The study dealt with the assessment of impact of deforestation on soil through a comparative analysis of soil physicochemical properties of natural forest and deforested areas. Soil samples from three depths (top, mi...The study dealt with the assessment of impact of deforestation on soil through a comparative analysis of soil physicochemical properties of natural forest and deforested areas. Soil samples from three depths (top, middle and bottom) under natural forest and nearby deforested areas were collected to investigate soil properties. Forest soils show no sig-nificant change in particle size distribution. Bulk density of forested soils shows the significant differences in top and middle layers. Soil pH in top and middle soil, organic matter in top soil and available phosphorus in middle soil of the forest site are found to be significantly higher than that of the deforested soils. Forest soils also have significantly higher level of exchangeable Ca2+, K+ in top and middle soil and Mg2+ at all depth than those of deforested site. Exchangeable Na+ and cation exchange capacity (CEC) are observed unchanged in both sites. The results suggest that change in soil properties was more obvious in surface and sub surface portions of both areas. The study shows that deterioration of physicochemical properties occurred due to deforestation.展开更多
Deforestation and fragmentation of tropical forest are the most serious threats to biodiversity. In the lowlands of the Huasteca Potosina region, Mexico, more than 95,000 ha of tropical forest have disappeared. This p...Deforestation and fragmentation of tropical forest are the most serious threats to biodiversity. In the lowlands of the Huasteca Potosina region, Mexico, more than 95,000 ha of tropical forest have disappeared. This paper analyses tree species composition in tropical forest patches of this highly deforested region, located in northeast of Mexico. At present, only 57 remnants of arboreal vegetation larger than ten hectares still remain standing, which cover 6117 ha. These decreasing fragments host 140 floristic species, representing 42 families and 85 genera. Compared with previous inventories, these data show a sharp drop in species composition. Most of the forest remnants contain less than 50% of the floristic diversity recorded by previous surveys, particularly in the medium subperennial tropical forest.展开更多
Fish constitutes the main protein source for the Amazonian population.However,the impact of different anthropogenic activities on trace element and metal accumulation in fish and their risks for human health at a regi...Fish constitutes the main protein source for the Amazonian population.However,the impact of different anthropogenic activities on trace element and metal accumulation in fish and their risks for human health at a regional scale remain largely unexplored.Here we assessed exposure levels of 10 trace elements andmetals(Cr,Mn,Fe,Ni,Cu,Zn,As,Cd,Pb,and Hg)in 56 samples belonging to 11 different species of fish from the Brazilian Amazon.We studied the relationship between exposure levels,fish origin,and fish feeding habits,and assessed toxicological and carcinogenic risks for the Amazonian population.No significant correlation was found between sampling site and exposure levels to the studied elements,but a significant difference was found between the accumulation of some metals and the position of the fish species in the food chain.The concentrations of Cr and Hg in fish flesh were found to exceed the Brazilian limits for human consumption.This study shows that current fish consumption patterns can lead to estimated daily intakes of Hg,As and Cr that exceed the oral reference dose,thus posing a toxicological concern.Furthermore,carcinogenic risks may be expected due to the continued exposure to Cr and As.The results of this study show that the consumption of wild caught fish in the Amazon region should be controlled.Moreover,continued monitoring of trace element and metal contamination in fish and on the health of the Amazonian population is recommended,particularly for riverine and indigenous communities.展开更多
Changes in food production,often driven by distant demand,have a significant influence on sustainable man agement and use of land and water,and are in turn a driving factor of biodiversity change.While the connection ...Changes in food production,often driven by distant demand,have a significant influence on sustainable man agement and use of land and water,and are in turn a driving factor of biodiversity change.While the connection between land use and demand through value chains is increasingly understood,there is no comprehensive concep tualisation of this relationship.To address this gap,we propose a conceptual framework and use it as a basis for a systematic review to characterise value-chain connection and explore its influence on land-use and-cover change.Our search in June 2022 onWeb of Science and Scopus yielded 198 documents,describing studies completed after the year 2000 that provide information on both value-chain connection and land-use or-cover change.In total,we used 531 distinct cases to assess how frequently particular types of land-use or-cover change and value-chain connections co-occurred,and synthesized findings on their relations.Our findings confirm that 1)market inte gration is associated with intensification;2)land managers with environmental standards more frequently adopt environmentally friendly practices;3)physical and value-chain distances to consumers play a crucial role,with shorter distances associated with environmentally friendly practices and global chains linked to intensification and expansion.Incorporating these characteristics in existing theories of land-system change,would significantly advance understanding of land managers’decision-making,ultimately guiding more environmentally responsible production systems and contributing to global sustainability goals.展开更多
Deforestation has a significant influence on the hydrological cycle.Understanding the impact of deforestation on precipitation extremes is crucial for addressing global environmental challenges.This study investigates...Deforestation has a significant influence on the hydrological cycle.Understanding the impact of deforestation on precipitation extremes is crucial for addressing global environmental challenges.This study investigates the impact of deforestation on precipitation extremes(R95p index,which represents the total amount of precipitation exceeding the 95th percentile of the reference period)in China,using outputs from three earth system models(CanESM5,IPSL-CM6A-LR,and MIROC-ES2L).All models,along with their multimodel mean,indicate a general decrease in R95p in Northeast China and southern China,and changes in Northwest China and the Tibetan Plateau are minimal.In contrast,the responses are model-dependent in the Huanghuai and Jianghuai regions.The overall nationwide multimodel mean suggests an annual R95p decrease of 10.7 mm,with individual model variations ranging from-28.0 to 2.0 mm.Further analysis using precipitation extremes scaling reveals a high spatial correlation with direct precipitation extremes changes on both annual and seasonal scales,albeit with slightly smaller magnitudes.Decomposing the response into dynamic and thermodynamic scaling,the authors find that dynamic contributions predominantly drive the changes in precipitation extremes on both annual and seasonal scales.The authors findings highlight the substantial role of dynamic processes in modulating the response of precipitation extremes to deforestation in China.展开更多
