期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process 被引量:28
1
作者 Zhi Zhang Jing-huai Zhang +5 位作者 Jun Wang Ze-hua Li Jin-shu Xie Shu-juan Liu Kai Guan Rui-zhi Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期30-45,共16页
Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simult... Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys. 展开更多
关键词 magnesium alloys grain refinement high strength high ductility deformation process
在线阅读 下载PDF
Effects of deformation processes on morphology,microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 被引量:9
2
作者 Jing Chen Liang Wu +6 位作者 Xingxing Ding Qiang Liu Xu Dai Jiangfeng Song Bin Jiang Andrej Atrens Fusheng Pan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第5期10-20,共11页
Highly oriented Mg-Al layered double hydroxide(LDHs)films were deposited on magnesium alloy AZ31 with different deformation processes by an easy in-situ growth method.The characteristics of the films were investigated... Highly oriented Mg-Al layered double hydroxide(LDHs)films were deposited on magnesium alloy AZ31 with different deformation processes by an easy in-situ growth method.The characteristics of the films were investigated by optical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),and electrochemical,immersion and hydrogen evolution tests.The corrosion protection performance ranked the LDHs films as the increasing series:CS-LDHs(as-cast sample with LDHs)<AE-LDHs(asymmetric extrusion sample with LDHs)<SE-LDHs(symmetric extrusion sample with LDHs)<RS-LDHs(rolled sample with LDHs).A thicker and more compact LDH conversion coating was formed on the RS sample,and had the best corrosion protection performance. 展开更多
关键词 AZ31 MICROSTRUCTURE LDHs films Corrosion resistance deformation processes
原文传递
Last Deglacial Soft-Sediment Deformation at Shawan on the Eastern Tibetan Plateau and Implications for Deformation Processes and Seismic Magnitudes 被引量:9
3
作者 ZHONG Ning JIANG Hanchao +4 位作者 LI Haibing XU Hongyan SHI Wei ZHANG Siqi WEI Xiaotong 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2019年第2期430-450,共21页
The eastern margin of the Tibetan Plateau is characterized by frequent earthquakes; however, research of paleo-earthquakes in the area has been limited^ owing to the alpine topography and strong erosion. Detailed inve... The eastern margin of the Tibetan Plateau is characterized by frequent earthquakes; however, research of paleo-earthquakes in the area has been limited^ owing to the alpine topography and strong erosion. Detailed investigations of soft-sediment deformation(SSD) structures are valuable for understanding the trigger mechanisms, deformation processes, and the magnitudes of earthquakes that generate such structures, and help us to understand tectonic activity in the region. To assess tectonic activity during the late Quaternary, we studied a well-exposed sequence of Shawan lacustrine sediments, 7.0 m thick, near Lake Diexi in the upper reaches of the Minjiang River. Deformation is recorded by both ductile structures(load casts, flame structures,pseudonodules, ball-and-pillow structures, and liquefied convolute structures) and brittle structures(liquefied breccia, and microfaults). Taking into account the geodynamic setting of the area and its known tectonic activity, these SSD structures can be interpreted in terms of seismic shocks. The types and forms of the structures,the maximum liquefaction distances, and the thicknesses of the horizons with SSD structures in the Shawan section indicate that they record six strong earthquakes of magnitude 6-7 and one with magnitude >7. A recent study showed that the Songpinggou fault is the seismogenic structure of the 1933 Ms7.5 Diexi earthquake. The Shawan section is located close to the junction of the Songpinggou and Minjiang faults, and records seven earthquakes with magnitudes of ?7. We infer,therefore, that the SSD structures in the Shawan section document deglacial activity along the Songpinggou fault. 展开更多
关键词 lacustrine sequence soft-sediment deformation(SSD) deformation process earthquake magnitude Shawan eastern Tibetan Plateau
在线阅读 下载PDF
Deformation resistance of Fe-Mn-V-N alloy under different deformation processes 被引量:2
4
作者 Yun-Li Feng Jie Li +1 位作者 Li-Qun Ai Bao-Mei Duan 《Rare Metals》 SCIE EI CAS CSCD 2017年第10期833-839,共7页
