To control the deflection of the gas plasma jet, a new analytical method is proposed based on the Magnetohydrodynamic(MHD) technique. Based on the typical MHD power generation model, the applied voltage is applied to ...To control the deflection of the gas plasma jet, a new analytical method is proposed based on the Magnetohydrodynamic(MHD) technique. Based on the typical MHD power generation model, the applied voltage is applied to the staggered electrodes, that is, a pair of electrodes on the same side wall are connected to generate an axial current in the channel. Under the action of the magnetic field perpendicular to the direction of the flow, the plasma is subjected to electromagnetic forces perpendicular to these two directions, and the jet is deflected. The computational model including the Navier-Stokes equations coupled with electromagnetic source terms, the electric potential equation and Ohm’s law is solved. The deflection of the gas jet under the action of an electromagnetic field is observed, and the maximum deflection angle is about 14.8°. The influences of the electric field, magnetic field, and conductivity on the jet deflection are studied. Results show that although the influences of these three factors on the deflection are similar, and the effect of increasing the electric field strength is slightly greater, priority should be given to increasing the magnetic field strength from the perspective of reducing energy consumption. The Stuart number is introduced to assess the ability of electromagnetic force to control jet deflection. When the electromagnetic parameters are constant, this solution provides better control of low-density and low-speed fluid flows. The calculation results show that using the staggered electrode method configuration is feasible in terms of controlling the deflection of a plasma jet deflection.展开更多
This study demonstrates an active flow control for deflecting a direction of wake vortex structures behind a NACA0012 airfoil using an active morphing flap. Two-dimensional direct numerical simulations are performed f...This study demonstrates an active flow control for deflecting a direction of wake vortex structures behind a NACA0012 airfoil using an active morphing flap. Two-dimensional direct numerical simulations are performed for flows at the chord Reynolds number of 10,000, and the vortex pattern in the controlled and noncontrolled wakes as well as the effect of an actuation frequency on the control ability are rigorously investigated. It is found that there is an optimum actuation-frequency regime at around <em>F <sup>+</sup></em> = 2.00 which is normalized by the chord length and freestream velocity. The wake vortex pattern of the well-controlled case is classified as the 2P wake pattern according to the Williamson’s categorization [<a href="#ref1">1</a>] [<a href="#ref2">2</a>], where the forced oscillation frequency corresponds to the natural vortex shedding frequency without control. The present classification of wake vortex patterns and finding of the optimum frequency regime in the wake deflection control can lead to a more robust design suitable for vortex-induced-vibration (VIV) related engineering systems.展开更多
Microelectromechanical systems(MEMS)gyroscopes with higher precision have always been a focal point of research.Due to limitations in resonant structure,fabrication processes,and measurement and control techniques,MEM...Microelectromechanical systems(MEMS)gyroscopes with higher precision have always been a focal point of research.Due to limitations in resonant structure,fabrication processes,and measurement and control techniques,MEMS gyroscopes with bias instability better than 0.01°/h are still rare and expensive.This paper incorporates electrode machining error and capacitance detection nonlinear error into the gyroscope model,resulting in a more comprehensive bias output model.Based on this,a mode reversal combined mode deflection control method is proposed to eliminate the thermal drift and decrease the bias instability of the gyroscope.Experimental results demonstrate that compared with the traditional force-to-rebalance mode,the new method achieves a 595 times reduction in bias variation during−40℃ to+60℃ temperature cycles and a 6.3 times reduction in bias instability at room temperature.The average bias instability of honeycomb disk resonator gyroscopes can reach 0.003°/h at integration times of 8500 s after applying the new method across three prototypes,which is the best reported performance of the MEMS gyroscope thus far.This paper provides a new paradigm for achieving higher precision MEMS gyroscopes.展开更多
In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale p...In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale prestressed concrete slabs is further investigated through parameter expansion.The influences on fire resistance ratings controlled by deflection are explored and discussed,including effective span,concrete cover thickness,load level,prestress degree,effective prestress,composite reinforcement index and other factors.The calculated results indicate that fire resistance ratings of large-scale bonded prestressed concrete simply supported slabs are bigger than those of small-scale ones.Finally,the calculation formulas of fire resistance ratings controlled by deflection are established,which rationally consider the influence of effective span,concrete cover thickness,load level,composite reinforcement index and so on key factors.展开更多