Global deforestation has been recognized as an important factor influencing climate change over the past century.However, uncertainties remain regarding its biophysical impacts on temperature across China. Utilizing m...Global deforestation has been recognized as an important factor influencing climate change over the past century.However, uncertainties remain regarding its biophysical impacts on temperature across China. Utilizing monthly data from eight global climate models of the Land Use Model Intercomparison Project, a multimodel comparison was conducted to quantitatively analyze the biophysical impacts of global deforestation on near-surface air temperature in China, using a surface energy balance decomposition method. Results show a 38%(29% to 45%) reduction in forest cover in China(ensemble mean and range across eight models) relative to pre-industrial levels, and an annual cooling of 0.6 K(0.05 to1.4 K) accompanied by global deforestation. Notably, surface albedo causes a cooling effect of 0.6 K(0.2 to 2.0 K), while surface latent and sensible heat fluxes partially offset this cooling by 0.2 K(-0.2 to 0.5 K) and 0.2 K(-0.04 to 0.6 K),respectively. These effects are more pronounced in winter and spring in deforested regions. Furthermore, the separation of atmospheric feedbacks under clear-sky and cloudy conditions show that the cloud radiative effect only accounts for 0.1 K(-0.1 to 0.4 K), while the clear-sky surface downward radiation is a significant cooling factor, contributing up to-0.5 K(-1.2 to 0.004 K), particularly in summer. However, the consistency of these models in simulating the impact of surface latent heat flux and albedo on surface temperature in China in response to deforestation is somewhat poor, highlighting the need to improve these related processes.展开更多
The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies i...The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities.展开更多
Deforestation is the purpose of converting forest into land and reforestation compared to deforestation is very low.That’s why closely and accurately deforestation monitoring using Sentinel-1 and Sentinel-2 satellite...Deforestation is the purpose of converting forest into land and reforestation compared to deforestation is very low.That’s why closely and accurately deforestation monitoring using Sentinel-1 and Sentinel-2 satellite images for better vision is required.This paper proposes an effective image fusion technique that combines S-1/2 data to improve the deforested areas.Based on review,Optical and SAR image fusion produces high-resolution images for better de-forestation monitoring.To enhance the S-1/2 images,preprocessing is needed as per requirements and then,collocation between the two different types of images to mitigate the image registration problem,and after that,apply an image fu-sion machine learning approach,PCA-Wavelet.As per analysis,PCA helps to maintain spatial resolution,and Wavelet helps to preserve spectral resolution,gives better-fused images compared to other techniques.As per results,2019 S-2 pre-22 processed collocated image enhances 42.2508 km deforested area,S-1 preprocessed collocated image enhances 23.7918 km^(2) deforested area,and after fusion of the 2019 S-1/2 images,it enhances 16.5335 km deforested area.Similarly,the 20232 S-2 preprocessed collocated image enhances 49.2216 km deforested area,S-1 preprocessed collocated image enhances 2223.8459 km deforested area after fusion of the 2023 S-1/2 images,enhancing 35.9185 km deforested area.These im-provements show that combining data sources gives a clearer and more reliable picture of forest loss over time.The overall paper objective is to apply effective techniques for image fusion of Brazil’s Amazon Forest and analyze the difference between collocated image pixels and fused image pixels for accurate analysis of deforested area.展开更多
Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a larg...Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a large number of field-based studies aimed at understanding the impacts of deforestation on soil properties.However,the lack of comprehensive meta-analyses that utilized these studies has limited our deeper understanding of how different soil properties,including the soil organic carbon(SOC)pool,respond to deforestation.To address this critical knowledge gap,we conducted a meta-analysis of 144 studies to explore the impacts of deforestation on soil chemical,physical,and biological properties,with special emphasis on the long-term changes in SOC,such as concentrations,stocks,and sequestration.The results revealed that deforestation significantly decreased soil organic matter,electrical conductivity,and base saturation by 52%,50%,and 98%,respectively.While deforestation increased soil total nitrogen content and decreased available phosphorus content by 51%and 99%,respectively,it resulted in slight decreases in some chemical properties,including soil pH(1%)and base cations(1%–13%).Deforestation significantly increased bulk density by 27%and soil erosion by 47%,but significantly decreased soil aggregate stability by 39%and saturated hydraulic conductivity by 63%.Soil microbial biomass C and N concentrations and enzyme activities were significantly decreased as a consequence of deforestation.Soil biological properties were much more affected by deforestation than soil physical and chemical properties.Regarding the SOC,the land use conversion from forest to pasture significantly increased SOC concentrations,stocks,and sequestration rates(11%–13%),whereas the land use conversions from forest to both plantation and cropland significantly decreased SOC concentrations,stocks,and sequestration rates(10%–43%).This observed decline in SOC accumulations decreased with increasing years after deforestation.The SOC dynamics following deforestation were predominantly regulated by microbial biomass concentrations,dehydrogenase activity,soil erosion,saturated hydraulic conductivity,aggregate stability,as well as concentrations of total organic carbon,total nitrogen,total phosphorus and organic matter.The present meta-analytical study provides compelling evidence that deforestation can induce profound changes in soil characteristics,including soil C contents,and has significant implications for soil health sustainability and climate change mitigation.展开更多
