Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an...Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.展开更多
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and...In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.展开更多
To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t...To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.展开更多
Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether...Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether it can affect the hematopoietic development in aquatic organisms.To address this question,zebrafish(Danio rerio)were chronically exposed to Phe at different concentrations.We found that Phe caused structural damage to the renal tubules in the kidney,induced malformed erythrocytes in peripheral blood,and decreased the proportion of myeloid cells in adult zebrafish,suggesting possible negative impacts that Phe posed to hematopoietic development.Then,using in situ hybridization technology,we found that Phe decreased the expression of primitive hematopoietic marker genes,specifically gata1 and pu.1,accompanied by an obstruction of primitive erythrocyte circulation.Furthermore,Phe impaired definitive hematopoiesis,increased aberrations of the transient hematopoietic site(PBI),and reduced the generation of hematopoietic stem cells,ultimately influencing the number of erythrocytes and myeloid cells.The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.展开更多
As the global population ages,osteoporotic bone fractures leading to bone defects are increasingly becoming a significant challenge in the field of public health.Treating this disease faces many challenges,especially ...As the global population ages,osteoporotic bone fractures leading to bone defects are increasingly becoming a significant challenge in the field of public health.Treating this disease faces many challenges,especially in the context of an imbalance between osteoblast and osteoclast activities.Therefore,the development of new biomaterials has become the key.This article reviews various design strategies and their advantages and disadvantages for biomaterials aimed at osteoporotic bone defects.Overall,current research progress indicates that innovative design,functionalization,and targeting of materials can significantly enhance bone regeneration under osteoporotic conditions.By comprehensively considering biocompatibility,mechanical properties,and bioactivity,these biomaterials can be further optimized,offering a range of choices and strategies for the repair of osteoporotic bone defects.展开更多
Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simul...Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simultaneously control the growth of perovskite crystals and passivate defects.Here,4-(trifluoromethyl)benzoic anhydride(4-TBA)composed of benzene rings functionalized with carbonyl and trifluoromethyl groups was used as an example additive to study the characteristics of additives used for producing high-quality perovskites and controlling their surface properties.The interaction between4-TBA and perovskite precursor materials was investigated using density functional theory(DFT)simulations.The electron-rich carbonyl group efficiently passivated the under-coordinated lead-ion defects.Additionally,hydrogen bonding between trifluoromethyl and organic cations prevents the generation of cation vacancies.Because of its intrinsic hydrophobicity,the trifluoromethyl group simultaneously improves the moisture and heat stability of the film.4-TBA serves as a universal modifier for various perovskite compositions.The power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs)based on methylammonium(MA)with 4-TBA was improved from 16.15%to 19.28%.Similarly,the PCE of inverted PSCs based on a cesium formamidinium MA(CsFAMA)perovskite film increased from20.72%to 23.58%,upon addition of 4-TBA.Furthermore,the moisture and thermal stability of 4-TBAtreated films and devices was significantly enhanced,along with prolonged device performance.Our work provides guidance on selecting the structure and functional groups that are essential for surface defect passivation and the production of high-quality perovskites.展开更多
The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and...The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and widths were TIG welded,and the microstructures,cracks morphology,and precipitated phases were analyzed using optical microscope,scanning electron microscope,transmission electron microscope,and energy dispersive X-ray spectrometer.The results reveal that the dimensions of casting defects significantly affect the weldability of K4951.Deep defects(greater than 2 mm)lead to rapid crack propagation,while wider defects can moderate the propagation process of cracks.Elemental segregation and the formation of precipitated phases,such as MC carbides,are observed in the fusion zone,contributing to welding cracks.An optimal groove aspect ratio(depth-to-width)between 0.2 and 0.5 minimizes crack formation tendency and enhances tensile strength,resulting in a mixed brittle-ductile fracture mode of joint after high-temperature tensile testing.展开更多
The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structu...The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects.The objective is to increase pipeline dependability and safety through more precise,real-time health evaluations.Compared to previous approaches,our solution provides higher accuracy in fault detection and quantification,making it ideal for pipeline integritymonitoring in real-world applications.To solve this issue,statistical analysis was conducted on the size and directional distribution features of about 380,000 sets of internal corrosion faults,as well as simulations of erosion and wear patterns on bent pipes.Using real defectmorphologies,we developed a modeling framework for typical interior corrosion flaws.We evaluated and validated the applicability and effectiveness of in-service inspection processes,as well as conducted on-site comparison tests.The results show that(1)the length and width of corrosion defects follow a log-normal distribution,the clock orientation follows a normal distribution,and the peak depth follows a Freundlich EX function distribution pattern;(2)pipeline corrosion defect data can be classified into three classes using the K-means clustering algorithm,allowing rapid and convenient acquisition of typical size and orientation characteristics of internal corrosion defects;(3)the applicability range and boundary conditions of various NDT techniques were verified,establishing comprehensive selection principles for internal corrosion defect detection technology;(4)on-site inspection results showed a 31%The simulation and validation platform for typical interior corrosion issues greatly enhances the accuracy and reliability of detection data.展开更多
