The 2025 Shanghai Auto Show reaffirmed its role as one of the world’s most influential automotive industry events,offering a panoramic view of the future shaped by intelligent and electrified vehicles.With over 200 n...The 2025 Shanghai Auto Show reaffirmed its role as one of the world’s most influential automotive industry events,offering a panoramic view of the future shaped by intelligent and electrified vehicles.With over 200 new models on display-85 percent of them new energy vehicles-this year’s show spotlighted how the global auto industry is pivoting rapidly towards an era of software-defined and AI-powered mobility.展开更多
Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive s...Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.展开更多
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance...Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.展开更多
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t...Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DT...Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DTransfer),and reduction in end-to-end delay(D(E-E)).This paper explores the critical work of deploying SDN in large-scale Data Center Networks(DCNs)to enhance its Quality of Service(QoS)parameters,using logically distributed control configurations.There is a noticeable increase in Delay(E-E)when adopting SDN with a unified(single)control structure in big DCNs to handle Hypertext Transfer Protocol(HTTP)requests causing a reduction in network quality parameters(Bd(max),Th,DTransfer,D(E-E),etc.).This article examines the network performance in terms of quality matrices(bandwidth,throughput,data transfer,etc.),by establishing a large-scale SDN-based virtual network in the Mininet environment.The SDN network is simulated in three stages:(1)An SDN network with unitary controller-POX to manage the data traffic flow of the network without the server load management algorithm.(2)An SDN network with only one controller to manage the data traffic flow of the network with a server load management algorithm.(3)Deployment of SDN in proposed control arrangement(logically distributed controlled framework)with multiple controllers managing data traffic flow under the proposed Intelligent Sensing Server Load Management(ISSLM)algorithm.As a result of this approach,the network quality parameters in large-scale networks are enhanced.展开更多
Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Plac...Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Placement Problem(CPP)must be solved carefully as it directly affects the whole network performance.This paper proposes a Multi-objective Greedy Optimized K-means Algorithm(MGOKA)to solve this problem to optimize worst-case and average delay between switches and controllers as well as synchronization delay and load balance among controllers for Wide Area Networks(WAN).MGOKA combines the process of network partition based on the K-means algorithm with cluster fusion based on the greedy algorithm and designs a normalization strategy to convert a multi-objective into a single-objective optimization problem.The simulation results depict that in different network scales with different numbers of controllers,the relative optimization rate of our proposed algorithm compared with K-means,K-means++,and GOKA can reach up to 101.5%,109.9%,and 79.8%,respectively.Moreover,the error rate between MGOKA and the global optimal solution is always less than 4%.展开更多
Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-gene...Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-generation(5 G) standardization committees are considering satellites as a technology to integrate in the 5 G environment. Software Defined Networking(SDN) is one of the paradigms of the next generation of mobile and fixed communications. It can be employed to perform different control functionalities, such as routing, because it allows traffic flow identification based on different parameters and traffic flow management in a centralized way. A centralized set of controllers makes the decisions and sends the corresponding forwarding rules for each traffic flow to the involved intermediate nodes that practically forward data up to the destination. The time to perform this process in integrated terrestrial-satellite networks could be not negligible due to satellite link delays. The aim of this paper is to introduce an SDN-based terrestrial satellite network architecture and to estimate the mean time to deliver the data of a new traffic flow from the source to the destination including the time required to transfer SDN control actions. The practical effect is to identify the maximum performance than can be expected.展开更多
将产品全寿命周期六西格玛解决方案(Production Life Cycle Six Sigma Solution,LCSS)的六西格玛设计(Design For Six Sigma,DFSS)理论用于机械产品设计研究,在简要介绍IDDOV(Identify,Define,Develop,Optimize,Verify)流程的基础上,分...将产品全寿命周期六西格玛解决方案(Production Life Cycle Six Sigma Solution,LCSS)的六西格玛设计(Design For Six Sigma,DFSS)理论用于机械产品设计研究,在简要介绍IDDOV(Identify,Define,Develop,Optimize,Verify)流程的基础上,分析了顾客需求转换的系统规范,建立了机械产品Define阶段设计的技术体系和数学模型,总结了Define方案实现步骤和评估算法,为机械产品多样化、低成本、高质量和高稳健性设计提供了一种新的解决途径。展开更多
