期刊文献+
共找到627篇文章
< 1 2 32 >
每页显示 20 50 100
Multi-Layer Feature Extraction with Deformable Convolution for Fabric Defect Detection
1
作者 Jielin Jiang Chao Cui +1 位作者 Xiaolong Xu Yan Cui 《Intelligent Automation & Soft Computing》 2024年第4期725-744,共20页
In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.... In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.Traditional fabric defect detection algorithms can only detect specific materials and specific fabric defect types;in addition,their detection efficiency is low,and their detection results are relatively poor.Deep learning-based methods have many advantages in the field of fabric defect detection,however,such methods are less effective in identifying multiscale fabric defects and defects with complex shapes.Therefore,we propose an effective algorithm,namely multilayer feature extraction combined with deformable convolution(MFDC),for fabric defect detection.In MFDC,multi-layer feature extraction is used to fuse the underlying location features with high-level classification features through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.On this basis,a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of irregularly shaped fabric defects.In this approach,Roi Align and Cascade-RCNN are integrated to enhance the adaptability of the algorithm in materials with complex patterned backgrounds.The experimental results show that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with complex shapes,at the expense of a small increase in detection time. 展开更多
关键词 Fabric defect detection multi-layer features deformable convolution
在线阅读 下载PDF
CW-HRNet:Constrained Deformable Sampling and Wavelet-Guided Enhancement for Lightweight Crack Segmentation
2
作者 Dewang Ma 《Journal of Electronic Research and Application》 2025年第5期269-280,共12页
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke... This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks. 展开更多
关键词 Crack segmentation Lightweight semantic segmentation deformable convolution Wavelet transform Road infrastructure
在线阅读 下载PDF
A Remote Sensing Image Semantic Segmentation Method by Combining Deformable Convolution with Conditional Random Fields 被引量:13
3
作者 Zongcheng ZUO Wen ZHANG Dongying ZHANG 《Journal of Geodesy and Geoinformation Science》 2020年第3期39-49,共11页
Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the a... Currently,deep convolutional neural networks have made great progress in the field of semantic segmentation.Because of the fixed convolution kernel geometry,standard convolution neural networks have been limited the ability to simulate geometric transformations.Therefore,a deformable convolution is introduced to enhance the adaptability of convolutional networks to spatial transformation.Considering that the deep convolutional neural networks cannot adequately segment the local objects at the output layer due to using the pooling layers in neural network architecture.To overcome this shortcoming,the rough prediction segmentation results of the neural network output layer will be processed