The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail ...The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail inspection methods,specifically involving real-time,precise detection,and assessment of rail defects.Current applications fail to address the evolving requirements,prompting the need for advancements.This paper provides a summary of various types of rail defects and outlines both traditional and innovative non-destructive inspection techniques,examining their fundamental features,benefits,drawbacks,and practical suitability for railway track inspection.It also explores potential enhancements to equipment and software.The comprehensive review draws upon pertinent international research and review papers.Furthermore,the paper introduces a fusion of inspection methods aimed at enhancing the overall reliability of defect detection.展开更多
Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal t...Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism.The system is predicated on a hydrogel matrix that is thermally responsive,characteristic of bone defect sites,facilitating controlled and site-specific drug release.The cornerstone of this system is the incorporation of mild photothermal nanoparticles,which are activated within the temperature range of 40–43°C,thereby enhancing the precision and efficacy of drug delivery.Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents,mitigating systemic side effects and bolstering efficacy at the defect site.The synchronized pulsed release,cooperated with mild photothermal therapy,effectively addresses infection control,and promotes bone regeneration.This approach signifies a considerable advancement in the management of infectious bone defects,offering an effective and patient-centric alternative to traditional methods.Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios,underscoring its transformative potential in the realm of regenerative medicine.展开更多
The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary mate...The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.展开更多
Mechano luminescence(ML),which involves the emission of light under mechanical stimuli,shows great potential in various applications such as sensing,imaging,and energy harvesting.Current research suggests that the lum...Mechano luminescence(ML),which involves the emission of light under mechanical stimuli,shows great potential in various applications such as sensing,imaging,and energy harvesting.Current research suggests that the luminescence mechanism of ML is typically connected to specific defects present within the material.In this study,we focus on the investigation of ML defects in Pr^(3+)-doped NaNbO_(3)/LiNbO_(3)heterojunctions,employing a combination of experimental and theoretical approaches.Through experimental analysis,we confirmed the presence of the heterojunction and its influence on ML intensity,and the optimal doping ratio for the heterojunction in ML was established.Furthermore,we examined the influence of varying Pr^(3+)doping concentrations on ML behavior and a proof-of-concept was demonstrated using the X-rays charged heterostructural phosphor as a stress sensor for biological applications.The position and concentration of internal defects in the ML material were scrutinized through thermo luminescence tests employing the variable heating rate method and positron annihilation.Complementing the experimental findings,theoretical simulations were conducted to elucidate the underlying mechanisms responsible for the observed ML defects.Density functional theory calculations were employed to investigate the energy levels,charge transfer processes,and lattice distortions within the heterojunctions under mechanical stress.Theoretical predictions were compared and validated against the experimental results.The integration of experimental and theoretical approaches provides a comprehensive understanding of the ML behavior of Pr^(3+)-doped NaNbO_(3)/LiNbO_(3)heterojunctions.The insights gained from this research contribute to the development of novel ML materials and pave the way for their applications in next-generation sensing and energy conversion devices.展开更多
The features of optical defects in a chemical vapor deposition (CVD) synthetic type Ⅱ a diamond were characterized using photoluminescence (PL) spectroscopy, before and after electron irradiation. The sample was cut ...The features of optical defects in a chemical vapor deposition (CVD) synthetic type Ⅱ a diamond were characterized using photoluminescence (PL) spectroscopy, before and after electron irradiation. The sample was cut within a {100} growth layer, and irradiated with 2 MeV electrons along the <100> axis. PL spectra of sample were collected under 532 nm and 355 nm laser excitation, at room temperature and 77 K, and linear scanning analysis along incident depth was applied to determine the distribution of defects. The pre-irradiation characterization results revealed uniformly distributed PL centers at 389 nm, 469 nm, 533 nm, 575 nm (ZPL of NV 0), 637 nm (ZPL of NV -), and 736.7/737.1 nm (ZPL doublet of SiV -). After irradiation, the differential responses of these as-grown defects were observed, alongside the emergence of irradiation-induced defects, namely 489 nm center, H3 center (ZPL at 504 nm) and GR1 center (ZPL at 741 nm). The maximum penetration depth of 2 MeV electron-irradiation induced defects was determined to be 2.1 mm. This work primarily presents the depth profiles of both as-grown and irradiation-induced defects in 2 MeV electrons irradiated diamond. The result provides experimental data for better understanding of the radiation effect in diamonds. Serving as a reference for diamond enhancement by electron irradiation.展开更多