Introduction:The information available on the sensitivity of soil biotic and abiotic attributes,which can be used to track the impact of reforestation in riparian buffers,is often insufficient to refine management pra...Introduction:The information available on the sensitivity of soil biotic and abiotic attributes,which can be used to track the impact of reforestation in riparian buffers,is often insufficient to refine management practices and convince stakeholders of the benefits of reforestation.Methods:In this study,conducted in Victoria,Australia,the changes in soil biotic and abiotic attributes,organic carbon(OC),mineral nitrogen(MN),total dissolved solutes(TDS)and pH were characterised to assess the impact of land-use change from bare riparian(BR)to reforested riparian(RR).Additionally,the benefits of revegetating a deforested creek bank with regard to salinity abatement and C-sequestration potentials were assessed.Results:The TDS depletion in the RR strips varied spatiotemporally from 65 to 169 mg/L,the net OC deposition from 16 to 19 g C/kg soil and MN deposition from 1.2 to 2.1 g N/kg soil,respectively.Additionally,the net changes in pH from alkaline to near neutral condition varied by 0.4 to 1.0 pH units.Approximately 30%to 60%of the net OC depletion after deforestation was redeposited under RR over 3 to 6 years.The TDS depletion after land-use changed from BR to RR ranged from 15 to 32%over 3 to 6 years.Conclusion:The soil attributes OC,MN and TDS characteristics under different land-use practices varied spatiotemporally.This information may be useful to convince stakeholders to undertake reforestation of creek banks for salinity abatement,and that change in land-use has the potential to increase C sequestration at a farm scale.展开更多
The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns ...The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.展开更多
Liberia holds 44.5% of the remaining portion of the Upper Guinean Rainforest in West Africa,which is home to critically endangered forest elephants and western chimpanzees.The forests are of vital importance for the l...Liberia holds 44.5% of the remaining portion of the Upper Guinean Rainforest in West Africa,which is home to critically endangered forest elephants and western chimpanzees.The forests are of vital importance for the livelihoods of millions of West Africans and provide key ecosystem services of local and global importance for food systems transformation and agroecology.Liberia’s efforts toward land reform through legislation and policies recognise communities’rights to own and manage their customary lands and resources.These include the National Forestry Reform Law of 2006,the Community Rights Law Concerning Forest Lands of 2009,and the Land Rights Act of 2018,and more.In May 2022,a program team from the Sustainable Development Institute(SDI)-Friends of the Earth Liberia researched the social and environmental impacts of Maryland Oil Palm Plantations(MOPPs)in Liberia.Twenty-three(23)key informant interviews(KIIs)and 10 focus group discussions(FGDs)were conducted in seven communities in and around the MOPP.They included farmers,contract workers,MOPP staff,local authorities,women and youth leaders,the Environmental Protection Agency(EPA)Inspector,the Civil Society Head,and the Gender Coordinator of Maryland County.The team cross-checked information with formal documents as much as possible and took photographs and global positioning system(GPS)locations of areas of deforestation,pollution,and conflict.The team also used observation to monitor environmental pollution,such as affluent into water bodies and planting oil palm in wetlands.The team used narrative analysis and geospatial landscape analysis to analyze the data.The research finds that land conflict and deforestation have several negative impacts on communities.MOPP has not respected land tenure rights or followed Free Prior and Informed Consent(FPIC)standards,including resettlement without reparation and destruction of farms and old towns without(sufficient)compensation or restitution.During MOPP land acquisition and clearance,communities experienced the loss of their farms and the identification of villages as“village de squatters”,leading to restricted access to farmland,heightened food insecurity,and reduced income from cash crops to support families.MOPP destroyed high conservation value areas and destroyed secondary forest regrowth,which affected important biodiversity areas.MOPP is one of the four large-scale industrial palm oil plantations in Liberia in Maryland County.It has a palm oil mill in a joint venture with Golden Veroleum Liberia(GVL).Its 2011 concession agreement includes 8,800 hectares for industrial palm oil plantations.展开更多
Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce...Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets.展开更多
In Ethiopia soil conservation is primarily meant to improve agriculture production.Therefore,assessment of the existing erosion hazards and classifying the land according to its capability are essential.This paper dep...In Ethiopia soil conservation is primarily meant to improve agriculture production.Therefore,assessment of the existing erosion hazards and classifying the land according to its capability are essential.This paper depicts the land degradation status and causes,through an integrated assessment,and some measures to alleviate the problem are proposed.展开更多
Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff...Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.展开更多
Soil quality is one of the most important environmental factors in sustaining the global biosphere and developing sustainable agricultural practices. A study was initiated in Wolong Nature Reserve, Sichuan Province, C...Soil quality is one of the most important environmental factors in sustaining the global biosphere and developing sustainable agricultural practices. A study was initiated in Wolong Nature Reserve, Sichuan Province, China to elucidate the soil quality changes of natural secondary succession, forest planting and agricultural practices after deforestation in the humid mountainous region. The soil qualities of six land use types (natural forestland, grassland, shrub land, secondary forestland, cultivated land and reforested land) were compared using two quantitative methods: the integrated soil quality index(QI) and soil deterioration index(DI). The QI values of natural forestland, grassland, shrub land, secondary forestland, cultivated land, reforested land were 0.8039, 0.3277, 0.9127, 0.6881, 0.0285 and 0.3183, respectively. The DI values were 0%, -14%, 12%, 1%, -26% and -18% respectively. Both indexes suggested that shrub land can restore soil properties. To compare the two methods more directly, a deduced index QI′ based on QI value was developed. The results showed that DI and QI′had a very high linear correlation coefficient (r=0.9775) despite the values were different. Both methods were efficient in evaluating the soil quality levels and DI was a more simple way in soil quality assessment, while QI could show more ecological meanings.展开更多