by fully connected conditional random fields to improve the ability of image segmentation.The proposed method can easily be trained by end-to-end using standard backpropagation algorithms.Finally,the proposed method is tested on the ISPRS dataset.The results show that the proposed method can effectively overcome the influence of the complex structure of the segmentation object and obtain state-of-the-art accuracy on the ISPRS Vaihingen 2D semantic labeling dataset. 展开更多
关键词 high-resolution remote sensing image semantic segmentation deformable convolution network conditions random fields
在线阅读 下载PDF
A Deformable Network with Attention Mechanism for Retinal Vessel Segmentation
4
作者 Xiaolong Zhu Wenjian Li +2 位作者 Weihang Zhang Dongwei Li Huiqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期186-193,共8页
The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segm... The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network. 展开更多
关键词 retinal vessel segmentation deformable convolution attention mechanism deep learning
暂未订购
3D Data Scattergram Image Classification Based Protection for Transmission Line Connecting BESS Using Depth-wise Separable Convolution Based CNN
5
作者 Yingyu Liang Yi Ren +1 位作者 Xiaoyang Yang Wenting Zha 《Journal of Modern Power Systems and Clean Energy》 2025年第2期609-621,共13页
The distinctive fault characteristics of battery energy storage stations(BESSs)significantly affect the reliability of conventional protection methods for transmission lines.In this paper,the three-dimensional(3D)data... The distinctive fault characteristics of battery energy storage stations(BESSs)significantly affect the reliability of conventional protection methods for transmission lines.In this paper,the three-dimensional(3D)data scattergrams are constructed using current data from both sides of the transmission line and their sum.Following a comprehensive analysis of the varying characteristics of 3D data scattergrams under different conditions,a 3D data scattergram image classification based protection method is developed.The depth-wise separable convolution is used to ensure a lightweight convolutional neural network(CNN)structure without compromising performance.In addition,a Bayesian hyperparameter optimization algorithm is used to achieve a hyperparametric search to simplify the training process.Compared with artificial neural networks and CNNs,the depth-wise separable convolution based CNN(DPCNN)achieves a higher recognition accuracy.The 3D data scattergram image classification based protection method using DPCNN can accurately separate internal faults from other disturbances and identify fault phases under different operating states and fault conditions.The proposed protection method also shows first-class tolerability against current transformer(CT)saturation and CT measurement errors. 展开更多
关键词 convolutional neural network(CNN) battery energy storage station(BESS) depth-wise separable convolution hyperparameter optimization fault classification line protection
原文传递