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we pro...Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.展开更多
While early transition metal-based materials,such as MXene,has emerged as an efficient catalyst for the Mg-based hydrogen storage materials,their strong interaction with hydrogen resulted in the high hydrogen diffusio...While early transition metal-based materials,such as MXene,has emerged as an efficient catalyst for the Mg-based hydrogen storage materials,their strong interaction with hydrogen resulted in the high hydrogen diffusion barrier,hindering further improvement of catalytic activity.A MXene is characterized by rich anionic groups on its surface,significantly affecting electronic and catalytic functionalities.Using Nb_(2)CT_(x)as an example,we herein illustrate the critical role of anionic T_(x)defects on controlling hydrogen dissociation and diffusion processes in Mg-based hydrogen storage materials.The hydrogen desorption properties of MgH_(2)can be significantly enhanced by utilizing T_(x)controllable Nb_(2)CT_(x),and it can release 3.57 wt.%hydrogen within 10 min under 240℃with the reduced dehydrogenation activation barrier.It also realized stable de/hydrogenation reactions for at least 50 cycles.DFT studies combined with kinetic analysis revealed that the catalyst‒hydrogen interaction could be systematically controlled by optimizing surface T_(x)defect density,accelerating the hydrogen dissociation and diffusion processes at the same time.These results demonstrate that the T_(x)defects serve as the effective catalytically active centers of Nb_(2)CT_(x),offering a flexible catalyst design guideline.展开更多
Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic ...Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic acid(AA),containing two carbonyl(C=O)groups and different core-units,were incorporated into perovskite as additives for PSCs application.Thanks to the strong coordination interaction between C=O group and under-coordinated Pb^(2+),the additives can effectively passivate film defects and regulate the perovskite crystallization,yielding high-quality perovskite films with lower defect densities.More importantly,the additives can efficiently regulate the charge transport behaviors in PSCs.Benefiting from the defects passivation and the regulation of charge carrier dynamics,the BA and AA-treaded PSCs show the power conversion efficiencies of 21.52%and 20.50%,which are higher than that of the control device(19.41%).Besides,the optimal devices exhibit a remarkable enhanced long-term stability and moisture tolerance compared to the pristine devices.Furthermore,the transient absorption spectrum reveals the mechanism of enhanced photovoltaic performances,attributing to the improvement of charge transport capability at the perovskite/Spiro-OMeTAD interfaces.This work affords a promising strategy to improve the efficiency and stability of PSCs through regulating the charge-carrier dynamic process in perovskite film.展开更多
Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,...Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.展开更多
Defect engineering is a commonly methodology used to enhance the thermoelectric performance of thermoelectric PbTe by improving its electronic transport properties.At the nanoscale,defects can induce quantum tunneling...Defect engineering is a commonly methodology used to enhance the thermoelectric performance of thermoelectric PbTe by improving its electronic transport properties.At the nanoscale,defects can induce quantum tunneling effects that significantly impact the electrical properties of materials.To understand the specific mechanisms underlying the quantum transport properties of PbTe,we employ the non-equilibrium Green's function(NEGF)method to investigate the effects of intrinsic defects(point defects and grain boundaries)on the electronic transport properties of PbTe-based nanodevices from a quantum mechanical perspective.Our results show that the Pb vacancy(VPb)has the highest conduction.The conduction depends on the defect type,chemical potential and bias voltage.The presence of intrinsic point defects introduces impurity levels,facilitating the electron tunneling and leading to an increase in the transmission coefficient,thereby enhancing the electronic transport properties.For PbTe containing grain boundaries,these boundaries suppress the electronic transport properties.The Te occupied twin boundary(Te-TB)exerts a stronger inhibitory effect than the Pb occupied twin boundary(Pb-TB).Nevertheless,the combined effect between twin boundaries and point defects can enhance the electrical properties.Therefore,in order to obtain highly conductive of PbTe materials,a Te-rich synthesis environment should be used to promote the effective formation of Pb vacancy.Our work offers a comprehensive understanding of the impact of defects on electron scattering in thermoelectric materials.展开更多
Failure tests were conducted on two concrete-filled steel tubular(CFST)truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of...Failure tests were conducted on two concrete-filled steel tubular(CFST)truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of CFST truss arch bridges.The effects of antisymmetric defect on the ultimate bearing capacity,failure mode,structural response,and steel–concrete confinement effect of CFST truss arch bridges under quarter-point loading were analyzed.On this basis,numerical simulations were conducted to investigate the in-plane bearing capacity of CFST truss arch bridges further under different scenarios.The initial defect formof the archwas obtained by using theoretical deduction,and the theoretical basis for the weakening of the ultimate bearing capacity of the arch bridge caused by geometric defects was clarified.Results indicate that the antisymmetric defect does not change the four-hinge failure mode of the model arch under quarter-point