Land use changes can greatly influence soil phosphorus (P) dynamics, especially when converting native forests to agricultural land. Soils in Xishuangbanna, which is one of southwest China s tropical areas that mainta...Land use changes can greatly influence soil phosphorus (P) dynamics, especially when converting native forests to agricultural land. Soils in Xishuangbanna, which is one of southwest China s tropical areas that maintain fragments of primary forests, were studied to a) evaluate the effect of two common land use changes, conversion of forests to agricultural land or rubber tree plantation, on the dynamics of available P and total P in bulk soils as well as total P in particle size fractions; b) assess the rel…展开更多
Soil erosion and nutrient losses on newly-deforested lands in the Ziwuling Region on the Loess Plateau of China were monitored to quantitatively evaluate the effects of accelerated soil erosion, caused by deforestatio...Soil erosion and nutrient losses on newly-deforested lands in the Ziwuling Region on the Loess Plateau of China were monitored to quantitatively evaluate the effects of accelerated soil erosion, caused by deforestation, on organic matter, nitrogen and phosphorus losses. Eight natural runoff plots were established on the loessial hill slopes representing different erosion patterns of dominant erosion processes including sheet, rill and shallow gully (similar to ephemeral gully). Sediment samples were collected after each erosive rainfall event. Results showed that soil nutrients losses increased with an increase of erosion intensity. Linear relations between the losses of organic matter, total N, NH4-N, and available P and erosion intensity were found. Nutrient content per unit amount of eroded sediment decreased from the sheet to the shallow gully erosion zones, whereas total nutrient loss increased. Compared with topsoil, nutrients in eroded sediment were enriched, especially available P and NH4-N. The intensity of soil nutrient losses was also closely related to soil erosion intensity and pattern with the most severe soil erosion and nutrient loss occurring in the shallow gully channels on loessial hill slopes. These research findings will help to improve the understanding of the relation between accelerated erosion process after deforestation and soil quality degradation and to design better eco-environmental rehabilitation schemes for the Loess Plateau.展开更多
During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in d...During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in developing countries through positive incentives under the United Nations Framework Convention on Climate Change (UNFCCC) was capable of dealing with global emissions. As REDD+ seeks to lower emissions by stopping deforestation and for- est degradation with an international payment tier according to baseline scenarios, opportunities for ecosystem benefits such as slowing habitat fragmentation, conservation of forest biodiversity, soil conservation may be also part of this effort. The primary objective of this study is to evaluate ecosystem-based benefits of REDD+, and to identify the rela- tionships with carbon stock changes. To achieve this goal, high resolution satellite images are combined with Normal- ized Difference Vegetation Index (NDVI) to identify historical deforestation in study area of Central Kalimantan, In- donesia. The carbon emissions for the period of 2000-2005 and 2005-2009 are 2.73 ×10^5 t CO2 and 1.47× 10^6 t CO2 respectively, showing an increasing trend in recent years. Dring 2005-2009, number of patches (NP), patch density (PD), mean shape index distribution (SHAPE_MN) increased 30.8%, 30.7% and 7.6%. Meanwhile, largest patch index (LPI), mean area (AREA MN), area-weighted mean of shape index distribution (SHAPE_AM), neighbor distance (ENN_MN) and interspersion and juxtaposition index (IJI) decreased by 55.3%, 29.7%, 15.8%, 53.4% and 21.5% re- spectively. The area regarding as positive correlation between carbon emissions and soil erosion was approximately 8.9 x l03 ha corresponding to 96.0% of the changing forest. These results support the view that there are strong syner- gies among carbon loss, forest fragmentation and soil erosion in tropical forests. Such mechanism of REDD+ is likely to present opportunities for multiple benefits that fall outside the scope of carbon stocks.展开更多
Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed foc...Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems.展开更多
文摘The study dealt with the assessment of impact of deforestation on soil through a comparative analysis of soil physicochemical properties of natural forest and deforested areas. Soil samples from three depths (top, middle and bottom) under natural forest and nearby deforested areas were collected to investigate soil properties. Forest soils show no sig-nificant change in particle size distribution. Bulk density of forested soils shows the significant differences in top and middle layers. Soil pH in top and middle soil, organic matter in top soil and available phosphorus in middle soil of the forest site are found to be significantly higher than that of the deforested soils. Forest soils also have significantly higher level of exchangeable Ca2+, K+ in top and middle soil and Mg2+ at all depth than those of deforested site. Exchangeable Na+ and cation exchange capacity (CEC) are observed unchanged in both sites. The results suggest that change in soil properties was more obvious in surface and sub surface portions of both areas. The study shows that deterioration of physicochemical properties occurred due to deforestation.
文摘Deforestation and fragmentation of tropical forest are the most serious threats to biodiversity. In the lowlands of the Huasteca Potosina region, Mexico, more than 95,000 ha of tropical forest have disappeared. This paper analyses tree species composition in tropical forest patches of this highly deforested region, located in northeast of Mexico. At present, only 57 remnants of arboreal vegetation larger than ten hectares still remain standing, which cover 6117 ha. These decreasing fragments host 140 floristic species, representing 42 families and 85 genera. Compared with previous inventories, these data show a sharp drop in species composition. Most of the forest remnants contain less than 50% of the floristic diversity recorded by previous surveys, particularly in the medium subperennial tropical forest.