Pore network modeling of gas-water two-phase flow in deformed multi-scale fracture-porous media
6
作者 Dai-Gang Wang Yu-Shan Ma +6 位作者 Zhe Hu Tong Wu Ji-Rui Hou Zhen-Chang Jiang Xin-Xuan Qi Kao-Ping Song Fang-zhou Liu 《Petroleum Science》 2025年第5期2096-2108,共13页
Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected to conduct in-situ stress-loading micro-focus CT scanning experiments.The gray images of rock microstructure at ... Two actual rocks drilled from a typical ultra-deep hydrocarbon reservoir in the Tarim Basin are selected to conduct in-situ stress-loading micro-focus CT scanning experiments.The gray images of rock microstructure at different stress loading stages are obtained.The U-Net fully convolutional neural network is utilized to achieve fine semantic segmentation of rock skeleton,pore space,and microfractures based on CT slice images of deep rocks.The three-dimensional digital rock models of deformed multiscale fractured-porous media at different stress loading stages are thereafter reconstructed,and the equivalent fracture-pore network models are finally extracted to explore the underlying mechanisms of gas-water two-phase flow at the pore-scale.Results indicate that,in the process of insitu stress loading,both the deep rocks have experienced three stages:linear elastic deformation,nonlinear plastic deformation,and shear failure.The micro-mechanical behavior greatly affects the dynamic deformation of rock microstructure and gas-water two-phase flow.In the linear elastic deformation stage,with the increase in in-situ stress,both the deep rocks are gradually compacted,leading to decreases in average pore radius,pore throat ratio,tortuosity,and water-phase relative permeability,while the coordination number nearly remains unchanged.In the plastic deformation stage,the synergistic influence of rock compaction and existence of micro-fractures typically exert a great effect on pore-throat topological properties and gas-water relative permeability.In the shear failure stage,due to the generation and propagation of micro-fractures inside the deep rock,the topological connectivity becomes better,fluid flow paths increase,and flow conductivity is promoted,thus leading to sharp increases in average pore radius and coordination number,rapid decreases in pore throat ratio and tortuosity,as well as remarkable improvement in relative permeability of gas phase and waterphase. 展开更多
关键词 Ultra-deep reservoir In-situ stress loading U-Netfully convolutional neural network CTscanning Microstructure deformation Pore-scalefluid flow
原文传递
Optical Flow with Learning Feature for Deformable Medical Image Registration 被引量:1
7
作者 Jinrong Hu Lujin Li +3 位作者 Ying Fu Maoyang Zou Jiliu Zhou Shanhui Sun 《Computers, Materials & Continua》 SCIE EI 2022年第5期2773-2788,共16页