loading but increases the local cracking area and crack density of the concrete inside the pipe.The sine geometric defect with an amplitude of L/250 resulted in a 44.4%decrease in the yield load of the single hinge of the model arch,a 10.5%decrease in the failure load of the four hinges,and a 40.9%increase in themaximum vertical deformation during failure.At the initial stage of loading,the steel pipe and the concrete inside the pipe were subjected to relatively independent forces.After reaching 67%of the ultimate load,the catenary arch ribs began to produce a steel pipe concrete constraint effect.The initial geometric defects resulted in a decrease in the load when the constraint effect occurred.The antisymmetric defects with the same amplitude have a greater impact on the in-plane bearing capacity of the CFST arch bridge than the initial geometric defects with symmetry.The linear deviation at L/4 caused by constructionmust be controlled to be less than L/600 to ensure that the internal bearing capacity of the CFST arch bridge reaches 95%of the design bearing capacity.The structural deformation caused by geometric initial defects increases linearly with the increase in defect amplitude.The bearing capacity is weakened because the structural deflection and bending moment are amplified by initial defects.展开更多
Despite the extensive use of distributed fiber optic sensing(DFOS)in monitoring underground structures,its potential in detecting structural anomalies,such as cracks and cavities,is still not fully understood.To contr...Despite the extensive use of distributed fiber optic sensing(DFOS)in monitoring underground structures,its potential in detecting structural anomalies,such as cracks and cavities,is still not fully understood.To contribute to the identification of defects in underground structures,this study conducted a four-point bending test of a reinforced concrete(RC)beam and uniaxial loading tests of an RC specimen with local cavities.The experimental results revealed the disparity in DFOS strain spike profiles between these two structural anomalies.The effectiveness of DFOS in the quantification of crack opening displacement(COD)was also demonstrated,even in cases where perfect bonding was not achievable between the cable and structures.In addition,DFOS strain spikes observed in two diaphragm wall panels of a twin circular shaft were also reported.The most probable cause of those spikes was identified as the mechanical behavior associated with local concrete contamination.With the utilization of the strain profiles obtained from laboratory tests and field monitoring,three types of multi-classifiers,based on support vector machine(SVM),random forest(RF),and backpropagation neural network(BP),were employed to classify strain profiles,including crack-induced spikes,non-crack-induced spikes,and non-spike strain profiles.Among these classifiers,the SVM-based classifier exhibited superior performance in terms of accuracy and model robustness.This finding suggests that the SVM-based classifier holds promise as a potential solution for the automatic detection and classification of defects in underground structures during long-term monitoring.展开更多
文摘Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.
基金funded by National Natural Science Foundation of China(Grant Nos.52130504,52305577,and 52175509)the Key Research and Development Plan of Hubei Province(Grant No.2022BAA013)+4 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA008-2)the Interdisciplinary Research Program of Huazhong University of Science and Technology(2023JCYJ047)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023PY003)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(Grant No.GZB20230244)the fellowship from the China Postdoctoral Science Foundation(2024M750995)。
文摘In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_4084).
文摘To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.
基金supported by the National Natural Science Foundation of China(Nos.22276117 and 22076108)the Science and Technology Innovation Talent Team Project of Shanxi Province(No.202204051002024).
文摘Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether it can affect the hematopoietic development in aquatic organisms.To address this question,zebrafish(Danio rerio)were chronically exposed to Phe at different concentrations.We found that Phe caused structural damage to the renal tubules in the kidney,induced malformed erythrocytes in peripheral blood,and decreased the proportion of myeloid cells in adult zebrafish,suggesting possible negative impacts that Phe posed to hematopoietic development.Then,using in situ hybridization technology,we found that Phe decreased the expression of primitive hematopoietic marker genes,specifically gata1 and pu.1,accompanied by an obstruction of primitive erythrocyte circulation.Furthermore,Phe impaired definitive hematopoiesis,increased aberrations of the transient hematopoietic site(PBI),and reduced the generation of hematopoietic stem cells,ultimately influencing the number of erythrocytes and myeloid cells.The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.
基金supported by the National Natural Science Foundation of China(Nos.82160419 and 82302772)Guizhou Basic Research Project(No.ZK[2023]General 201)。
文摘As the global population ages,osteoporotic bone fractures leading to bone defects are increasingly becoming a significant challenge in the field of public health.Treating this disease faces many challenges,especially in the context of an imbalance between osteoblast and osteoclast activities.Therefore,the development of new biomaterials has become the key.This article reviews various design strategies and their advantages and disadvantages for biomaterials aimed at osteoporotic bone defects.Overall,current research progress indicates that innovative design,functionalization,and targeting of materials can significantly enhance bone regeneration under osteoporotic conditions.By comprehensively considering biocompatibility,mechanical properties,and bioactivity,these biomaterials can be further optimized,offering a range of choices and strategies for the repair of osteoporotic bone defects.