The deformation resistance of Fe-Mn-V-N alloy under different deformation conditions was investigated by hot compression method on thermal simulator. Effects of deformation degree, deformation temperature, and strain ... The deformation resistance of Fe-Mn-V-N alloy under different deformation conditions was investigated by hot compression method on thermal simulator. Effects of deformation degree, deformation temperature, and strain rate on deformation resistance were analyzed. The results show that when other conditions are constant, the deformation resistance increases with the increase in deformation degree and strain rate and decreases with the increase in deformation temperature. At the same time, the mathematical model of deformation resistance for Fe-Mn- V-N alloy was established by lstOpt software using the Levenberg-Marquardt optimization algorithm carried out on the fitting of regression coefficients, which has higher fitting precision. 展开更多
关键词 Fe-Mn-V-N alloy deformation process deformation resistance Mathematical model
原文传递
Deformation Processed Cu-15 wt pct Cr Composite Synthesized by Hot Hydrostatic Extrusion of Mechanical Milled Powders 被引量:1
5
作者 Jinglei LIU, Zuyan LIU and Erde WANGSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期507-508,共2页
A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first ... A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first prepared by mechanical milling in favorite milling time and then were hot hydrostatic extruded after pre-densification with sintering or hot pressing. It was shown that the extrusion densified the composite powders well and at the same time the chaos curled strengthening phase was aligned into lines and further deformed as strengthening ribbons. The deformation processed Cu-15 wt pct Cr composite prepared by this technique is of superior conductivity, strength and thermal stability. 展开更多
关键词 Mechanical milling Hydrostatic extrusion deformation processed composite Copper-base composite
在线阅读 下载PDF
Hot Deformation Behavior and Processing Map of Spray Formed M3∶ 2 High Speed Steel 被引量:3
6
作者 Lin LU Long-gang HOU +3 位作者 Hua CUI Jin-feng HUANG Yong-an ZHANG Ji-shan ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第5期501-508,共8页
Hot deformation behavior of a new type of M3∶ 2 high speed steel with niobium addition made by spray forming was investigated based on compression tests in the temperature range of 950-1 150 ℃ and strain rate of 0. ... Hot deformation behavior of a new type of M3∶ 2 high speed steel with niobium addition made by spray forming was investigated based on compression tests in the temperature range of 950-1 150 ℃ and strain rate of 0. 001-10 s^(-1). A comprehensive constitutive equation was obtained,which could be used to predict the flow stress at different strains. Processing map was developed on the basis of the flow stress data using the principles of dynamic material model. The results showed that the flow curves were in fair agreement with the dynamic recrystallization model. The flow stresses,which were calculated by the comprehensive constitutive equation,agreed well with the test data at low strain rates( ≤1 s^(-1)). The material constant( α),stress exponent( n) and the hot deformation activation energy( Q_(HW)) of the new steel were 0. 006 15 MPa^(-1),4. 81 and 546 kJ·mol^(-1),respectively. Analysis of the processing map with an observation of microstructures revealed that hot working processes of the steel could be carried out safely in the domain( T = 1 050-1 150 ℃,ε = 0. 01- 0. 1 s^(-1))with about 33% peak efficiency of power dissipation( η). Cracks was expected in two domains at either lower temperatures( 〈 1 000 ℃) or low strain rates( 0. 001 s^(-1)) with different cracking mechanisms. Flow localization occurred when the strain rates exceeded 1 s^(-1) at all testing temperatures. 展开更多
关键词 high speed steel spray forming hot deformation processing map niobium
原文传递
Experimental Study on Multistage Seismic Damage Process of Bedding Rock Slope:A Case Study of the Xinmo Landslide 被引量:1
7
作者 Jing-Jing Tian Tian-Tao Li +5 位作者 Xiang-Jun Pei Jian Guo Shou-Dao Wang Hao Sun Pei-Zhang Yang Run-Qiu Huang 《Journal of Earth Science》 SCIE CAS CSCD 2024年第5期1594-1612,共19页
In the early hours of June 24,2017,a major landslide event occurred in Xinmo Village,Sichuan Province,China.The landslide instantly devastated the whole village.Ten people died and 73 were missing in this major landsl... In the early hours of June 24,2017,a major landslide event occurred in Xinmo Village,Sichuan Province,China.The landslide instantly devastated the whole village.Ten people died and 73 were missing in this major landslide event.The study area has suffered from several strong earthquakes in the past 100 y.Present studies have reported that the cumulative damage effect of the Xinmo landslide induced by earthquake is obvious.In this study,we conducted a shaking table test based on the detailed geological survey,historical seismic data,satellite optical image,unmanned aerial vehicle photography.The test result presents the characteristics of multistage seismic damage and