Deformable medical image registration plays a vital role in medical image applications,such as placing different temporal images at the same time point or different modality images into the same coordinate system.Vari... Deformable medical image registration plays a vital role in medical image applications,such as placing different temporal images at the same time point or different modality images into the same coordinate system.Various strategies have been developed to satisfy the increasing needs of deformable medical image registration.One popular registration method is estimating the displacement field by computing the optical flow between two images.The motion field(flow field)is computed based on either gray-value or handcrafted descriptors such as the scale-invariant feature transform(SIFT).These methods assume that illumination is constant between images.However,medical images may not always satisfy this assumption.In this study,we propose a metric learning-based motion estimation method called Siamese Flow for deformable medical image registration.We train metric learners using a Siamese network,which produces an image patch descriptor that guarantees a smaller feature distance in two similar anatomical structures and a larger feature distance in two dissimilar anatomical structures.In the proposed registration framework,the flow field is computed based on such features and is close to the real deformation field due to the excellent feature representation ability of the Siamese network.Experimental results demonstrate that the proposed method outperforms the Demons,SIFT Flow,Elastix,and VoxelMorph networks regarding registration accuracy and robustness,particularly with large deformations. 展开更多
关键词 deformation registration feature extraction optical flow convolutional neural network
在线阅读 下载PDF
DSD-MatchingNet:Deformable sparse-to-dense feature matching for learning accurate correspondences
8
作者 Yicheng ZHAO Han ZHANG +3 位作者 Ping LU Ping LI Enhua WU Bin SHENG 《Virtual Reality & Intelligent Hardware》 2022年第5期432-443,共12页
Background Exploring correspondences across multiview images is the basis of various computer vision tasks.However,most existing methods have limited accuracy under challenging conditions.Method To learn more robust a... Background Exploring correspondences across multiview images is the basis of various computer vision tasks.However,most existing methods have limited accuracy under challenging conditions.Method To learn more robust and accurate correspondences,we propose DSD-MatchingNet for local feature matching in this study.First,we develop a deformable feature extraction module to obtain multilevel feature maps,which harvest contextual information from dynamic receptive fields.The dynamic receptive fields provided by the deformable convolution network ensure that our method obtains dense and robust correspondence.Second,we utilize sparse-to-dense matching with symmetry of correspondence to implement accurate pixel-level matching,which enables our method to produce more accurate correspondences.Result Experiments show that our proposed DSD-MatchingNet achieves a better performance on the image matching benchmark,as well as on the visual localization benchmark.Specifically,our method achieved 91.3%mean matching accuracy on the HPatches dataset and 99.3%visual localization recalls on the Aachen Day-Night dataset. 展开更多