基金supported by the National Geographic Society through an early career grant to A.Rico (EC-59809C-19)Support Programme-PlanGenT (CIDEGENT/2020/043)of the Generalitat ValencianaR.Oliveira acknowledges"Fundacao de Amparo a Pesquisa do Estado de Sao Paulo"-FAPESP (Project 2018/03108-0).
文摘Fish constitutes the main protein source for the Amazonian population.However,the impact of different anthropogenic activities on trace element and metal accumulation in fish and their risks for human health at a regional scale remain largely unexplored.Here we assessed exposure levels of 10 trace elements andmetals(Cr,Mn,Fe,Ni,Cu,Zn,As,Cd,Pb,and Hg)in 56 samples belonging to 11 different species of fish from the Brazilian Amazon.We studied the relationship between exposure levels,fish origin,and fish feeding habits,and assessed toxicological and carcinogenic risks for the Amazonian population.No significant correlation was found between sampling site and exposure levels to the studied elements,but a significant difference was found between the accumulation of some metals and the position of the fish species in the food chain.The concentrations of Cr and Hg in fish flesh were found to exceed the Brazilian limits for human consumption.This study shows that current fish consumption patterns can lead to estimated daily intakes of Hg,As and Cr that exceed the oral reference dose,thus posing a toxicological concern.Furthermore,carcinogenic risks may be expected due to the continued exposure to Cr and As.The results of this study show that the consumption of wild caught fish in the Amazon region should be controlled.Moreover,continued monitoring of trace element and metal contamination in fish and on the health of the Amazonian population is recommended,particularly for riverine and indigenous communities.
文摘Changes in food production,often driven by distant demand,have a significant influence on sustainable man agement and use of land and water,and are in turn a driving factor of biodiversity change.While the connection between land use and demand through value chains is increasingly understood,there is no comprehensive concep tualisation of this relationship.To address this gap,we propose a conceptual framework and use it as a basis for a systematic review to characterise value-chain connection and explore its influence on land-use and-cover change.Our search in June 2022 onWeb of Science and Scopus yielded 198 documents,describing studies completed after the year 2000 that provide information on both value-chain connection and land-use or-cover change.In total,we used 531 distinct cases to assess how frequently particular types of land-use or-cover change and value-chain connections co-occurred,and synthesized findings on their relations.Our findings confirm that 1)market inte gration is associated with intensification;2)land managers with environmental standards more frequently adopt environmentally friendly practices;3)physical and value-chain distances to consumers play a crucial role,with shorter distances associated with environmentally friendly practices and global chains linked to intensification and expansion.Incorporating these characteristics in existing theories of land-system change,would significantly advance understanding of land managers’decision-making,ultimately guiding more environmentally responsible production systems and contributing to global sustainability goals.
基金supported by National Natural Science Foundation of China[grant number 42305041].
文摘Deforestation has a significant influence on the hydrological cycle.Understanding the impact of deforestation on precipitation extremes is crucial for addressing global environmental challenges.This study investigates the impact of deforestation on precipitation extremes(R95p index,which represents the total amount of precipitation exceeding the 95th percentile of the reference period)in China,using outputs from three earth system models(CanESM5,IPSL-CM6A-LR,and MIROC-ES2L).All models,along with their multimodel mean,indicate a general decrease in R95p in Northeast China and southern China,and changes in Northwest China and the Tibetan Plateau are minimal.In contrast,the responses are model-dependent in the Huanghuai and Jianghuai regions.The overall nationwide multimodel mean suggests an annual R95p decrease of 10.7 mm,with individual model variations ranging from-28.0 to 2.0 mm.Further analysis using precipitation extremes scaling reveals a high spatial correlation with direct precipitation extremes changes on both annual and seasonal scales,albeit with slightly smaller magnitudes.Decomposing the response into dynamic and thermodynamic scaling,the authors find that dynamic contributions predominantly drive the changes in precipitation extremes on both annual and seasonal scales.The authors findings highlight the substantial role of dynamic processes in modulating the response of precipitation extremes to deforestation in China.
基金supported by the National Natural Science Foundation of China (Grant No.42305041)the Natural Science Foundation of Hubei Province of China (Grant No.2020CFB331)supported by the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility” (Earth Lab)。
文摘Global deforestation has been recognized as an important factor influencing climate change over the past century.However, uncertainties remain regarding its biophysical impacts on temperature across China. Utilizing monthly data from eight global climate models of the Land Use Model Intercomparison Project, a multimodel comparison was conducted to quantitatively analyze the biophysical impacts of global deforestation on near-surface air temperature in China, using a surface energy balance decomposition method. Results show a 38%(29% to 45%) reduction in forest cover in China(ensemble mean and range across eight models) relative to pre-industrial levels, and an annual cooling of 0.6 K(0.05 to1.4 K) accompanied by global deforestation. Notably, surface albedo causes a cooling effect of 0.6 K(0.2 to 2.0 K), while surface latent and sensible heat fluxes partially offset this cooling by 0.2 K(-0.2 to 0.5 K) and 0.2 K(-0.04 to 0.6 K),respectively. These effects are more pronounced in winter and spring in deforested regions. Furthermore, the separation of atmospheric feedbacks under clear-sky and cloudy conditions show that the cloud radiative effect only accounts for 0.1 K(-0.1 to 0.4 K), while the clear-sky surface downward radiation is a significant cooling factor, contributing up to-0.5 K(-1.2 to 0.004 K), particularly in summer. However, the consistency of these models in simulating the impact of surface latent heat flux and albedo on surface temperature in China in response to deforestation is somewhat poor, highlighting the need to improve these related processes.