基金supported by a Research Grant of Pukyong National University(2023)。
文摘Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simultaneously control the growth of perovskite crystals and passivate defects.Here,4-(trifluoromethyl)benzoic anhydride(4-TBA)composed of benzene rings functionalized with carbonyl and trifluoromethyl groups was used as an example additive to study the characteristics of additives used for producing high-quality perovskites and controlling their surface properties.The interaction between4-TBA and perovskite precursor materials was investigated using density functional theory(DFT)simulations.The electron-rich carbonyl group efficiently passivated the under-coordinated lead-ion defects.Additionally,hydrogen bonding between trifluoromethyl and organic cations prevents the generation of cation vacancies.Because of its intrinsic hydrophobicity,the trifluoromethyl group simultaneously improves the moisture and heat stability of the film.4-TBA serves as a universal modifier for various perovskite compositions.The power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs)based on methylammonium(MA)with 4-TBA was improved from 16.15%to 19.28%.Similarly,the PCE of inverted PSCs based on a cesium formamidinium MA(CsFAMA)perovskite film increased from20.72%to 23.58%,upon addition of 4-TBA.Furthermore,the moisture and thermal stability of 4-TBAtreated films and devices was significantly enhanced,along with prolonged device performance.Our work provides guidance on selecting the structure and functional groups that are essential for surface defect passivation and the production of high-quality perovskites.
基金National Natural Science Foundation of China(52201054,52175368)National Science and Technology Major Projects(J2019-VI-0018-0133)+2 种基金Liaoning Provincial Science and Technology Program(2023-BS-019,2023-MS-020)National Key R&D Program of China(2021YFB3700401)Key Specialized Research and Development Break-Through-Unveiling and Commanding the Special Project Program in Liaoning Province(2021JH15)。
文摘The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and widths were TIG welded,and the microstructures,cracks morphology,and precipitated phases were analyzed using optical microscope,scanning electron microscope,transmission electron microscope,and energy dispersive X-ray spectrometer.The results reveal that the dimensions of casting defects significantly affect the weldability of K4951.Deep defects(greater than 2 mm)lead to rapid crack propagation,while wider defects can moderate the propagation process of cracks.Elemental segregation and the formation of precipitated phases,such as MC carbides,are observed in the fusion zone,contributing to welding cracks.An optimal groove aspect ratio(depth-to-width)between 0.2 and 0.5 minimizes crack formation tendency and enhances tensile strength,resulting in a mixed brittle-ductile fracture mode of joint after high-temperature tensile testing.
基金The“13th Five-Year Plan”National Science and Technology Major Project,2016ZX05052,Changchao QiThe China National Petroleum Corporation Science and Technology Project,2021DJ6505,Changchao Qi.
文摘The accuracy and reliability of non-destructive testing(NDT)approaches in detecting interior corrosion problems are critical,yet research in this field is limited.This work describes a novel way to monitor the structural integrity of steel gas pipelines that uses advanced numerical modeling techniques to anticipate fracture development and corrosion effects.The objective is to increase pipeline dependability and safety through more precise,real-time health evaluations.Compared to previous approaches,our solution provides higher accuracy in fault detection and quantification,making it ideal for pipeline integritymonitoring in real-world applications.To solve this issue,statistical analysis was conducted on the size and directional distribution features of about 380,000 sets of internal corrosion faults,as well as simulations of erosion and wear patterns on bent pipes.Using real defectmorphologies,we developed a modeling framework for typical interior corrosion flaws.We evaluated and validated the applicability and effectiveness of in-service inspection processes,as well as conducted on-site comparison tests.The results show that(1)the length and width of corrosion defects follow a log-normal distribution,the clock orientation follows a normal distribution,and the peak depth follows a Freundlich EX function distribution pattern;(2)pipeline corrosion defect data can be classified into three classes using the K-means clustering algorithm,allowing rapid and convenient acquisition of typical size and orientation characteristics of internal corrosion defects;(3)the applicability range and boundary conditions of various NDT techniques were verified,establishing comprehensive selection principles for internal corrosion defect detection technology;(4)on-site inspection results showed a 31%The simulation and validation platform for typical interior corrosion issues greatly enhances the accuracy and reliability of detection data.
文摘The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail inspection methods,specifically involving real-time,precise detection,and assessment of rail defects.Current applications fail to address the evolving requirements,prompting the need for advancements.This paper provides a summary of various types of rail defects and outlines both traditional and innovative non-destructive inspection techniques,examining their fundamental features,benefits,drawbacks,and practical suitability for railway track inspection.It also explores potential enhancements to equipment and software.The comprehensive review draws upon pertinent international research and review papers.Furthermore,the paper introduces a fusion of inspection methods aimed at enhancing the overall reliability of defect detection.
基金supported by the National Natural Science Foundation of China(32171354,82222015,82171001)The National Key Research and Development Program of China2023YFC2413600Research Funding from West China School/Hospital of Stomatology,Sichuan University(No.RCDWIS2023-1).