关键词 Image matching deformable convolution network Sparse-to-dense matching
在线阅读 下载PDF
Validation Research on the Application of Depthwise Separable Convolutional Al Facial Expression Recognition in Non-pharmacological Treatment of BPSD
9
作者 Xiangyu Liu 《Journal of Clinical and Nursing Research》 2021年第4期31-37,共7页
One of the most obvious clinical reasons of dementia or The Behavioral and Psychological Symptoms of Dementia(BPSD)are the lack of emotional expression,the increased frequency of negative emotions,and the impermanence... One of the most obvious clinical reasons of dementia or The Behavioral and Psychological Symptoms of Dementia(BPSD)are the lack of emotional expression,the increased frequency of negative emotions,and the impermanence of emotions.Observing the reduction of BPSD in dementia through emotions can be considered effective and widely used in the field of non-pharmacological therapy.At present,this article will verify whether the image recognition artificial intelligence(AI)system can correctly reflect the emotional performance of the elderly with dementia through a questionnaire survey of three professional elderly nursing staff.The ANOVA(sig.=0.50)is used to determine that the judgment given by the nursing staff has no obvious deviation,and then Kendall's test(0.722**)and spearman's test(0.863**)are used to verify the judgment severity of the emotion recognition system and the nursing staff unanimously.This implies the usability of the tool.Additionally,it can be expected to be further applied in the research related to BPSD elderly emotion detection. 展开更多
关键词 depth-wise separable convolution EMOTION BPSD DEMENTIA Nursing
暂未订购
改进YOLOv8的矿井人员防护装备实时监测方法研究 被引量:3
10
作者 张磊 孙志鹏 +3 位作者 陶虹京 郝尚凯 燕倩如 李熙尉 《煤炭科学技术》 北大核心 2025年第S1期354-365,共12页
穿戴个人防护装备是保障矿井人员作业安全的重要手段,开展矿井人员防护装备监测是煤矿安全管理的重要工作内容。煤矿井下环境较为复杂,视频监控易受到噪声、光照以及粉尘等因素干扰,导致现有的目标检测方法对矿井人员防护装备存在检测... 穿戴个人防护装备是保障矿井人员作业安全的重要手段,开展矿井人员防护装备监测是煤矿安全管理的重要工作内容。煤矿井下环境较为复杂,视频监控易受到噪声、光照以及粉尘等因素干扰,导致现有的目标检测方法对矿井人员防护装备存在检测精度低、实时性差、模型复杂度高等问题。为此,提出一种改进YOLOv8的矿井人员防护装备实时监测方法,称为DBE-YOLO。DBEYOLO模型首先在基准模型主干网络的CBS模块中结合可变形卷积(DCNv2)组成DBS模块,使卷积具有可变形能力,在采样时可以更贴近检测物体的真实形状和尺寸,更具有鲁棒性,有效提升了其对不同尺度目标的特征获取能力,有利于模型提取更多人员防护装备的特征信息,提高模型检测精度。其次在特征增强网络融合了加权双向特征金字塔机制(BiFPN),在多尺度特征融合过程中删除效率较低的特征传输节点,实现更高层次的融合,提高了对不同尺度特征的融合效率,同时BiFPN引入了一个可以学习的权值,有助于让网络学习不同输入特征的重要性。最后使用WIoUv3作为模型的损失函数,其通过动态分配梯度增益,重点关注普通锚框质量,在模型训练过程中减少了低质量锚框产生的有害梯度,进一步提升了模型性能。实验结果表明,DBE-YOLO模型在矿井人员防护装备监测中有着良好的效果,查准率、查全率、平均精度分别为93.1%、93.0%、95.8%,相较于基准模型分别提高0.8%,2.9%,2.9%,检测实时性提升到65 f·s^(-1),提高了8.3%,此外,参数量、浮点计算量、模型体积分别为2 M、6.6 G、4.4 MB,相较于原模型分别降低33.3%、18.5%、30.2%。使用煤矿现场作业视频监控对改进模型进行验证,其有效改善了漏检和误检问题,为提高矿井人员的作业安全提供了技术手段。 展开更多
关键词 可变形卷积 目标检测 损失函数 深度学习 实时监测
在线阅读 下载PDF
基于改进YOLOv8的交通场景实例分割算法 被引量:3
11
作者 赵南南 高翡晨 《计算机工程》 北大核心 2025年第1期198-207,共10页