progressive deformation process of the Xinmo landslide model,and shows that the historical earthquakes have caused serious damage to the interior of rock mass in the source area.The test also shows that the cumulative damage of the model increases with an increase in duration of earthquake loading.When the excitation intensity increases to a certain value,the damage accumulation velocity of the model suddenly increases.It reveals that frequent historical earthquake loads can be regarded as a main reason for the damage and deterioration of landslide rock mass.Damage accumulation and superposition occur in the slope.Under a long-term gravity,deformation of the slope gradually increases until catastrophic failure is triggered.The progressive deformation process of slope is summarized.Firstly,under strong earthquakes loading,a tensile fracture surface forms at the rear edge of the wavy deformation high and steep bedding slope.It reaches a certain critical depth and expands along the interlayer structural plane.Meantime,damaged fissures perpendicular to the structural plane also appear in the steep-gentle turning area of the slope.Secondly,under a coupling action of seismic loading and gravity,the interlaminar tensile crack surface at the rear edge of the slope extends to depth continuously.Meanwhile,rock fracture occurs in the steep-gentle turning area.The“two-way damage propagation”mode of the interlayer tensile crack surface occurs until the sliding surface is connected.However,due to the“locking section”effect of rock mass at the slope foot,it can still maintain a short-term stability.Thirdly,under the influences of the heavy rainfall before a landslide and the long-term gravity of the upper sliding mass,rock mass in the steep section at the slope foot breaks outward.Finally,a catastrophic landslide occurs. 展开更多
关键词 Xinmo landslide damage evolution mechanism progressive deformation process engi-neeringgeolgoy
原文传递
Hot Deformation Behavior and Processing Maps of As-cast Mn18Cr18N Steel 被引量:6
8
作者 陈慧琴 wang zhenxing +2 位作者 qin fengming jia peijie zhao xiaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期935-943,共9页
Hot deformation behavior of as-cast Mn18Cr18 N austenitic stainless steel was studied in the temperature range of 950-1200 ℃ and strain rate range of 0.001-1 s^(-1) using isothermal hot compression tests. The true ... Hot deformation behavior of as-cast Mn18Cr18 N austenitic stainless steel was studied in the temperature range of 950-1200 ℃ and strain rate range of 0.001-1 s^(-1) using isothermal hot compression tests. The true stress-strain curves of the steel were characterized by hardening and subsequent softening and varied with temperatures and strain rates. The hot deformation activation energy of the steel was calculated to be 657.4 k J/mol, which was higher than that of the corresponding wrought steel due to its as-cast coarse columnar grains and heterogeneous structure. Hot processing maps were developed at different plastic strains, which exhibited two domains with peak power dissipation efficiencies at 1150 ℃/0.001 s^(-1) and 1200 ℃/1 s^(-1), respectively. The corresponding microstructures were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD). It has been confirmed that dynamic recrystallization(DRX) controlled by dislocation slipping and climbing mechanism occurs in the temperature and strain rate range of 1050-1200 ℃ and 0.001-0.01 s^(-1); And DRX controlled by twinning mechanism occurs in the temperature and strain rate range of 1100-1200 ℃, 0.1-1 s^(-1). These two DRX domains can serve as the hot working windows of the as-cast steel at lower strain rates and at higher strain rates, respectively. The processing maps at different strains also exhibit that the instability region decreases with increasing strain. The corresponding microstructures and the less tensile ductility in the instability region imply that the flow instability is attributed to flow localization accelerated by a few layers of very fine recrystallized grains along the original grain boundaries. 展开更多
关键词 Mn18Cr18N steel hot deformation hot processing map dynamic recrystallization hot workability
原文传递
Deformation tests and failure process analysis of an anchorage structure 被引量:4
9
作者 Zhao Tongbin Yin Yanchun +1 位作者 Tan Yunliang Song Yimin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期237-242,共6页
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T... In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock. 展开更多
关键词 Anchorage structure Digital speckle correlation methods deformation field Interface stress Failure process
在线阅读 下载PDF
Microstructure Evolution of Different Forging Processes for12%Cr Steel During Hot Deformation 被引量:2
10
