of the dendrites.Corresponding measures are suggested to reduce LAGBs.
基金financially supported by the National Key Re-search and Development Program of China(No.2021YFB3702604)the National Natural Science Foundation of China(No.52174377)+1 种基金the Chongqing Natural Science Foundation Project(No.CSTB2023NSCQ-MSX0824)This work was also supported by the Shaanxi Materials Analysis&Research Center and the Analytical&Testing Center of NPU.
文摘Theβsolidifiedγ-TiAl alloy holds important application value in the aerospace industry,while its com-plex phase compositions and geometric structures pose challenges to its microstructure control during the thermal-mechanical process.The microstructure evolution of Ti-43Al-4Nb-1Mo-0.2B alloy at 1200℃/0.01 s−1 was investigated to clarify the coupling role of dynamic recrystallization(DRX)and phase transformation.The results revealed that the rate of DRX inα2+γlamellar colonies was comparatively slower than that inβo+γmixed structure,instead being accompanied by intense lamellar kinking and rotation.The initiation and development rates of DRX inα2,βo,andγphases decreased sequentially.The asynchronous DRX of the various geometric structures and phase compositions resulted in the un-even deformed microstructure,and the dynamic softening induced by lamellar kinking and rotation was replaced by strengthened DRX as strain increased.Additionally,the blockyα2 phase and the terminals ofα2 lamellae were the preferential DRX sites owing to the abundant activated slip systems.Theα2→βo transformation within lamellar colonies facilitated DRX and fragment ofα2 lamellae,while theα2→γtransformation promoted the decomposition ofα2 lamellae and DRX ofγlamellae.Moreover,the var-iedβo+γmixed structures underwent complicated evolution:(1)Theγ→βo transformation occurred at boundaries of lamellar colonies,followed by simultaneous DRX ofγlamellar terminals and neighboringβo phase;(2)DRX occurred earlier within the band-likeβo phase,with the delayed DRX in enclosedγphase;(3)DRX within theβo synapses and neighboringγphase was accelerated owing to generation of elastic stress field;(4)Dispersedβo particles triggered particle stimulated nucleation(PSN)ofγphase.Eventually,atomic diffusion along crystal defects inβo andγphases caused fracture of band-likeβo phase and formation of massiveβo particles,impeding grain boundary migration and hindering DRXed grain growth ofγphase.
基金Supported by the National Natural Science Foundation of China(U22B6002)PetroChina Science and Technology Project(2023ZZ14).
文摘Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_0714).
文摘To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.