提出一种基于改进型YOLOv8的实例分割算法(DE-YOLO)。为减少图像中复杂背景的干扰,引入高效多尺度注意力机制,跨维交互使各特征组内空间语义特征平均分布。在主干网络部分,使用可变形卷积DCNv2结合C2f卷积层,突破原始卷积限制,提升可变... 提出一种基于改进型YOLOv8的实例分割算法(DE-YOLO)。为减少图像中复杂背景的干扰,引入高效多尺度注意力机制,跨维交互使各特征组内空间语义特征平均分布。在主干网络部分,使用可变形卷积DCNv2结合C2f卷积层,突破原始卷积限制,提升可变性。为减小有害梯度并提升检测器精度,采用动态非单调聚焦机制Wise-交并比(WIoU)替代联合完全交并(CIoU)损失函数进行质量评估,优化检测框定位,提升分割精度。同时,通过开启Mixup数据增强处理,充实数据集,丰富训练特征,提升模型学习能力。实验结果表明,DE-YOLO在城市景观数据集Cityscapes中的掩模平均精度均值(mAPmask)较基准模型YOLOv8n-seg提高了2.0百分点,IoU阈值为0.5时的平均精度提升了3.2百分点,所提算法在提升精度的同时,保持了优良的检测速度和较少的参数量,模型参数量较同类模型低2.2~31.3百分点。 展开更多
关键词 YOLOv8网络 实例分割 高效多尺度注意力 可变形卷积 损失函数
在线阅读 下载PDF
基于双关键点的拥挤行人检测方法 被引量:1
12
作者 沈继锋 盛常宝 +1 位作者 陈逸飞 左欣 《江苏大学学报(自然科学版)》 北大核心 2025年第2期140-148,共9页
针对行人检测中远距离目标像素稀少和遮挡产生人体模式信息缺失导致的严重漏检问题,提出一种基于双关键点组合的行人检测方法.该方法利用人体头部与中心区域的关键点,有效提取和融合行人的判别语义特征,从而显著降低行人的漏检率.首先,... 针对行人检测中远距离目标像素稀少和遮挡产生人体模式信息缺失导致的严重漏检问题,提出一种基于双关键点组合的行人检测方法.该方法利用人体头部与中心区域的关键点,有效提取和融合行人的判别语义特征,从而显著降低行人的漏检率.首先,在深层聚合主干特征网络上引入可变形卷积来扩大感受野,增强人体模式的语义信息;其次,设计了一种基于关键点组合的双分支联合检测模块,通过重新定义不同分支的正样本,强化小尺度与遮挡目标的语义信息;最后,借助非极大值抑制算法融合双分支检测结果.结果表明:在CityPerson验证数据集的普通、小尺度与严重遮挡子集上,文中方法的平均漏检率分别达到8.24%、11.81%和30.59%,特别是对于严重遮挡子集,漏检率相比传统方法ACSP降低15.71%;文中方法检测速度也达到16帧/s;在CrowdHuman上文中方法的平均精度和平均漏检率分别达到86.30%和45.52%.与其他先进方法相比,文中方法在平均精度、漏检率和检测速度方面都呈现出更优异的性能,在密集行人的复杂场景中具有较好的应用价值. 展开更多
关键词 行人检测 拥挤场景 遮挡目标 小尺度目标 双关键点 可变形卷积 双分支融合 非极大值抑制
在线阅读 下载PDF
一种3D可变形卷积结合Transformer的视频压缩感知方法
13
作者 杜秀丽 朱金耀 +2 位作者 高星 吕亚娜 邱少明 《计算机科学》 北大核心 2025年第11期150-156,共7页
面对视频的分辨率越来越高导致数据量越来越大的挑战,以更低的采样率实现视频的高质量重构可降低对通信资源的占用,进而降低采样端的部署难度。然而,现有的视频压缩感知方法对视频的帧间相关性无法充分利用,低采样率下的视频重构质量有... 面对视频的分辨率越来越高导致数据量越来越大的挑战,以更低的采样率实现视频的高质量重构可降低对通信资源的占用,进而降低采样端的部署难度。然而,现有的视频压缩感知方法对视频的帧间相关性无法充分利用,低采样率下的视频重构质量有待进一步提高。随着深度学习技术的引入,基于深度学习的分布式视频压缩感知给视频压缩感知重构提供了新思路。因此,结合3D可变形卷积与Transformer构建CS3Dformer网络,利用3D可变形卷积捕获视频的局部特征和时空特征的有效性,学习视频帧间的时空特征;同时,利用Transformer捕获长距离依赖特征的优点,一定程度上弥补了卷积神经网络方法在捕获图像的非局部相似性方面的缺陷,能更好地实现对视频的建模。所提方法是一种端到端的视频压缩感知方法,在多个数据集上的实验结果验证了该方法的有效性。 展开更多
关键词 压缩感知 视频重构 可变形卷积 TRANSFORMER 卷积神经网络
在线阅读 下载PDF
基于EE-YOLOv8s的多场景火灾迹象检测算法 被引量:2
14
作者 崔克彬 耿佳昌 《图学学报》 北大核心 2025年第1期13-27,共15页
针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征... 针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。 展开更多
关键词 烟火目标检测 EfficientNetEasy主干网络 大型可分离核注意力机制 可变形卷积校准模块 小目标检测
在线阅读 下载PDF
基于深度学习的钻孔冲煤量智能识别方法 被引量:1
15
作者 李小军 赵明炀 李淼 《煤田地质与勘探》 北大核心 2025年第1期257-270,共14页
【目的】为解决人工统计钻孔冲煤量不准确以及效率低等问题,提出一种YOLOv8n、Res-Net34和PP-OCRv4算法相结合的智能识别方法。【方法】该方法首先使用YOLOv8n算法完成一级检测,同时并行级联ResNet34算法与PP-OCRv4算法进行二级处理,并... 【目的】为解决人工统计钻孔冲煤量不准确以及效率低等问题,提出一种YOLOv8n、Res-Net34和PP-OCRv4算法相结合的智能识别方法。【方法】该方法首先使用YOLOv8n算法完成一级检测,同时并行级联ResNet34算法与PP-OCRv4算法进行二级处理,并结合基于追踪帧数的分类状态判别方法,建立了冲煤量自动计算的算法框架。其次,在YOLOv8n的C2f模块中引入可变形卷积DCNv2模块,以削弱点状强光照对特征采集的影响,并将其默认的检测头替换为Dynamic Head检测头模块,以强化算法在尺度,空间和通道维度的特征提取能力,以及将CIoU损失函数替换为SIoU损失函数,以加速预测框与真实框的匹配,并利用自建的数据集对改进后的YOLOv8n算法进行验证。【结果和结论】结果表明:(1)与原算法相比,平均类别检测精度提高了7.6%,召回率提高了3.5%,精确率提高了6.4%,验证了改进策略对提升模型性能的有效性和稳定性。(2)对4个不同的瓦斯抽采水力冲孔钻场的实时视频进行测试,识别准确率分别为100.0%、93.3%、95.7%和93.1%,平均达到95.5%,满足了水力冲孔钻孔冲煤量自动识别的精度要求。(3)采用追踪帧数确定ResNet34分类状态的方法,解决了分类状态单次识别结果不可靠的问题。研究成果为YOLO系列算法与其他深度学习技术的融合和广泛应用提供了技术与实践基础,对促进瓦斯抽采钻场等煤矿井下复杂场景的智能化进步具有参考价值。 展开更多
关键词 瓦斯抽采 冲煤量 YOLOv8n ResNet34 PaddleOCR 可变形卷积 动态检测头 智能识别 煤矿
在线阅读 下载PDF
无人机视角下施工现场工人防护用具检测方法研究
16
作者 侯卫民 何孟玲 +1 位作者 赵梦瑶 苏佳 《计算机工程与应用》 北大核心 2025年第15期353-362,共10页
