Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were...Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were studied. Porous titanium with porosities varying from 36%-66% and average pore size of 230 μm was fabricated by powder sintering. Microstructural features were characterized using scanning electron microscopy. Uniaxial compression tests were used to probe the mechanical response in terms of elastic modulus and compressive strength. The mechanical properties of porous titanium were found to be close to the those of human bone, with stiffness values ranging from 1.86 to 14.7 GPa and compressive strength values of 85.16-461.94 MPa. The relationships between mechanical properties and relative densities were established, and the increase in relative density showed significant effects on mechanical properties and deformations of porous titanium. In a lower relative density, the microscopic deformation mechanism of porous titanium was yielding, bending and buckling of cell walls, while the deformation of yielding and bending of cell walls was observed in the porous titanium with higher relative density.展开更多
Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the me...Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the mechanical and energy properties are analysed using experimental data.The results show that the stress-strain curve could be divided into four stages in a single cycle.The elastic strain and elastic energy density increase linearly with deviatoric stress and are proportional to the confining pressure and loading rate;irreversible strain and dissipated energy density increase exponentially with deviatoric stress,inversely proportional to the confining pressure and loading rate.The internal structure of tectonic coal is divided into three types,all of which are damaged under different deviatoric stress levels,thereby explaining the segmentation phenomenon of stress-strain curve of tectonic coal in the cyclic loading process.Tectonic coal exhibits nonlinear energy storage characteristics,which verifies why the tectonic coal is prone to coal and gas outburst from the principle of energy dissipation.In addition,the damage mechanism of tectonic coal is described from the point of energy distribution by introducing the concepts of crushing energy and friction energy.展开更多
Deformation behavior and microstructure of AlMg6Mn alloy subjected to shear spinning were studied by means of mechanical characterization, optical and SEM+EDS microscopy. Specimens were shear spun on an industrial sp...Deformation behavior and microstructure of AlMg6Mn alloy subjected to shear spinning were studied by means of mechanical characterization, optical and SEM+EDS microscopy. Specimens were shear spun on an industrial spinning machine using different mandrels, providing reductions of wall thickness of 30%, 50% and 68%. The grain structure developed during shear spinning refines gradually. The grains elongate in axial direction with increase of reduction, and also stretches along circumferencial direction. Optimal combination of strength and elongation is observed. This is attributed to grain refinement and dislocation reactions with particles and atoms of Mg and Mn in solid solution.展开更多
Experiments were conducted to determine the residual stresses with X-ray diffraction in the ma- trix of a SiC/Al composite after different thermal treatments,and to investigate the stress-strain characteristics and fr...Experiments were conducted to determine the residual stresses with X-ray diffraction in the ma- trix of a SiC/Al composite after different thermal treatments,and to investigate the stress-strain characteristics and fracture behaviour of the com- posite.It was found that there existed a tensile residual stress in the matrix and both thermal cy- cling between room temperature and 350℃ and low temperature treatment in liquid nitrogen reduced the residual stress.The results of the strength differential effect and Bauschinger effect were con- sistent with the results of residual stress measurements.The tensile residual stresses in the Al matrix enhanced the strength differential effect.The magnitude of Bauschinger effect is greater for a test initially started in compression than that in tension.展开更多
An extra-low interstitial near alpha alloy Ti-3Al-2Zr-2Mo(wt%) was fabricated by hydrogenation and thermomechanical consolidation(TMC) of the coarse and spherical pre-alloyed powder with particle sizes of 60 to 270 μ...An extra-low interstitial near alpha alloy Ti-3Al-2Zr-2Mo(wt%) was fabricated by hydrogenation and thermomechanical consolidation(TMC) of the coarse and spherical pre-alloyed powder with particle sizes of 60 to 270 μm. The coarse powder is a byproduct of pre-alloyed powder produced for selective laser and electron beam additive manufacturing. The TMC process involves powder compaction, fast sintering,in-situ dehydrogenation and an immediate hot extrusion to form a fully dense and fine-grained martensitic microstructure. Further dehydrogenation in vaccum at 700 °C converted the martensitic microstructure into an interwoven α/β microstructure which exhibited an improved yield strength, apparent necking and premature cracking at grain boundary α(α_(GB)) ribbons. A further annealing of 880 ℃/1 h/AC led to the formation of a fine-grained α/β_(t)composite structure, which achieved an enhance ultimate tensile strength of 835 MPa and excellent tensile ductility of 16.0%. Analysis of the deformation behavior of the alloy in different states revealed that the α/β_(t)composite structures brought about an enhanced strain hardening capability by heterogeneous deformation effect of hard β_(t)and soft α-laths, which inhibited the formation of microcracks and consequently improved the coordinated deformation.展开更多
The Chinese Materials Research Society(C-MRS)Conference(2015)was held in the Guizhou Park Hotel International Conference Center,Guiyang,China,from July 10-14,2015.This conference consists of 30symposia,including 4...The Chinese Materials Research Society(C-MRS)Conference(2015)was held in the Guizhou Park Hotel International Conference Center,Guiyang,China,from July 10-14,2015.This conference consists of 30symposia,including 4international symposia.As one of 4international symposia,"Serration and noise behavior in advanced materials"展开更多
基金Project(2012CB619101)supported by the National Basic Research Program of China
文摘Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were studied. Porous titanium with porosities varying from 36%-66% and average pore size of 230 μm was fabricated by powder sintering. Microstructural features were characterized using scanning electron microscopy. Uniaxial compression tests were used to probe the mechanical response in terms of elastic modulus and compressive strength. The mechanical properties of porous titanium were found to be close to the those of human bone, with stiffness values ranging from 1.86 to 14.7 GPa and compressive strength values of 85.16-461.94 MPa. The relationships between mechanical properties and relative densities were established, and the increase in relative density showed significant effects on mechanical properties and deformations of porous titanium. In a lower relative density, the microscopic deformation mechanism of porous titanium was yielding, bending and buckling of cell walls, while the deformation of yielding and bending of cell walls was observed in the porous titanium with higher relative density.