文摘The conversion of forest land to other types of land cover is one of the major issues in the global fight against climate change. Understanding the direct and indirect factors of these conversions from local studies in the tropics is essential to project the future impact of human activities on the preservation of tropical forests in general and the forests of the Republic of Congo in particular. This study, conducted in five localities with different socioeconomic contexts in the Republic of Congo, aims to analyze the variability of drivers of deforestation and forest degradation linked to urbanization in the Congo Basin. Using a series of land cover maps from the years 1986, 2003 and 2019 for the cities of Ouesso, Pokola, Ngombe, Impfondo and Dongou, as well as field data and socio-economic information collected from local and central administrations, a unique model has been developed to understand the explanatory patterns of forest loss. Deforestation around urban centers is mainly due to urban agriculture due to population growth, as well as the spatial expansion of cities, which have a major impact on the stability and integrity of forests. Shifting agriculture is the main direct cause of deforestation and forest degradation, representing 48% of the total sample, followed by the collection of wood fuel (22%), the collection of construction wood (19%), illegal logging (6%) and urban expansion (5%). Forecasts indicate that forest loss around major cities will increase by 487, 20 ha to 5266, 73 ha by 2050 compared to the base year of 2019. This study highlights the need for a new system of land management and poverty alleviation of local populations to ensure the stability of the Congo Basin tropical forests around large and small African cities.
文摘Deforestation is the purpose of converting forest into land and reforestation compared to deforestation is very low.That’s why closely and accurately deforestation monitoring using Sentinel-1 and Sentinel-2 satellite images for better vision is required.This paper proposes an effective image fusion technique that combines S-1/2 data to improve the deforested areas.Based on review,Optical and SAR image fusion produces high-resolution images for better de-forestation monitoring.To enhance the S-1/2 images,preprocessing is needed as per requirements and then,collocation between the two different types of images to mitigate the image registration problem,and after that,apply an image fu-sion machine learning approach,PCA-Wavelet.As per analysis,PCA helps to maintain spatial resolution,and Wavelet helps to preserve spectral resolution,gives better-fused images compared to other techniques.As per results,2019 S-2 pre-22 processed collocated image enhances 42.2508 km deforested area,S-1 preprocessed collocated image enhances 23.7918 km^(2) deforested area,and after fusion of the 2019 S-1/2 images,it enhances 16.5335 km deforested area.Similarly,the 20232 S-2 preprocessed collocated image enhances 49.2216 km deforested area,S-1 preprocessed collocated image enhances 2223.8459 km deforested area after fusion of the 2023 S-1/2 images,enhancing 35.9185 km deforested area.These im-provements show that combining data sources gives a clearer and more reliable picture of forest loss over time.The overall paper objective is to apply effective techniques for image fusion of Brazil’s Amazon Forest and analyze the difference between collocated image pixels and fused image pixels for accurate analysis of deforested area.
基金This study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28020300)the National Natural Science Foundation of China(Grant No.42250410332)+2 种基金the Key Foreign Cooperation Program of the Bureau of International Cooperation of the Chinese Academy of Sciences(Grant No.177GJHZ2022020BS)the‘Double-First Class’Initiative Program for Foreign Talents of Southwest University(Grant No.cstc2021ycjh-bgzxm0002)the‘Prominent Scientist Program’of Chongqing Talents(Grant No.cstc2021ycjh-bgzxm0020)。
文摘Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a large number of field-based studies aimed at understanding the impacts of deforestation on soil properties.However,the lack of comprehensive meta-analyses that utilized these studies has limited our deeper understanding of how different soil properties,including the soil organic carbon(SOC)pool,respond to deforestation.To address this critical knowledge gap,we conducted a meta-analysis of 144 studies to explore the impacts of deforestation on soil chemical,physical,and biological properties,with special emphasis on the long-term changes in SOC,such as concentrations,stocks,and sequestration.The results revealed that deforestation significantly decreased soil organic matter,electrical conductivity,and base saturation by 52%,50%,and 98%,respectively.While deforestation increased soil total nitrogen content and decreased available phosphorus content by 51%and 99%,respectively,it resulted in slight decreases in some chemical properties,including soil pH(1%)and base cations(1%–13%).Deforestation significantly increased bulk density by 27%and soil erosion by 47%,but significantly decreased soil aggregate stability by 39%and saturated hydraulic conductivity by 63%.Soil microbial biomass C and N concentrations and enzyme activities were significantly decreased as a consequence of deforestation.Soil biological properties were much more affected by deforestation than soil physical and chemical properties.Regarding the SOC,the land use conversion from forest to pasture significantly increased SOC concentrations,stocks,and sequestration rates(11%–13%),whereas the land use conversions from forest to both plantation and cropland significantly decreased SOC concentrations,stocks,and sequestration rates(10%–43%).This observed decline in SOC accumulations decreased with increasing years after deforestation.The SOC dynamics following deforestation were predominantly regulated by microbial biomass concentrations,dehydrogenase activity,soil erosion,saturated hydraulic conductivity,aggregate stability,as well as concentrations of total organic carbon,total nitrogen,total phosphorus and organic matter.The present meta-analytical study provides compelling evidence that deforestation can induce profound changes in soil characteristics,including soil C contents,and has significant implications for soil health sustainability and climate change mitigation.
基金Financial support for this project was provided by the Corangamite Catchment Management Authority(Funding number CO0910.06.051).