在建筑工地防护用具检测领域内,模型多用非真实建筑工地背景数据且只针对安全帽单一护具进行检测,应用到特定场景中易出现误检漏检情况。为此提出一种无人机视角下施工现场工人防护用具的检测方法,提高算法检测精度的同时,有效改善模型... 在建筑工地防护用具检测领域内,模型多用非真实建筑工地背景数据且只针对安全帽单一护具进行检测,应用到特定场景中易出现误检漏检情况。为此提出一种无人机视角下施工现场工人防护用具的检测方法,提高算法检测精度的同时,有效改善模型的实际应用性和泛化性。将无人机航拍采集的施工复杂场景作为实验数据集,再进行数据标注和预处理;引入可变形卷积到YOLOv7算法的主干网络,自动适应安全帽和防护背心两种目标的形态变化;并在SPPCSPC模块中嵌入BiFormer注意力模块以提升模型对小尺度目标的检测性能;最后预测阶段引入WIOU作为回归损失函数,进一步提升模型对定位的性能和对样本的鲁棒性。实验分别在自建工地场景数据集和公共数据集中与其他算法进行对比,检测精度均得到一定的提升,有效验证了该算法在建筑工地复杂场景下检测防护用具的优势。 展开更多
关键词 防护用具 YOLOv7 可变形卷积 BiFormer 泛化问题
在线阅读 下载PDF
基于EDW-YOLOv8的棉花叶片病害检测
17
作者 李亚 蒋晨 +2 位作者 王海瑞 朱贵富 胡灿 《华中农业大学学报》 北大核心 2025年第5期189-197,共9页
为解决复杂自然环境背景下棉花叶片病害检测准确率低的问题,提出一种基于改进YOLOv8n的棉花叶片病害检测模型。首先在YOLOv8n的骨干网络处加入EMA注意力机制,同时在骨干网络中的C2f模块中加入可变形卷积Deformable ConvNets v2模块,扩... 为解决复杂自然环境背景下棉花叶片病害检测准确率低的问题,提出一种基于改进YOLOv8n的棉花叶片病害检测模型。首先在YOLOv8n的骨干网络处加入EMA注意力机制,同时在骨干网络中的C2f模块中加入可变形卷积Deformable ConvNets v2模块,扩大感受野以加强特征提取能力。在此基础上,将损失函数CIoU替换为具有动态聚焦机制的边界框回归损失WIoU,以加快模型收敛速度,进一步提升模型性能。试验结果显示,改进后的EDW-YOLOv8模型准确率、召回率和平均精度相较于YOLOv8n分别提升了4.3、7.5和4.6百分点。结果表明,研究所提出的模型具有良好的泛化性,可以准确高效地检测出图像中棉花叶片病害目标。 展开更多
关键词 棉花叶片病害 YOLOv8 注意力机制 可变形卷积 损失函数
在线阅读 下载PDF
面向多模态皮肤病语料库的可变形分区注意力黑色素瘤识别方法
18
作者 林玉萍 刘梦皎 +3 位作者 王明豪 张栋 许美凤 李策 《兰州理工大学学报》 北大核心 2025年第5期92-99,共8页
针对黑色素瘤图像诊断问题,提出一种基于可变形分区注意力机制的黑色素瘤识别方法.该方法采用由粗到细的特征提取与识别策略准确区分黑色素瘤和普通痣并建立相应语义标签,在此基础上结合病例文本构建多模态皮肤病语料库.首先,为解决良... 针对黑色素瘤图像诊断问题,提出一种基于可变形分区注意力机制的黑色素瘤识别方法.该方法采用由粗到细的特征提取与识别策略准确区分黑色素瘤和普通痣并建立相应语义标签,在此基础上结合病例文本构建多模态皮肤病语料库.首先,为解决良性与恶性子类别间差异过大导致模型训练困难及识别效率低的问题,构建了一个从粗类到细类层级深入的学习架构;其次,针对病灶边缘模糊、分布不均以及特征提取难的问题,提出了一种融合注意力机制与可变形卷积的可变形分区注意力模块,通过由粗到细的特征提取策略实现了全局与局部特征的有效结合;此外,引入了联合损失函数优化模型识别精准性.实验结果表明,该算法在自建数据集上展现了高敏感性和高特异性,有效提升了病例文本和医学影像匹配构建多模态皮肤病语料库的准确性. 展开更多
关键词 医学图像处理 黑色素瘤识别 可变形卷积 注意力机制 深度学习 多模态语料库
在线阅读 下载PDF
基于YOLOv5的管道环焊缝缺陷TOFD图谱识别
19
作者 徐成 董仕豪 +1 位作者 欧正宇 韩赞东 《焊接学报》 北大核心 2025年第4期22-31,共10页
为提高管道环焊缝超声衍射时差法(time of flight diffraction,TOFD)扫描图谱在背景信号干扰、样本量不均衡等情况下的缺陷识别效果,提出了一种改进的YOLOv5s网络模型.针对管道环焊缝TOFD图谱中缺陷形态不规则的特点,通过引入可变形卷积... 为提高管道环焊缝超声衍射时差法(time of flight diffraction,TOFD)扫描图谱在背景信号干扰、样本量不均衡等情况下的缺陷识别效果,提出了一种改进的YOLOv5s网络模型.针对管道环焊缝TOFD图谱中缺陷形态不规则的特点,通过引入可变形卷积,使得网络自适应缺陷自身的形状特点,提高TOFD图谱中不规则缺陷的特征提取能力;针对TOFD扫描图谱中直通波和底面波等干扰波形对缺陷识别的影响,通过在网络不同深度分别添加自注意力机制,引导网络关注缺陷细微特征的同时抑制界面波对缺陷识别的影响;针对实际样本中各类缺陷不均衡的情况,采用SlideLoss损失函数代替原损失函数,提高网络对样本量较少的裂纹类缺陷的识别精度.对比试验结果表明,改进后的网络能够抑制TOFD图谱复杂背景干扰,提高样本不均衡条件下的识别率.相比原网络,整体平均识别率均值(mean Average Precision,mAP)和裂纹类缺陷的平均识别率(Average Precision,AP)分别提高了8.2%和7.3%. 展开更多
关键词 焊缝缺陷 超声衍射 缺陷识别 注意力机制 可变形卷积
在线阅读 下载PDF
基于改进RT-DETR的织物疵点检测方法
20
作者 李敏 周双 +2 位作者 朱萍 崔树芹 颜小运 《电子测量技术》 北大核心 2025年第14期176-184,共9页
针对织物疵点种类有限、尺度变化大以及模型检测精度低等问题,提出了一种基于RT-DETR的织物疵点检测方法DHR-DETR。首先,创新性地设计了多路径坐标注意力机制模块(MPCA),并将其与可变形卷积模块(DCNv2)深度融合,构建动态可变形卷积模块... 针对织物疵点种类有限、尺度变化大以及模型检测精度低等问题,提出了一种基于RT-DETR的织物疵点检测方法DHR-DETR。首先,创新性地设计了多路径坐标注意力机制模块(MPCA),并将其与可变形卷积模块(DCNv2)深度融合,构建动态可变形卷积模块,以应对复杂多样的疵点形状。其次,采用高水平筛选特征金字塔(HS-FPN)替换跨尺度特征融合模块(CCFM),实现多层次特征的高效融合并有效降低了模型复杂度。最后,构建了兼具轻量化和特征增强能力的RetBlockC3模块,并集成至HS-FPN网络,进一步强化模型对局部信息的捕捉能力,同时显著提升模型的轻量化性能。试验结果表明,DHR-DETR方法在公开和自制织物数据集上的mAP@0.5分别达到了50.9%和97.5%,相较原模型提高了2.9%和0.6%,参数量仅为17.9 M,计算量降低了37%,显著提升了模型的检测性能和部署效率,具备在实际工业检测任务中的应用潜力。 展开更多
关键词 RT-DETR 疵点检测 动态可变形卷积 高水平筛选特征金字塔 轻量化
原文传递
上一页 1 2 32 下一页 到第
使用帮助 返回顶部