Aim:To establish a method for cynomolgus monkey sperm cryopreservation in a chemically defined extender. Methods:Semen samples were collected by electro-ejaculation from four sexually mature male cynomolgus monkeys. T...Aim:To establish a method for cynomolgus monkey sperm cryopreservation in a chemically defined extender. Methods:Semen samples were collected by electro-ejaculation from four sexually mature male cynomolgus monkeys. The spermatozoa were frozen in straws by liquid nitrogen vapor using egg-yolk-free Tes-Tris (mTTE) synthetic extender and glycerol as cryoprotectant.The effects of glycerol concentration (1%,3 %,5 %,10 % and 15 % [v/v]) and its equilibration time (10 min,30 min,60 min and 90 min) on post-thaw spermatozoa were examined by sperm motility and sperm head membrane integrity.Results:The post-thaw motility and head membrane integrity of spermatozoa were significantly higher (P<0.05) for 5 % glycerol (42.95±2.55 and 50.39±2.42,respectively) than those of the other groups (1%:19.19±3.22 and 24.84±3.64;3 %:34.23±3.43 and 41.37±3.42;10 %: 15.68±2.36 and 21.39±3.14;15 %:7.47±1.44 and 12.90±2.18).The parameters for 30 min equilibration (42.95±2.55 and 50.39±2.42) were better (P<0.05) than those of the other groups (10 min:31.33±3.06 and 38. 98±3.31;60 min:32.49±3.86 and 40.01±4.18;90 min:31.16±3.66 and 38.30±3.78).Five percent glycerol and 30 min equilibration yielded the highest post-thaw sperm motility and head membrane integrity.Conclusion: Cynomolgus monkey spermatozoa can be successfully cryopreserved in a chemically defined extender,which is related to the concentration and the equilibration time of glycerol.展开更多
In order to improve the scalability and reliability of Software Defined Networking(SDN),many studies use multiple controllers to constitute logically centralized control plane to provide load balancing and fail over.I...In order to improve the scalability and reliability of Software Defined Networking(SDN),many studies use multiple controllers to constitute logically centralized control plane to provide load balancing and fail over.In this paper,we develop a flexible dormant multi-controller model based on the centralized multi-controller architecture.The dormant multi-controller model allows part of controllers to enter the dormant state under light traffic condition for saving system cost.Meanwhile,through queueing analysis,various performance measures of the system can be obtained.Moreover,we analyze the real traffic of China Education Network and use the results as the parameters of computer simulation and verify the effects of parameters on the system characteristics.Finally,a total expected cost function is established,and genetic algorithm is employed to find the optimal values of various parameters to minimize system cost for the deployment decision making.展开更多
The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networ...The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.展开更多
Software defined optical networking(SDON)is a critical technology for the next generation network with the advantages of programmable control and etc.As one of the key issues of SDON,the security of control plane has ...Software defined optical networking(SDON)is a critical technology for the next generation network with the advantages of programmable control and etc.As one of the key issues of SDON,the security of control plane has also received extensive attention,especially in certain network scenarios with high security requirement.Due to the existence of vulnerabilities and heavy overhead,the existing firewalls and distributed control technologies cannot solve the control plane security problem well.In this paper,we propose a distributed control architecture for SDON using the blockchain technique(BlockCtrl).The proposed BlockCtrl model introduces the advantages of blockchain into SDON to achieve a high-efficiency fault tolerant control.We have evaluated the performance of our proposed architecture and compared it to the existing models with respect to various metrics including processing rate,recovery latency and etc.The numerical results show that the BlockCtrl is capable of attacks detection and fault tolerant control in SDON with high performance on resource utilization and service correlation.展开更多
In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the grow...In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the growing challenges induced by time-varying topology,intermittent inter-satellite link and dramatically increased satellite constellation size.This survey covers the latest progress of software defined satellite networks,including key techniques,existing solutions,challenges,opportunities,and simulation tools.To the best of our knowledge,this paper is the most comprehensive survey that covers the latest progress of software defined satellite networks.An open GitHub repository is further created where the latest papers on this topic will be tracked and updated periodically.Compared with these existing surveys,this survey contributes from three aspects:(1)an up-to-date SDN-oriented review for the latest progress of key techniques and solutions in software defined satellite networks;(2)an inspiring summary of existing challenges,new research opportunities and publicly available simulation tools for follow-up studies;(3)an effort of building a public repository to track new results.展开更多