文摘Infectious bone defects represent a substantial challenge in clinical practice,necessitating the deployment of advanced therapeutic strategies.This study presents a treatment modality that merges a mild photothermal therapy hydrogel with a pulsed drug delivery mechanism.The system is predicated on a hydrogel matrix that is thermally responsive,characteristic of bone defect sites,facilitating controlled and site-specific drug release.The cornerstone of this system is the incorporation of mild photothermal nanoparticles,which are activated within the temperature range of 40–43°C,thereby enhancing the precision and efficacy of drug delivery.Our findings demonstrate that the photothermal response significantly augments the localized delivery of therapeutic agents,mitigating systemic side effects and bolstering efficacy at the defect site.The synchronized pulsed release,cooperated with mild photothermal therapy,effectively addresses infection control,and promotes bone regeneration.This approach signifies a considerable advancement in the management of infectious bone defects,offering an effective and patient-centric alternative to traditional methods.Our research endeavors to extend its applicability to a wider spectrum of tissue regeneration scenarios,underscoring its transformative potential in the realm of regenerative medicine.
基金supported by the National Natural Science Foundation of China(Nos.52071171,52202248)Liaoning BaiQianWan Talents Program(LNBQW2018B0048)+8 种基金Shenyang Science and Technology Project(21-108-9-04)Key Research Project of Department of Education of Liaoning Province(LJKZZ20220015)the Research Fund for the Doctoral Program of Liaoning Province(2022-BS-114)Chunhui Program of the Ministry of Education of the People’s Republic of China(202201135)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training Centre(IC180100005)schemes,and the Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)as part of ARENA’s Transformative Research Accelerating Commercialisation Program(TM021).
文摘The advancement of aqueous magnesium ion energy storage devices encounters limitations due to the substantial hydration radius of magnesium ions(Mg^(2+))and their strong electrostatic interaction with the primary material.Consequently,this study successfully developed a MnS/MnO heterostructure through a straightforward hydrothermal and annealing method,marking its initial application in aqueous magnesium ion capacitors(AMICs).The fabricated MnS/MnO heterostructure,characterized by S defects,also generates Mn defects via in-situ initiation of early electrochemical processes.This unique dual ion defects MnS/MnO heterostructure(DID-MnS/MnO)enables the transformation of MnS and MnO,initially not highly active electrochemically for Mg^(2+),into cathode materials exhibiting high electrochemical activity and superior performance.Moreover,DID-MnS/MnO enhances conductivity,improves the kinetics of surface redox reactions,and increases the diffusion rate of Mg^(2+).Furthermore,this study introduces a dual energy storage mechanism for DID-MnS/MnO,which,in conjunction with dual ion defects,offers additional active sites for Mg^(2+)insertion/deinsertion in the host material,mitigating volume expansion and structural degradation during repeated charge-discharge cycles,thereby significantly enhancing cycling reversibility.As anticipated,using a three-electrode system,the developed DID-MnS/MnO demonstrated a discharge specific capacity of 237.9 mAh/g at a current density of 0.1 A/g.Remarkably,the constructed AMIC maintained a capacity retention rate of 94.3%after 10000 cycles at a current density of 1.0 A/g,with a specific capacitance of 165.7 F/g.Hence,DID-MnS/MnO offers insightful perspectives for designing alternative clean energy sources and is expected to contribute significantly to the advancement of the clean energy sector.
基金supported by the National Natural Science Foundation of China(52201008,52372003)Natural Science Foundation of Heilongjiang Province of China(ZD2023E004)+1 种基金Fundamental Research Funds for the Central Universities(3072020CF2515,3072022CFJ2504)the State Key Laboratory of Particle Detection and Electronics(SKLPDE-KF-202311)。
文摘Mechano luminescence(ML),which involves the emission of light under mechanical stimuli,shows great potential in various applications such as sensing,imaging,and energy harvesting.Current research suggests that the luminescence mechanism of ML is typically connected to specific defects present within the material.In this study,we focus on the investigation of ML defects in Pr^(3+)-doped NaNbO_(3)/LiNbO_(3)heterojunctions,employing a combination of experimental and theoretical approaches.Through experimental analysis,we confirmed the presence of the heterojunction and its influence on ML intensity,and the optimal doping ratio for the heterojunction in ML was established.Furthermore,we examined the influence of varying Pr^(3+)doping concentrations on ML behavior and a proof-of-concept was demonstrated using the X-rays charged heterostructural phosphor as a stress sensor for biological applications.The position and concentration of internal defects in the ML material were scrutinized through thermo luminescence tests employing the variable heating rate method and positron annihilation.Complementing the experimental findings,theoretical simulations were conducted to elucidate the underlying mechanisms responsible for the observed ML defects.Density functional theory calculations were employed to investigate the energy levels,charge transfer processes,and lattice distortions within the heterojunctions under mechanical stress.Theoretical predictions were compared and validated against the experimental results.The integration of experimental and theoretical approaches provides a comprehensive understanding of the ML behavior of Pr^(3+)-doped NaNbO_(3)/LiNbO_(3)heterojunctions.The insights gained from this research contribute to the development of novel ML materials and pave the way for their applications in next-generation sensing and energy conversion devices.