文摘Introduction:The information available on the sensitivity of soil biotic and abiotic attributes,which can be used to track the impact of reforestation in riparian buffers,is often insufficient to refine management practices and convince stakeholders of the benefits of reforestation.Methods:In this study,conducted in Victoria,Australia,the changes in soil biotic and abiotic attributes,organic carbon(OC),mineral nitrogen(MN),total dissolved solutes(TDS)and pH were characterised to assess the impact of land-use change from bare riparian(BR)to reforested riparian(RR).Additionally,the benefits of revegetating a deforested creek bank with regard to salinity abatement and C-sequestration potentials were assessed.Results:The TDS depletion in the RR strips varied spatiotemporally from 65 to 169 mg/L,the net OC deposition from 16 to 19 g C/kg soil and MN deposition from 1.2 to 2.1 g N/kg soil,respectively.Additionally,the net changes in pH from alkaline to near neutral condition varied by 0.4 to 1.0 pH units.Approximately 30%to 60%of the net OC depletion after deforestation was redeposited under RR over 3 to 6 years.The TDS depletion after land-use changed from BR to RR ranged from 15 to 32%over 3 to 6 years.Conclusion:The soil attributes OC,MN and TDS characteristics under different land-use practices varied spatiotemporally.This information may be useful to convince stakeholders to undertake reforestation of creek banks for salinity abatement,and that change in land-use has the potential to increase C sequestration at a farm scale.
基金funded by the Ministry of Environment and Forestry of the Republic of Indonesia through the research funding assistance program。
文摘The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.
文摘Liberia holds 44.5% of the remaining portion of the Upper Guinean Rainforest in West Africa,which is home to critically endangered forest elephants and western chimpanzees.The forests are of vital importance for the livelihoods of millions of West Africans and provide key ecosystem services of local and global importance for food systems transformation and agroecology.Liberia’s efforts toward land reform through legislation and policies recognise communities’rights to own and manage their customary lands and resources.These include the National Forestry Reform Law of 2006,the Community Rights Law Concerning Forest Lands of 2009,and the Land Rights Act of 2018,and more.In May 2022,a program team from the Sustainable Development Institute(SDI)-Friends of the Earth Liberia researched the social and environmental impacts of Maryland Oil Palm Plantations(MOPPs)in Liberia.Twenty-three(23)key informant interviews(KIIs)and 10 focus group discussions(FGDs)were conducted in seven communities in and around the MOPP.They included farmers,contract workers,MOPP staff,local authorities,women and youth leaders,the Environmental Protection Agency(EPA)Inspector,the Civil Society Head,and the Gender Coordinator of Maryland County.The team cross-checked information with formal documents as much as possible and took photographs and global positioning system(GPS)locations of areas of deforestation,pollution,and conflict.The team also used observation to monitor environmental pollution,such as affluent into water bodies and planting oil palm in wetlands.The team used narrative analysis and geospatial landscape analysis to analyze the data.The research finds that land conflict and deforestation have several negative impacts on communities.MOPP has not respected land tenure rights or followed Free Prior and Informed Consent(FPIC)standards,including resettlement without reparation and destruction of farms and old towns without(sufficient)compensation or restitution.During MOPP land acquisition and clearance,communities experienced the loss of their farms and the identification of villages as“village de squatters”,leading to restricted access to farmland,heightened food insecurity,and reduced income from cash crops to support families.MOPP destroyed high conservation value areas and destroyed secondary forest regrowth,which affected important biodiversity areas.MOPP is one of the four large-scale industrial palm oil plantations in Liberia in Maryland County.It has a palm oil mill in a joint venture with Golden Veroleum Liberia(GVL).Its 2011 concession agreement includes 8,800 hectares for industrial palm oil plantations.
文摘Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets.
文摘In Ethiopia soil conservation is primarily meant to improve agriculture production.Therefore,assessment of the existing erosion hazards and classifying the land according to its capability are essential.This paper depicts the land degradation status and causes,through an integrated assessment,and some measures to alleviate the problem are proposed.
基金Project supported by the Chinese Academy of Sciences (No. KZCX3-SW-422) and the National Natural Science Foundation of China (Nos. 9032001 and 40335050).
文摘Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.
文摘Soil quality is one of the most important environmental factors in sustaining the global biosphere and developing sustainable agricultural practices. A study was initiated in Wolong Nature Reserve, Sichuan Province, China to elucidate the soil quality changes of natural secondary succession, forest planting and agricultural practices after deforestation in the humid mountainous region. The soil qualities of six land use types (natural forestland, grassland, shrub land, secondary forestland, cultivated land and reforested land) were compared using two quantitative methods: the integrated soil quality index(QI) and soil deterioration index(DI). The QI values of natural forestland, grassland, shrub land, secondary forestland, cultivated land, reforested land were 0.8039, 0.3277, 0.9127, 0.6881, 0.0285 and 0.3183, respectively. The DI values were 0%, -14%, 12%, 1%, -26% and -18% respectively. Both indexes suggested that shrub land can restore soil properties. To compare the two methods more directly, a deduced index QI′ based on QI value was developed. The results showed that DI and QI′had a very high linear correlation coefficient (r=0.9775) despite the values were different. Both methods were efficient in evaluating the soil quality levels and DI was a more simple way in soil quality assessment, while QI could show more ecological meanings.