Recent developments in organoid culture technologies have made it possible to closely recapitulate intrinsic characteristics of different tissues under in vitro conditions.These organoids act as a translational bridge...Recent developments in organoid culture technologies have made it possible to closely recapitulate intrinsic characteristics of different tissues under in vitro conditions.These organoids act as a translational bridge between the traditional 2D/3D cultures and the in vivo models for studying the tissue development processes,disease modeling,and drug screening.Matrigel and tissue-specific extracellular matrix have been shown to support organoid development,efficiently;however,their chemically undefined nature,non-tunable properties,and associated batch-to-batch variations often limit reproducibility of the assembly process.In this regard,chemically defined platforms offer wider opportunities to optimize and recreate tissue-specific microenvironment.The present review delineates the current research trends in this sphere,focusing on material perspective and the target tissues(e.g.,neural,liver,pancreatic,renal,and intestinal).The review winds up with a discussion on the current limitations and future perspective to provide a basis for future research.展开更多
As communication technology and smart manufacturing have developed, the industrial internet of things(IIo T)has gained considerable attention from academia and industry.Wireless sensor networks(WSNs) have many advanta...As communication technology and smart manufacturing have developed, the industrial internet of things(IIo T)has gained considerable attention from academia and industry.Wireless sensor networks(WSNs) have many advantages with broad applications in many areas including environmental monitoring, which makes it a very important part of IIo T. However,energy depletion and hardware malfunctions can lead to node failures in WSNs. The industrial environment can also impact the wireless channel transmission, leading to network reliability problems, even with tightly coupled control and data planes in traditional networks, which obviously also enhances network management cost and complexity. In this paper, we introduce a new software defined network(SDN), and modify this network to propose a framework called the improved software defined wireless sensor network(improved SD-WSN). This proposed framework can address the following issues. 1) For a large scale heterogeneous network, it solves the problem of network management and smooth merging of a WSN into IIo T. 2) The network coverage problem is solved which improves the network reliability. 3) The framework addresses node failure due to various problems, particularly related to energy consumption.Therefore, it is necessary to improve the reliability of wireless sensor networks, by developing certain schemes to reduce energy consumption and the delay time of network nodes under IIo T conditions. Experiments have shown that the improved approach significantly reduces the energy consumption of nodes and the delay time, thus improving the reliability of WSN.展开更多
In this paper, we study the optimal investment strategy of defined-contribution pension with the stochastic salary. The investor is allowed to invest in a risk-free asset and a risky asset whose price process follows ...In this paper, we study the optimal investment strategy of defined-contribution pension with the stochastic salary. The investor is allowed to invest in a risk-free asset and a risky asset whose price process follows a constant elasticity of variance model. The stochastic salary follows a stochastic differential equation, whose instantaneous volatility changes with the risky asset price all the time. The HJB equation associated with the optimal investment problem is established, and the explicit solution of the corresponding optimization problem for the CARA utility function is obtained by applying power transform and variable change technique. Finally, we present a numerical analysis.展开更多
In this paper, by Laplace transform version of the Trotter-Kato approximation theorem and the integrated C-semigroup introduced by Myadera, the authors obtained some Trotter-Kato approximation theorems on exponentiall...In this paper, by Laplace transform version of the Trotter-Kato approximation theorem and the integrated C-semigroup introduced by Myadera, the authors obtained some Trotter-Kato approximation theorems on exponentially bounded C-semigroups, where the range of C (and so the domain of the generator) may not be dense. The authors deduced the corresponding results on exponentially bounded integrated semigroups with nondensely generators. The results of this paper extended and perfected the results given by Lizama, Park and Zheng.展开更多
Generation of mouse models carrying a defined point mutation,especially disease-related point mutations,is of considerable interest for research in biology and medicine.The standard method based on embryonic stem cell...Generation of mouse models carrying a defined point mutation,especially disease-related point mutations,is of considerable interest for research in biology and medicine.The standard method based on embryonic stem cell(ESC)-mediated homologous recombination(HR)is time-and labor-consuming.展开更多
文摘The 2025 Shanghai Auto Show reaffirmed its role as one of the world’s most influential automotive industry events,offering a panoramic view of the future shaped by intelligent and electrified vehicles.With over 200 new models on display-85 percent of them new energy vehicles-this year’s show spotlighted how the global auto industry is pivoting rapidly towards an era of software-defined and AI-powered mobility.