基金This work is supported by National Natural Science Foundation of China(No.42372054)。
文摘The features of optical defects in a chemical vapor deposition (CVD) synthetic type Ⅱ a diamond were characterized using photoluminescence (PL) spectroscopy, before and after electron irradiation. The sample was cut within a {100} growth layer, and irradiated with 2 MeV electrons along the <100> axis. PL spectra of sample were collected under 532 nm and 355 nm laser excitation, at room temperature and 77 K, and linear scanning analysis along incident depth was applied to determine the distribution of defects. The pre-irradiation characterization results revealed uniformly distributed PL centers at 389 nm, 469 nm, 533 nm, 575 nm (ZPL of NV 0), 637 nm (ZPL of NV -), and 736.7/737.1 nm (ZPL doublet of SiV -). After irradiation, the differential responses of these as-grown defects were observed, alongside the emergence of irradiation-induced defects, namely 489 nm center, H3 center (ZPL at 504 nm) and GR1 center (ZPL at 741 nm). The maximum penetration depth of 2 MeV electron-irradiation induced defects was determined to be 2.1 mm. This work primarily presents the depth profiles of both as-grown and irradiation-induced defects in 2 MeV electrons irradiated diamond. The result provides experimental data for better understanding of the radiation effect in diamonds. Serving as a reference for diamond enhancement by electron irradiation.
基金National Natural Science Foundation of China (62104061, 62074052, 61974173 and 52072327)。
文摘Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.
基金supported by Liuchuang Program of Chongqing Municipality(cx2022038)the Fundamental Research Funds for the Central Universities(2022CDJQY-013)the Graduate Research and Innovation Foundation of Chongqing,China(CYB22005).
文摘While early transition metal-based materials,such as MXene,has emerged as an efficient catalyst for the Mg-based hydrogen storage materials,their strong interaction with hydrogen resulted in the high hydrogen diffusion barrier,hindering further improvement of catalytic activity.A MXene is characterized by rich anionic groups on its surface,significantly affecting electronic and catalytic functionalities.Using Nb_(2)CT_(x)as an example,we herein illustrate the critical role of anionic T_(x)defects on controlling hydrogen dissociation and diffusion processes in Mg-based hydrogen storage materials.The hydrogen desorption properties of MgH_(2)can be significantly enhanced by utilizing T_(x)controllable Nb_(2)CT_(x),and it can release 3.57 wt.%hydrogen within 10 min under 240℃with the reduced dehydrogenation activation barrier.It also realized stable de/hydrogenation reactions for at least 50 cycles.DFT studies combined with kinetic analysis revealed that the catalyst‒hydrogen interaction could be systematically controlled by optimizing surface T_(x)defect density,accelerating the hydrogen dissociation and diffusion processes at the same time.These results demonstrate that the T_(x)defects serve as the effective catalytically active centers of Nb_(2)CT_(x),offering a flexible catalyst design guideline.
基金National Natural Science Foundation of China(No.22065038)High-Level Talents Introduction in Yunnan Province(No.C619300A010)+3 种基金the Fund for Excellent Young Scholars of Yunnan(No.202001AW070008)Spring City Plan:the Highlevel Talent Promotion and Training Project of Kunming(No.2022SCP005)for financial supportthe support from the Postdoctoral Research Foundation of Yunnan University(No.W8223004)the Postdoctoral Foundation of Department of Human Resources and Social Security of Yunnan Province(No.C615300504046)。
文摘Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic acid(AA),containing two carbonyl(C=O)groups and different core-units,were incorporated into perovskite as additives for PSCs application.Thanks to the strong coordination interaction between C=O group and under-coordinated Pb^(2+),the additives can effectively passivate film defects and regulate the perovskite crystallization,yielding high-quality perovskite films with lower defect densities.More importantly,the additives can efficiently regulate the charge transport behaviors in PSCs.Benefiting from the defects passivation and the regulation of charge carrier dynamics,the BA and AA-treaded PSCs show the power conversion efficiencies of 21.52%and 20.50%,which are higher than that of the control device(19.41%).Besides,the optimal devices exhibit a remarkable enhanced long-term stability and moisture tolerance compared to the pristine devices.Furthermore,the transient absorption spectrum reveals the mechanism of enhanced photovoltaic performances,attributing to the improvement of charge transport capability at the perovskite/Spiro-OMeTAD interfaces.This work affords a promising strategy to improve the efficiency and stability of PSCs through regulating the charge-carrier dynamic process in perovskite film.
文摘Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.