基金funded by the National Major Scientific Research Instrument Development Project(No.41727801)the National Natural Science Foundation of China(Nos.42030810 and 41972168)+1 种基金the Dominant discipline support project of Jiangsu Province(No.2020CXNL11)the Foundation of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization(No.2019A001).
文摘Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the mechanical and energy properties are analysed using experimental data.The results show that the stress-strain curve could be divided into four stages in a single cycle.The elastic strain and elastic energy density increase linearly with deviatoric stress and are proportional to the confining pressure and loading rate;irreversible strain and dissipated energy density increase exponentially with deviatoric stress,inversely proportional to the confining pressure and loading rate.The internal structure of tectonic coal is divided into three types,all of which are damaged under different deviatoric stress levels,thereby explaining the segmentation phenomenon of stress-strain curve of tectonic coal in the cyclic loading process.Tectonic coal exhibits nonlinear energy storage characteristics,which verifies why the tectonic coal is prone to coal and gas outburst from the principle of energy dissipation.In addition,the damage mechanism of tectonic coal is described from the point of energy distribution by introducing the concepts of crushing energy and friction energy.
文摘Deformation behavior and microstructure of AlMg6Mn alloy subjected to shear spinning were studied by means of mechanical characterization, optical and SEM+EDS microscopy. Specimens were shear spun on an industrial spinning machine using different mandrels, providing reductions of wall thickness of 30%, 50% and 68%. The grain structure developed during shear spinning refines gradually. The grains elongate in axial direction with increase of reduction, and also stretches along circumferencial direction. Optimal combination of strength and elongation is observed. This is attributed to grain refinement and dislocation reactions with particles and atoms of Mg and Mn in solid solution.
文摘Experiments were conducted to determine the residual stresses with X-ray diffraction in the ma- trix of a SiC/Al composite after different thermal treatments,and to investigate the stress-strain characteristics and fracture behaviour of the com- posite.It was found that there existed a tensile residual stress in the matrix and both thermal cy- cling between room temperature and 350℃ and low temperature treatment in liquid nitrogen reduced the residual stress.The results of the strength differential effect and Bauschinger effect were con- sistent with the results of residual stress measurements.The tensile residual stresses in the Al matrix enhanced the strength differential effect.The magnitude of Bauschinger effect is greater for a test initially started in compression than that in tension.
基金financially supported by the“Xing Liao Talent Plan”of Liaoning Province,China(No.XLYC1802080)the Fundamental Research Fund for the Central Universities(No.02080022117003)。
文摘An extra-low interstitial near alpha alloy Ti-3Al-2Zr-2Mo(wt%) was fabricated by hydrogenation and thermomechanical consolidation(TMC) of the coarse and spherical pre-alloyed powder with particle sizes of 60 to 270 μm. The coarse powder is a byproduct of pre-alloyed powder produced for selective laser and electron beam additive manufacturing. The TMC process involves powder compaction, fast sintering,in-situ dehydrogenation and an immediate hot extrusion to form a fully dense and fine-grained martensitic microstructure. Further dehydrogenation in vaccum at 700 °C converted the martensitic microstructure into an interwoven α/β microstructure which exhibited an improved yield strength, apparent necking and premature cracking at grain boundary α(α_(GB)) ribbons. A further annealing of 880 ℃/1 h/AC led to the formation of a fine-grained α/β_(t)composite structure, which achieved an enhance ultimate tensile strength of 835 MPa and excellent tensile ductility of 16.0%. Analysis of the deformation behavior of the alloy in different states revealed that the α/β_(t)composite structures brought about an enhanced strain hardening capability by heterogeneous deformation effect of hard β_(t)and soft α-laths, which inhibited the formation of microcracks and consequently improved the coordinated deformation.
文摘The Chinese Materials Research Society(C-MRS)Conference(2015)was held in the Guizhou Park Hotel International Conference Center,Guiyang,China,from July 10-14,2015.This conference consists of 30symposia,including 4international symposia.As one of 4international symposia,"Serration and noise behavior in advanced materials"