文摘Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.
文摘Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.
基金supported by UniversitiKebangsaan Malaysia,under Dana Impak Perdana 2.0.(Ref:DIP–2022–020).
文摘Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
文摘Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DTransfer),and reduction in end-to-end delay(D(E-E)).This paper explores the critical work of deploying SDN in large-scale Data Center Networks(DCNs)to enhance its Quality of Service(QoS)parameters,using logically distributed control configurations.There is a noticeable increase in Delay(E-E)when adopting SDN with a unified(single)control structure in big DCNs to handle Hypertext Transfer Protocol(HTTP)requests causing a reduction in network quality parameters(Bd(max),Th,DTransfer,D(E-E),etc.).This article examines the network performance in terms of quality matrices(bandwidth,throughput,data transfer,etc.),by establishing a large-scale SDN-based virtual network in the Mininet environment.The SDN network is simulated in three stages:(1)An SDN network with unitary controller-POX to manage the data traffic flow of the network without the server load management algorithm.(2)An SDN network with only one controller to manage the data traffic flow of the network with a server load management algorithm.(3)Deployment of SDN in proposed control arrangement(logically distributed controlled framework)with multiple controllers managing data traffic flow under the proposed Intelligent Sensing Server Load Management(ISSLM)algorithm.As a result of this approach,the network quality parameters in large-scale networks are enhanced.
基金Supported by the National Natural Science Foundation of China(62102241)。
文摘Software Defined Network(SDN)has been developed rapidly in technology and popularized in application due to its efficiency and flexibility in network management.In multi-controller SDN architecture,the Controller Placement Problem(CPP)must be solved carefully as it directly affects the whole network performance.This paper proposes a Multi-objective Greedy Optimized K-means Algorithm(MGOKA)to solve this problem to optimize worst-case and average delay between switches and controllers as well as synchronization delay and load balance among controllers for Wide Area Networks(WAN).MGOKA combines the process of network partition based on the K-means algorithm with cluster fusion based on the greedy algorithm and designs a normalization strategy to convert a multi-objective into a single-objective optimization problem.The simulation results depict that in different network scales with different numbers of controllers,the relative optimization rate of our proposed algorithm compared with K-means,K-means++,and GOKA can reach up to 101.5%,109.9%,and 79.8%,respectively.Moreover,the error rate between MGOKA and the global optimal solution is always less than 4%.
文摘Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-generation(5 G) standardization committees are considering satellites as a technology to integrate in the 5 G environment. Software Defined Networking(SDN) is one of the paradigms of the next generation of mobile and fixed communications. It can be employed to perform different control functionalities, such as routing, because it allows traffic flow identification based on different parameters and traffic flow management in a centralized way. A centralized set of controllers makes the decisions and sends the corresponding forwarding rules for each traffic flow to the involved intermediate nodes that practically forward data up to the destination. The time to perform this process in integrated terrestrial-satellite networks could be not negligible due to satellite link delays. The aim of this paper is to introduce an SDN-based terrestrial satellite network architecture and to estimate the mean time to deliver the data of a new traffic flow from the source to the destination including the time required to transfer SDN control actions. The practical effect is to identify the maximum performance than can be expected.