作者 隋大山 高亮 崔振山 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期606-611,共6页
Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated t... Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated that average grain size became finer with the increasing number of upsetting and stretching.Especially,the size of stretching three times with upsetting twice had the most remarkable effect on refinement,and the size was only 27.36%of the original one.Moreover,the stress model was integrated into the software and finite element models were established.Simulation results demonstrated that the strain at center point of workpiece was far larger than critical strain value in each process,so that dynamic recrystallization(DRX) occurred in each workpiece,which implied DRX could occur for several times with the increasing number of upsetting and stretching,and uniform finer microstructure would be obtained.However,the results also showed that higher temperature was an unfavorable factor for grain refinement,so the times of heating should be limited for workpiece,and as many forging processes as possible should be finished in once heating. 展开更多
关键词 microstructure forging process hot deformation grain size numerical simulation
原文传递
High temperature deformation behavior and processing map of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders 被引量:2
11
作者 Ying Bao Dong-ye Yang +4 位作者 Na Liu Guo-qing Zhang Zhou Li Fu-yang Cao Jian-fei Sun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第4期435-441,共7页
The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperat... The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders was systematically investigated and the processing map was obtained in the temperature range of 1323-1473 Kand strain rate range of 0.001-0.5s^(-1).The calculated activation energy in the above variational ranges of temperature and strain rate possesses a low activation energy value of approximately 365.6kJ/mol based on the constitutive relationship models developed with the Arrhenius-type constitutive model respectively considering the strain rate and deformation temperature.The hot working flow behavior during the deformation process was analyzed combined with the microstructural evolution.Meanwhile,the processing maps during the deformation process were established based on the dynamic material model and Prasad instability criterion under different deformation conditions.Finally,the optimal hot processing window of this alloy corresponding to the wide temperature range of 1353-1453 Kand the low strain rate of 0.001-0.1s^(-1) was obtained. 展开更多
关键词 Hot compressive deformation TiAl alloy Constitutive equation processing map Gas atomization Hot isostatic pressing
原文传递
Compressional Deformation in Indentation Process for Microlens Array Mold 被引量:1
12
作者 Yaqun Bai Xibin Wang +2 位作者 Tianfeng Zhou Zhiqiang Liang Guang Li 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期15-21,共7页
The structure of a microlens array( MLA) can be formed on copper by an indentation process which is a new manufacture approach we applied here instead of a traditional method to test the material property,thereby wo... The structure of a microlens array( MLA) can be formed on copper by an indentation process which is a new manufacture approach we applied here instead of a traditional method to test the material property,thereby work time can be saved. Single-indentation and multi-indentation are both conducted to generate a single dimple and dimples array,namely micro lens and MLA. Based on finite element simulation method,factors affecting the form accuracy,such as springback at the compressed area of one single dimple and compressional deformation at the adjacent area of dimples arrays,are determined,and the results are verified by experiments under the same conditions. Meanwhile,indenter compensation method is proposed to improve form accuracy of single dimple,and the relationship between pitch and compressional deformation is investigated by modelling seven sets of multi-indentations at different pitches to identify the critical pitch for the MLA's indentation processing. Loads and cross-sectional profiles are measured and analyzed to reveal the compressional deformation mechanism. Finally,it is found that MLA at pitches higher than 1. 47 times of its diameter can be manufactured precisely by indentation using a compensated indenter. 展开更多
关键词 microlens array(MLA) indentation process compensation method compressional deformation
在线阅读 下载PDF
On Numerical Modelling of Industrial Powder Compaction Processes for Large Deformation of Endochronic Plasticity at Finite Strains
13
作者 A R Khoei A Bakhshiani M Mofid 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期95-96,共2页
Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the c... Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of 展开更多
关键词 In On Numerical Modelling of Industrial Powder Compaction processes for Large deformation of Endochronic Plasticity at Finite Strains
在线阅读 下载PDF
Effect of Deformation Condition on Axial Compressive Precision Forming Process of Tube with Curling Die
14
作者 He YANG and Zhichao SUN College of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期135-136,共2页
The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mai... The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1. 展开更多
关键词 Effect of deformation Condition on Axial Compressive Precision Forming process of Tube with Curling Die
在线阅读 下载PDF
Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy 被引量:19
15
作者 Rakshith M. Seenuvasaperumal P. 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1709-1732,共24页
Magnesium(Mg)alloys despite being the ideal candidate for structural applications,owing to their high specific strength and low density,are not widely used due to lack of active slip systems at room temperature in the... Magnesium(Mg)alloys despite being the ideal candidate for structural applications,owing to their high specific strength and low density,are not widely used due to lack of active slip systems at room temperature in their hexagonal close-packed crystal structure,eliciting poor ductility and formability.Amongst the various series of Mg alloys,the AZ and ZK series alloys have been standouts,as they inherit better room temperature strength and flow characteristics through their solute elements.Grain refinement,as well as eliminating casting defects through metal processing techniques are vital for the commercial viability of these alloys since they play a key role in controlling the mechanical behaviour.As such,this review highlights the effect of different Bulk-deformation and Severe Plastic Deformation techniques on the crystal orientation and the corresponding mechanical behaviours of the AZ31 alloy.However,every process parameter surrounding these techniques must be well thought of,as they require specially designed tools.With the advent of finite element analysis,these processes could be computationally realized for different parameters and optimized in an economically viable manner.Hence,this article also covers the developments made in finite element methods towards these techniques. 展开更多
关键词 AZ31 magnesium alloy Severe plastic deformation process ROLLING EXTRUSION Finite element simulation
在线阅读 下载PDF
Theoretical, Simulation and Experimental Analysis of Microfluidic Droplet Generation and Recovering Process with Applications in Frying Oil Assessments
16
作者 SHI Xinqun DENG Ning +5 位作者 WANG Zhiheng CAO Ning CHEN Jinbo GE Ji WU Zhizheng LIU Mei 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第3期411-417,共7页
The research on microfluidic droplet size prediction has been extensive and fruitful, while the droplet deforming process has been seldom studied. In this paper, a frying-oil-assessing microfluidic device was designed... The research on microfluidic droplet size prediction has been extensive and fruitful, while the droplet deforming process has been seldom studied. In this paper, a frying-oil-assessing microfluidic device was designed to study the droplet deforming and recovering processes, which were dominated by channel geometry, flow rates,sheath flow viscosity and interfacial tension of the two phases. Theoretical expressions of the deforming process and its extreme value were obtained for the first time, supported by simulation and experiments. Theoretical,simulation and experimental results indicated that the steady-state droplet length could be a useful parameter for frying oil assessment. 展开更多
关键词 microfluidic device frying oil droplet deformation process total polar materials(TPM)
原文传递
Hot Deformation Behavior of GH738 for A-USC Turbine Blades 被引量:16
17
作者 Li WANG Gang YANG +2 位作者 Ting LEI Shu-biao YIN Lu WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第11期1043-1048,共6页
The hot deformation characteristics of GH738 superalloy over the temperature range of 1000 °C to 1 200 °C and strain range of 0.01 s^-1 to 10.0 s^-1 under a strain of 1.0 s^-1 were investigated through hot c... The hot deformation characteristics of GH738 superalloy over the temperature range of 1000 °C to 1 200 °C and strain range of 0.01 s^-1 to 10.0 s^-1 under a strain of 1.0 s^-1 were investigated through hot compression tests with a Gleeble-1500 simulation machine. The flow stress reached peak value before flow softening occurred. The average apparent activation energy(Q) of GH738 was calculated to be 430 k J/mol, and the stress index(n) is approximately 4.08. The processing map was developed based on flow stress data and dynamic materials model(DMM). The map shows a dynamic recrystallization(DRX) domain in 1 050 °C to 1150 °C and 0.01 s^-1 to 1.0 s^-1 strain rate range with a peak efficiency of 45%, which is considered to be the optimum region for hot working. Moreover, the materials undergo flow instability in the temperature range of 1000 °C to 1050 °C and strain range of 1.0 s^-1 to 10.0 s^-1, and adiabatic shear bands can be observed in this domain. 展开更多