文摘To control the deflection of the gas plasma jet, a new analytical method is proposed based on the Magnetohydrodynamic(MHD) technique. Based on the typical MHD power generation model, the applied voltage is applied to the staggered electrodes, that is, a pair of electrodes on the same side wall are connected to generate an axial current in the channel. Under the action of the magnetic field perpendicular to the direction of the flow, the plasma is subjected to electromagnetic forces perpendicular to these two directions, and the jet is deflected. The computational model including the Navier-Stokes equations coupled with electromagnetic source terms, the electric potential equation and Ohm’s law is solved. The deflection of the gas jet under the action of an electromagnetic field is observed, and the maximum deflection angle is about 14.8°. The influences of the electric field, magnetic field, and conductivity on the jet deflection are studied. Results show that although the influences of these three factors on the deflection are similar, and the effect of increasing the electric field strength is slightly greater, priority should be given to increasing the magnetic field strength from the perspective of reducing energy consumption. The Stuart number is introduced to assess the ability of electromagnetic force to control jet deflection. When the electromagnetic parameters are constant, this solution provides better control of low-density and low-speed fluid flows. The calculation results show that using the staggered electrode method configuration is feasible in terms of controlling the deflection of a plasma jet deflection.
文摘This study demonstrates an active flow control for deflecting a direction of wake vortex structures behind a NACA0012 airfoil using an active morphing flap. Two-dimensional direct numerical simulations are performed for flows at the chord Reynolds number of 10,000, and the vortex pattern in the controlled and noncontrolled wakes as well as the effect of an actuation frequency on the control ability are rigorously investigated. It is found that there is an optimum actuation-frequency regime at around <em>F <sup>+</sup></em> = 2.00 which is normalized by the chord length and freestream velocity. The wake vortex pattern of the well-controlled case is classified as the 2P wake pattern according to the Williamson’s categorization [<a href="#ref1">1</a>] [<a href="#ref2">2</a>], where the forced oscillation frequency corresponds to the natural vortex shedding frequency without control. The present classification of wake vortex patterns and finding of the optimum frequency regime in the wake deflection control can lead to a more robust design suitable for vortex-induced-vibration (VIV) related engineering systems.
基金supported by the National Key Research and Development Program of China under grant no.2022YFB3207301in part by the National Natural Science Foundation of China under grant 62304255 and grant U21A20505。
文摘Microelectromechanical systems(MEMS)gyroscopes with higher precision have always been a focal point of research.Due to limitations in resonant structure,fabrication processes,and measurement and control techniques,MEMS gyroscopes with bias instability better than 0.01°/h are still rare and expensive.This paper incorporates electrode machining error and capacitance detection nonlinear error into the gyroscope model,resulting in a more comprehensive bias output model.Based on this,a mode reversal combined mode deflection control method is proposed to eliminate the thermal drift and decrease the bias instability of the gyroscope.Experimental results demonstrate that compared with the traditional force-to-rebalance mode,the new method achieves a 595 times reduction in bias variation during−40℃ to+60℃ temperature cycles and a 6.3 times reduction in bias instability at room temperature.The average bias instability of honeycomb disk resonator gyroscopes can reach 0.003°/h at integration times of 8500 s after applying the new method across three prototypes,which is the best reported performance of the MEMS gyroscope thus far.This paper provides a new paradigm for achieving higher precision MEMS gyroscopes.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50678050)
文摘In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale prestressed concrete slabs is further investigated through parameter expansion.The influences on fire resistance ratings controlled by deflection are explored and discussed,including effective span,concrete cover thickness,load level,prestress degree,effective prestress,composite reinforcement index and other factors.The calculated results indicate that fire resistance ratings of large-scale bonded prestressed concrete simply supported slabs are bigger than those of small-scale ones.Finally,the calculation formulas of fire resistance ratings controlled by deflection are established,which rationally consider the influence of effective span,concrete cover thickness,load level,composite reinforcement index and so on key factors.