期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Attention-Augmented YOLOv8 with Ghost Convolution for Real-Time Vehicle Detection in Intelligent Transportation Systems
1
作者 Syed Sajid Ullah Muhammad Zunair Zamir +1 位作者 Ahsan Ishfaq Salman Khan 《Journal on Artificial Intelligence》 2025年第1期255-274,共20页
Accurate vehicle detection is essential for autonomous driving,traffic monitoring,and intelligent transportation systems.This paper presents an enhanced YOLOv8n model that incorporates the Ghost Module,Convolutional B... Accurate vehicle detection is essential for autonomous driving,traffic monitoring,and intelligent transportation systems.This paper presents an enhanced YOLOv8n model that incorporates the Ghost Module,Convolutional Block Attention Module(CBAM),and Deformable Convolutional Networks v2(DCNv2).The Ghost Module streamlines feature generation to reduce redundancy,CBAM applies channel and spatial attention to improve feature focus,and DCNv2 enables adaptability to geometric variations in vehicle shapes.These components work together to improve both accuracy and computational efficiency.Evaluated on the KITTI dataset,the proposed model achieves 95.4%mAP@0.5—an 8.97% gain over standard YOLOv8n—along with 96.2% precision,93.7% recall,and a 94.93%F1-score.Comparative analysis with seven state-of-the-art detectors demonstrates consistent superiority in key performance metrics.An ablation study is also conducted to quantify the individual and combined contributions of GhostModule,CBAM,and DCNv2,highlighting their effectiveness in improving detection performance.By addressing feature redundancy,attention refinement,and spatial adaptability,the proposed model offers a robust and scalable solution for vehicle detection across diverse traffic scenarios. 展开更多
关键词 YOLOv8n vehicle detection deformable convolutional networks(DCNv2) ghost module convolutional block attention module(CBAM) attention mechanisms
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部