关键词 hot deformation GH738 processing map turbine blade ultra-supercritical technology
原文传递
Constitutive Modeling and Hot Deformation Behavior of Duplex Structured Mg–Li–Al–Sr Alloy 被引量:7
18
作者 Yan hang Xiaodong Peng +3 位作者 Fengjuan Ren Haiming Wen Junfei Su Weidong xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1289-1296,共8页
Hot deformation behavior of an as-extruded duplex structured Mg-9Li-3Al-2.5Sr alloy is investigated via hot compression tests conducted at 200-350℃ with strain rate of 0.001-1 s^-1.The flow behavior of Mg-9Li-3Al-2.5... Hot deformation behavior of an as-extruded duplex structured Mg-9Li-3Al-2.5Sr alloy is investigated via hot compression tests conducted at 200-350℃ with strain rate of 0.001-1 s^-1.The flow behavior of Mg-9Li-3Al-2.5Sr alloy can be described accurately by hyperbolic sine constitutive equation and the average activation energy for deformation is calculated as 143.5 k J/mol.Based on a dynamic materials model,the processing maps of Mg-9Li-3Al-2.5Sr alloy which describe the variation of power dissipation efficiency are constructed as a function of temperature and strain rate.The processing maps exhibit an area of discontinuous dynamic recrystallization occurring at 280-300℃ with strain rate of 0.001-0.01 s^-1,which corresponds to the optimum hot working conditions. 展开更多
关键词 Mg-Li alloys Hot deformation Constitutive equation processing maps Dynamic recrystallization
原文传递
High-temperature deformation behavior of a beta Ti-3.0Al-3.5Cr-2.0Fe-0.1B alloy 被引量:7
19
作者 Wen-Tao Qu Xu-Guang Sun +2 位作者 Song-Xiao Hui Zhen-Guo Wang Yan Li 《Rare Metals》 SCIE EI CAS CSCD 2018年第3期217-224,共8页
The high-temperature deformation behavior of a beta Ti-3.0 Al-3.5 Cr-2.0 Fe-0.1 B alloy was investigated by a Gleeble-1500 D thermal simulator. The height reduction was 50%, corresponding to a true strain of 0.693. Th... The high-temperature deformation behavior of a beta Ti-3.0 Al-3.5 Cr-2.0 Fe-0.1 B alloy was investigated by a Gleeble-1500 D thermal simulator. The height reduction was 50%, corresponding to a true strain of 0.693. The strain rate ranging from 0.01 to 10.00 s^-1 and the deformation temperature ranging from 800 to 950 ℃ were considered.The flow stress and the apparent activation energy for deformation, along with the constitutive equation, were used to analyze the behavior of the Ti-3.0 Al-3.5 Cr-2.0 Fe-0.1 B alloy. The processing map was established. The effect of strain rate on the microstructure at 850 ℃ was evaluated.The flow stress-strain curves indicated that the peak flow stresses increased along with an increase in the strain rate and decreased as the deformation temperature increased.Based on the true stress-true strain curves, the constitutive equation was established and followed as the ε= 6.58×10-(10)[sinh(0.0113σ)]-(3.44)exp(-245481.3/RT). The processing map exhibited the "unsafe" region at the strain rate of10 s^-1 and the temperature of 850 ℃,and the rest region was "safe". The deformation microstructure demonstrated that both dynamic recovery(DRV) and dynamic recrystallization(DRX) existed during deformation. At the lower strain rate of 0.01 s^-1, the main deformation mechanism was the DRV, and the DRX was the dominant deformation mechanism at the higher strain rate of 1.00 s^-1. 展开更多
关键词 Titanium alloy Hot deformation Constitutive equation processing map Microstructure
原文传递
Optimization of thermal processing parameters of Ti555211 alloy using processing maps based on Murty criterion 被引量:2
20
作者 Zhen An Jin-Shan Li Yong Feng 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期154-161,共8页
Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature de... Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress-strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol^(-1)in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800-850 °C/0.001-0.010 s^(-1). The other peak efficiency of *60 % occurs at C950 °C/0.001-0.010 s^(-1), which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s^(-1)and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed. 展开更多
关键词 Ti555211 titanium alloy High temperature deformation behavior processing maps
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部