文摘将产品全寿命周期六西格玛解决方案(Production Life Cycle Six Sigma Solution,LCSS)的六西格玛设计(Design For Six Sigma,DFSS)理论用于机械产品设计研究,在简要介绍IDDOV(Identify,Define,Develop,Optimize,Verify)流程的基础上,分析了顾客需求转换的系统规范,建立了机械产品Define阶段设计的技术体系和数学模型,总结了Define方案实现步骤和评估算法,为机械产品多样化、低成本、高质量和高稳健性设计提供了一种新的解决途径。
文摘Aim:To establish a method for cynomolgus monkey sperm cryopreservation in a chemically defined extender. Methods:Semen samples were collected by electro-ejaculation from four sexually mature male cynomolgus monkeys. The spermatozoa were frozen in straws by liquid nitrogen vapor using egg-yolk-free Tes-Tris (mTTE) synthetic extender and glycerol as cryoprotectant.The effects of glycerol concentration (1%,3 %,5 %,10 % and 15 % [v/v]) and its equilibration time (10 min,30 min,60 min and 90 min) on post-thaw spermatozoa were examined by sperm motility and sperm head membrane integrity.Results:The post-thaw motility and head membrane integrity of spermatozoa were significantly higher (P<0.05) for 5 % glycerol (42.95±2.55 and 50.39±2.42,respectively) than those of the other groups (1%:19.19±3.22 and 24.84±3.64;3 %:34.23±3.43 and 41.37±3.42;10 %: 15.68±2.36 and 21.39±3.14;15 %:7.47±1.44 and 12.90±2.18).The parameters for 30 min equilibration (42.95±2.55 and 50.39±2.42) were better (P<0.05) than those of the other groups (10 min:31.33±3.06 and 38. 98±3.31;60 min:32.49±3.86 and 40.01±4.18;90 min:31.16±3.66 and 38.30±3.78).Five percent glycerol and 30 min equilibration yielded the highest post-thaw sperm motility and head membrane integrity.Conclusion: Cynomolgus monkey spermatozoa can be successfully cryopreserved in a chemically defined extender,which is related to the concentration and the equilibration time of glycerol.
基金the National High-tech R&D Program ("863" Program) of China,the National Science Foundation of China,National Science & Technology Pillar Program of China,the National Science Foundation of China,the Post-Doctoral Funding of China,Tsinghua-Huawei joint research project
文摘In order to improve the scalability and reliability of Software Defined Networking(SDN),many studies use multiple controllers to constitute logically centralized control plane to provide load balancing and fail over.In this paper,we develop a flexible dormant multi-controller model based on the centralized multi-controller architecture.The dormant multi-controller model allows part of controllers to enter the dormant state under light traffic condition for saving system cost.Meanwhile,through queueing analysis,various performance measures of the system can be obtained.Moreover,we analyze the real traffic of China Education Network and use the results as the parameters of computer simulation and verify the effects of parameters on the system characteristics.Finally,a total expected cost function is established,and genetic algorithm is employed to find the optimal values of various parameters to minimize system cost for the deployment decision making.
基金supported in part by National Natural Science Foundation of China (No.61401331,No.61401328)111 Project in Xidian University of China(B08038)+2 种基金Hong Kong,Macao and Taiwan Science and Technology Cooperation Special Project (2014DFT10320,2015DFT10160)The National Science and Technology Major Project of the Ministry of Science and Technology of China(2015zx03002006-003)FundamentalResearch Funds for the Central Universities (20101155739)
文摘The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.
基金supported in part by NSFC project(61871056)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)+1 种基金Fundamental Research Funds for the Central Universities(2018XKJC06)Open Fund of SKL of IPOC(BUPT)(IPOC2018A001)
文摘Software defined optical networking(SDON)is a critical technology for the next generation network with the advantages of programmable control and etc.As one of the key issues of SDON,the security of control plane has also received extensive attention,especially in certain network scenarios with high security requirement.Due to the existence of vulnerabilities and heavy overhead,the existing firewalls and distributed control technologies cannot solve the control plane security problem well.In this paper,we propose a distributed control architecture for SDON using the blockchain technique(BlockCtrl).The proposed BlockCtrl model introduces the advantages of blockchain into SDON to achieve a high-efficiency fault tolerant control.We have evaluated the performance of our proposed architecture and compared it to the existing models with respect to various metrics including processing rate,recovery latency and etc.The numerical results show that the BlockCtrl is capable of attacks detection and fault tolerant control in SDON with high performance on resource utilization and service correlation.
基金This work is supported by the Fundamental Research Funds for the Central Universities.
文摘In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the growing challenges induced by time-varying topology,intermittent inter-satellite link and dramatically increased satellite constellation size.This survey covers the latest progress of software defined satellite networks,including key techniques,existing solutions,challenges,opportunities,and simulation tools.To the best of our knowledge,this paper is the most comprehensive survey that covers the latest progress of software defined satellite networks.An open GitHub repository is further created where the latest papers on this topic will be tracked and updated periodically.Compared with these existing surveys,this survey contributes from three aspects:(1)an up-to-date SDN-oriented review for the latest progress of key techniques and solutions in software defined satellite networks;(2)an inspiring summary of existing challenges,new research opportunities and publicly available simulation tools for follow-up studies;(3)an effort of building a public repository to track new results.