基金financial support from the National Natural Science Foundation of China(No.12474016)the program of“Distinguished Expert of Taishan Scholar”(No.tstp20221124)+4 种基金the National Natural Science Foundation of China(Nos.52172212,12474017)the Shandong Provincial Science Foundation(ZR2021YQ03)the program for“Young Scientists of Taishan Scholars”(No.tsqn202306184)financial support from the National Natural Science Foundation of China(No.12464034)the Natural Science Foundation of Ningxia,China(No.2024AAC05070)。
文摘Defect engineering is a commonly methodology used to enhance the thermoelectric performance of thermoelectric PbTe by improving its electronic transport properties.At the nanoscale,defects can induce quantum tunneling effects that significantly impact the electrical properties of materials.To understand the specific mechanisms underlying the quantum transport properties of PbTe,we employ the non-equilibrium Green's function(NEGF)method to investigate the effects of intrinsic defects(point defects and grain boundaries)on the electronic transport properties of PbTe-based nanodevices from a quantum mechanical perspective.Our results show that the Pb vacancy(VPb)has the highest conduction.The conduction depends on the defect type,chemical potential and bias voltage.The presence of intrinsic point defects introduces impurity levels,facilitating the electron tunneling and leading to an increase in the transmission coefficient,thereby enhancing the electronic transport properties.For PbTe containing grain boundaries,these boundaries suppress the electronic transport properties.The Te occupied twin boundary(Te-TB)exerts a stronger inhibitory effect than the Pb occupied twin boundary(Pb-TB).Nevertheless,the combined effect between twin boundaries and point defects can enhance the electrical properties.Therefore,in order to obtain highly conductive of PbTe materials,a Te-rich synthesis environment should be used to promote the effective formation of Pb vacancy.Our work offers a comprehensive understanding of the impact of defects on electron scattering in thermoelectric materials.
基金National Natural Science Foundation of China(Grant No.52408314)Science and Technology Project of Sichuan Provincial TransportationDepartment(GrantNo.2023-ZL-03)Science and Technology Project of Guizhou Provincial Transportation Department(Grant No.2024-122-018).
文摘Failure tests were conducted on two concrete-filled steel tubular(CFST)truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of CFST truss arch bridges.The effects of antisymmetric defect on the ultimate bearing capacity,failure mode,structural response,and steel–concrete confinement effect of CFST truss arch bridges under quarter-point loading were analyzed.On this basis,numerical simulations were conducted to investigate the in-plane bearing capacity of CFST truss arch bridges further under different scenarios.The initial defect formof the archwas obtained by using theoretical deduction,and the theoretical basis for the weakening of the ultimate bearing capacity of the arch bridge caused by geometric defects was clarified.Results indicate that the antisymmetric defect does not change the four-hinge failure mode of the model arch under quarter-point loading but increases the local cracking area and crack density of the concrete inside the pipe.The sine geometric defect with an amplitude of L/250 resulted in a 44.4%decrease in the yield load of the single hinge of the model arch,a 10.5%decrease in the failure load of the four hinges,and a 40.9%increase in themaximum vertical deformation during failure.At the initial stage of loading,the steel pipe and the concrete inside the pipe were subjected to relatively independent forces.After reaching 67%of the ultimate load,the catenary arch ribs began to produce a steel pipe concrete constraint effect.The initial geometric defects resulted in a decrease in the load when the constraint effect occurred.The antisymmetric defects with the same amplitude have a greater impact on the in-plane bearing capacity of the CFST arch bridge than the initial geometric defects with symmetry.The linear deviation at L/4 caused by constructionmust be controlled to be less than L/600 to ensure that the internal bearing capacity of the CFST arch bridge reaches 95%of the design bearing capacity.The structural deformation caused by geometric initial defects increases linearly with the increase in defect amplitude.The bearing capacity is weakened because the structural deflection and bending moment are amplified by initial defects.
基金support from the Open Research Project Programme of the State Key Laboratory of Internet of Things for Smart City,University of Macao (Grant No.SKL-IoTSC (UM)-2021-2023/ORPF/A19/2022)the General Research Fund project from Research Grants Council of Hong Kong Special Administrative Region Government of China (Grant No.15214722)the Start-up Fund from The Hong Kong Polytechnic University (Grant No.BD88).
文摘Despite the extensive use of distributed fiber optic sensing(DFOS)in monitoring underground structures,its potential in detecting structural anomalies,such as cracks and cavities,is still not fully understood.To contribute to the identification of defects in underground structures,this study conducted a four-point bending test of a reinforced concrete(RC)beam and uniaxial loading tests of an RC specimen with local cavities.The experimental results revealed the disparity in DFOS strain spike profiles between these two structural anomalies.The effectiveness of DFOS in the quantification of crack opening displacement(COD)was also demonstrated,even in cases where perfect bonding was not achievable between the cable and structures.In addition,DFOS strain spikes observed in two diaphragm wall panels of a twin circular shaft were also reported.The most probable cause of those spikes was identified as the mechanical behavior associated with local concrete contamination.With the utilization of the strain profiles obtained from laboratory tests and field monitoring,three types of multi-classifiers,based on support vector machine(SVM),random forest(RF),and backpropagation neural network(BP),were employed to classify strain profiles,including crack-induced spikes,non-crack-induced spikes,and non-spike strain profiles.Among these classifiers,the SVM-based classifier exhibited superior performance in terms of accuracy and model robustness.This finding suggests that the SVM-based classifier holds promise as a potential solution for the automatic detection and classification of defects in underground structures during long-term monitoring.