文摘Land use changes can greatly influence soil phosphorus (P) dynamics, especially when converting native forests to agricultural land. Soils in Xishuangbanna, which is one of southwest China s tropical areas that maintain fragments of primary forests, were studied to a) evaluate the effect of two common land use changes, conversion of forests to agricultural land or rubber tree plantation, on the dynamics of available P and total P in bulk soils as well as total P in particle size fractions; b) assess the rel…
基金Project supported by the National Natural Science Foundation of China (No. 90302001) and the National Key BasicResearch Support Foundation (NKBRSF) of China (No.2002CB111502)
文摘Soil erosion and nutrient losses on newly-deforested lands in the Ziwuling Region on the Loess Plateau of China were monitored to quantitatively evaluate the effects of accelerated soil erosion, caused by deforestation, on organic matter, nitrogen and phosphorus losses. Eight natural runoff plots were established on the loessial hill slopes representing different erosion patterns of dominant erosion processes including sheet, rill and shallow gully (similar to ephemeral gully). Sediment samples were collected after each erosive rainfall event. Results showed that soil nutrients losses increased with an increase of erosion intensity. Linear relations between the losses of organic matter, total N, NH4-N, and available P and erosion intensity were found. Nutrient content per unit amount of eroded sediment decreased from the sheet to the shallow gully erosion zones, whereas total nutrient loss increased. Compared with topsoil, nutrients in eroded sediment were enriched, especially available P and NH4-N. The intensity of soil nutrient losses was also closely related to soil erosion intensity and pattern with the most severe soil erosion and nutrient loss occurring in the shallow gully channels on loessial hill slopes. These research findings will help to improve the understanding of the relation between accelerated erosion process after deforestation and soil quality degradation and to design better eco-environmental rehabilitation schemes for the Loess Plateau.
基金Under the auspices of National Basic Research Program of China (No. 2012CB955800,2012CB955804)National Natural Science Foundation of China (No. 41171438)+2 种基金Foundation of Asia-Pacific Network for Global Change Research (No.EBLU2010-01NSY-Suneetha)Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05050000)Science Foundation of Government of Henan Province & Ministry of Education (No. SBGJ090110,2010YBZR043)
文摘During the 15th Conference of the Parties (COP 15), Parties agreed that reducing emissions from deforesta- tion and forest degradation and enhancing 'removals of greenhouse gas emission by forests' (REDD+) in developing countries through positive incentives under the United Nations Framework Convention on Climate Change (UNFCCC) was capable of dealing with global emissions. As REDD+ seeks to lower emissions by stopping deforestation and for- est degradation with an international payment tier according to baseline scenarios, opportunities for ecosystem benefits such as slowing habitat fragmentation, conservation of forest biodiversity, soil conservation may be also part of this effort. The primary objective of this study is to evaluate ecosystem-based benefits of REDD+, and to identify the rela- tionships with carbon stock changes. To achieve this goal, high resolution satellite images are combined with Normal- ized Difference Vegetation Index (NDVI) to identify historical deforestation in study area of Central Kalimantan, In- donesia. The carbon emissions for the period of 2000-2005 and 2005-2009 are 2.73 ×10^5 t CO2 and 1.47× 10^6 t CO2 respectively, showing an increasing trend in recent years. Dring 2005-2009, number of patches (NP), patch density (PD), mean shape index distribution (SHAPE_MN) increased 30.8%, 30.7% and 7.6%. Meanwhile, largest patch index (LPI), mean area (AREA MN), area-weighted mean of shape index distribution (SHAPE_AM), neighbor distance (ENN_MN) and interspersion and juxtaposition index (IJI) decreased by 55.3%, 29.7%, 15.8%, 53.4% and 21.5% re- spectively. The area regarding as positive correlation between carbon emissions and soil erosion was approximately 8.9 x l03 ha corresponding to 96.0% of the changing forest. These results support the view that there are strong syner- gies among carbon loss, forest fragmentation and soil erosion in tropical forests. Such mechanism of REDD+ is likely to present opportunities for multiple benefits that fall outside the scope of carbon stocks.
文摘Rapid urbanization has led to extensive land-use changes,particularly in developing countries.This research is aimed to investigate the role of land use and its effect on soil and water quality in Ziarat watershed focusing on four land uses:forest,pasture,cultivated and urban development.Soil samples were taken from a depth of 0-30 cm on each land use and were analyzed by completely randomized split-plot design in two geographical directions.Results showed that bulk density(BD),electrical conductivity(EC),pH,calcium carbonate equivalent(CCE),and soil particle density(DS) of the soil samples in pastures,cultivated and urban areas increased and the mean weight diameter(MWD),soil porosity(F),organic carbons(OC),total nitrogen(TN),exchangeable cations(Ca 2+,Mg 2+,K +,Na +),cation exchange capacity(CEC) and soil microbial respirations(SMR) decreased,respectively in comparison with the forest soils.For water quality evaluations,sodium adsorption ratio(SAR),electrical conductivity(EC),pH,total dissolved solids(TDS),bicarbonate(HCO 3),chloride(Cl),total hardness(TH),calcium(Ca 2+),potassium(K +),sodium(Na +) and magnesium(Mg 2+) were investigated in two areas:Nahrkhoran and Abgir stations.Results showed that the concentration of TDS,EC and HCO 3 in Naharkhoran station is higher than that in Abgir station.On the other hand,the concentration of TDS,EC and HCO 3 in Abgir station are the relatively higher due to its location.Total hardness had the same trend during the study years except in the last three years;however,TH showed an increase of 25% TH in Naharkhoran for the last two years.Cl,K + and SAR in Naharkhoran station increased by 61%,22%,78% and 56% respectively,in comparison with Abgir station.This study demonstrated that the trend of soil degradation and mismanagement of land use may increase the frequency of urban floods and human health problems.