文摘Recent developments in organoid culture technologies have made it possible to closely recapitulate intrinsic characteristics of different tissues under in vitro conditions.These organoids act as a translational bridge between the traditional 2D/3D cultures and the in vivo models for studying the tissue development processes,disease modeling,and drug screening.Matrigel and tissue-specific extracellular matrix have been shown to support organoid development,efficiently;however,their chemically undefined nature,non-tunable properties,and associated batch-to-batch variations often limit reproducibility of the assembly process.In this regard,chemically defined platforms offer wider opportunities to optimize and recreate tissue-specific microenvironment.The present review delineates the current research trends in this sphere,focusing on material perspective and the target tissues(e.g.,neural,liver,pancreatic,renal,and intestinal).The review winds up with a discussion on the current limitations and future perspective to provide a basis for future research.
基金supported by the National Natural Science Foundation of China(61571336)the Science and Technology Project of Henan Province in China(172102210081)the Independent Innovation Research Foundation of Wuhan University of Technology(2016-JL-036)
文摘As communication technology and smart manufacturing have developed, the industrial internet of things(IIo T)has gained considerable attention from academia and industry.Wireless sensor networks(WSNs) have many advantages with broad applications in many areas including environmental monitoring, which makes it a very important part of IIo T. However,energy depletion and hardware malfunctions can lead to node failures in WSNs. The industrial environment can also impact the wireless channel transmission, leading to network reliability problems, even with tightly coupled control and data planes in traditional networks, which obviously also enhances network management cost and complexity. In this paper, we introduce a new software defined network(SDN), and modify this network to propose a framework called the improved software defined wireless sensor network(improved SD-WSN). This proposed framework can address the following issues. 1) For a large scale heterogeneous network, it solves the problem of network management and smooth merging of a WSN into IIo T. 2) The network coverage problem is solved which improves the network reliability. 3) The framework addresses node failure due to various problems, particularly related to energy consumption.Therefore, it is necessary to improve the reliability of wireless sensor networks, by developing certain schemes to reduce energy consumption and the delay time of network nodes under IIo T conditions. Experiments have shown that the improved approach significantly reduces the energy consumption of nodes and the delay time, thus improving the reliability of WSN.
基金Supported by the National Natural Science Foundation of Tianjin (07JCYBJC05200)the Young Scholar Program of Tianjin University of Finance and Economics (TJYQ201201)
文摘In this paper, we study the optimal investment strategy of defined-contribution pension with the stochastic salary. The investor is allowed to invest in a risk-free asset and a risky asset whose price process follows a constant elasticity of variance model. The stochastic salary follows a stochastic differential equation, whose instantaneous volatility changes with the risky asset price all the time. The HJB equation associated with the optimal investment problem is established, and the explicit solution of the corresponding optimization problem for the CARA utility function is obtained by applying power transform and variable change technique. Finally, we present a numerical analysis.
基金This project is supported by the National Science Foundation of China.
文摘In this paper, by Laplace transform version of the Trotter-Kato approximation theorem and the integrated C-semigroup introduced by Myadera, the authors obtained some Trotter-Kato approximation theorems on exponentially bounded C-semigroups, where the range of C (and so the domain of the generator) may not be dense. The authors deduced the corresponding results on exponentially bounded integrated semigroups with nondensely generators. The results of this paper extended and perfected the results given by Lizama, Park and Zheng.
基金supported by the Ministry of Science and Technology of China (2014CB964803 and 2015AA020307)the National Natural Science Foundation of China (Nos. 31530048, 31601163 and 81672117)+1 种基金he Chinese Academy of Sciences (XDB19010204 and QYZDJ-SSW-SMC023)the Shanghai Municipal Commission for Science and Technology(16JC1420500, 17JC1400900 and 17140901500)
文摘Generation of mouse models carrying a defined point mutation,especially disease-related point mutations,is of considerable interest for research in biology and medicine.The standard method based on embryonic stem cell(ESC)-mediated homologous recombination(HR)is time-and labor-consuming.