To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t...To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.展开更多
There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods...There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model.展开更多
Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects,...Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches.展开更多
Fabrication of high-quality optics puts a strong demand on high-throughput detection of macroscopic bulk defects in optical components.A dark-field line confocal imaging method is proposed with two distinct advantage...Fabrication of high-quality optics puts a strong demand on high-throughput detection of macroscopic bulk defects in optical components.A dark-field line confocal imaging method is proposed with two distinct advantages:(ⅰ)a point-to-line confocal scheme formed by a columnar elliptical mirror and an optical fiber bundle breaks through the constraint on light collection angle and field of view in the traditional line confocal microscopy using an objective,allowing for an extended confocal line field of more than 100 mm while maintaining a light collection angle of 27°;(ⅱ)the bulk defects are independently illuminated as a function of time to eliminate the cross talk in the direction of the confocal slit,thus preserving point confocality and showing the optical section thicknesses to be 162μm in the axial direction,and 19 and 22μm in the orthogonal transverse directions.The experimental results verify that the method has a minimum detectable bulk defect of less than 5μm and an imaging efficiency of 400 mm2/s.The method shows great potential in high-throughput and highsensitivity bulk defects detection.展开更多
An ideal printed circuit board(PCB)defect inspection system can detect defects and classify PCB defect types.Existing defect inspection technologies can identify defects but fail to classify all PCB defect types.This ...An ideal printed circuit board(PCB)defect inspection system can detect defects and classify PCB defect types.Existing defect inspection technologies can identify defects but fail to classify all PCB defect types.This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types.In the proposed algorithmic scheme,fuzzy cmeans clustering is used for image segmentation via image subtraction prior to defect detection.Arithmetic and logic operations,the circle hough transform(CHT),morphological reconstruction(MR),and connected component labeling(CCL)are used in defect classification.The algorithmic scheme achieves 100%defect detection and 99.05%defect classification accuracies.The novelty of this research lies in the concurrent use of CHT,MR,and CCL algorithms to accurately detect and classify all 14-known PCB defect types and determine the defect characteristics such as the location,area,and nature of defects.This information is helpful in electronic parts manufacturing for finding the root causes of PCB defects and appropriately adjusting the manufacturing process.Moreover,the algorithmic scheme can be integrated into machine vision to streamline the manufacturing process,improve the PCB quality,and lower the production cost.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
The visual automatic detection method based on artificial intelligence has attracted more and more attention. In order to improve the performance of weld nondestructive defect detection,we propose DRepDet(Dilated RepP...The visual automatic detection method based on artificial intelligence has attracted more and more attention. In order to improve the performance of weld nondestructive defect detection,we propose DRepDet(Dilated RepPoints Detector). First, we analyze the weld defect dataset in detail and summarize the distribution characteristics of weld defect data, that is, the defect scale is very different and the aspect ratio distribution range is large. Second, according to the distribution characteristics of defect data, we design DResBlock module, and introduce dilated convolution with different dilated rates in the process of feature extraction to expand the receptive field and improve the detection performance of large-scale defects. Based on DResBlock and anchor-free detection framework RepPoints, we design DRepDet. Extensive experiments show that our proposed detector can detect 7 types of defects. When using combined dilated rate convolution network in detection, the AP50 and Recall50 of big defects are improved by 3.1% and 3.3% respectively, while the performance of small defects is not affected, almost the same or slightly improved. The final performance of the whole network is improved a large margin,with 6% AP50 and 4.2% Recall50 compared with Cascade RCNN and 1.4% AP50 and 2.9% Recall50 compared with RepPoints.展开更多
Co-occurrence matrices have been successfully applied in texture classification and segmentation.However,they have poor computation performance in real-time application.In this paper,the efficient co-occurrence matrix...Co-occurrence matrices have been successfully applied in texture classification and segmentation.However,they have poor computation performance in real-time application.In this paper,the efficient co-occurrence matrix solution for defect detection is focused on,and a method of Fuzzy Label Co-occurrence Matrix (FLCM) set is proposed.In this method,all gray levels are supposed to subject to some fuzzy sets called fuzzy tonal sets and three defective features are defined.Features of FLCM set with various parameters are combined for the final judgment.Unlike many methods,image acquired for learning hasn't to be entirely free of defects.It is shown that the method produces high accuracy and can be a competent candidate for plain colour fabric defect detection.展开更多
Aimed at low contrast effect on fabric detection,a method based on bilateral filter and frangi filter is proposed. Firstly,in order to reduce the influence of fabric background texture information on the detection res...Aimed at low contrast effect on fabric detection,a method based on bilateral filter and frangi filter is proposed. Firstly,in order to reduce the influence of fabric background texture information on the detection results,bilateral filter is used to deal with the fabric image. Then frangi filter is used to filter the fabric image after bilateral filtering to enhance the fabric defect area information. Finally,a maximum entropy method is implemented on the fabric image after frangi filtering to separate the defected area. Experimental results show that the proposed method can effectively detect defects.展开更多
Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.There...Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection.展开更多
Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including lo...Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including low throughput,large computation cost,high latency,and poor flexibility,which limits the efficiency of online PCBA inspection.In this paper,a novel PCBA defect detection method based on a lightweight deep convolution neural network is proposed.In this method,the semantic segmentation model is combined with a rule-based defect recognition algorithm to build up a defect detection frame-work.To improve the performance of the model,extensive real PCBA images are collected from production lines as datasets.Some optimization methods have been applied in the model according to production demand and enable integration in lightweight computing devices.Experiment results show that the production line using our method realizes a throughput more than three times higher than traditional methods.Our method can be integrated into a lightweight inference system and pro-mote the flexibility of AOI.The proposed method builds up a general paradigm and excellent example for model design and optimization oriented towards industrial requirements.展开更多
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.展开更多
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version...Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection.展开更多
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect...The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges.展开更多
To address the high cost of online detection equipment and the low adaptability and accuracy of online detection models that are caused by uneven lighting,high noise,low contrast and so on,a block-based template match...To address the high cost of online detection equipment and the low adaptability and accuracy of online detection models that are caused by uneven lighting,high noise,low contrast and so on,a block-based template matching method incorporating fabric texture characteristics is proposed.Firstly,the template image set is evenly divided into N groups of sub-templates at the same positions to mitigate the effects of image illumination,reduce the model computation,and enhance the detection speed,with all image blocks being preprocessed.Then,the feature value information is extracted from the processed set of subtemplates at the same position,extracting two gray-level cooccurrence matrix(GLCM)feature values for each image block.These two feature values are then fused to construct a matching template.The mean feature value of all image blocks at the same position is calculated and used as the threshold for template detection,enabling automatic selection of template thresholds for different positions.Finally,the feature values of the image blocks in the experimental set are traversed and matched with subtemplates at the same positions to obtain fabric defect detection results.The detection experiments are conducted on a platform that simulates a fabric weaving environment,using defective gray fabrics from a weaving factory as the detected objects.The outcomes demonstrate the efficacy of the proposed method in detecting defects in gray fabrics,the mitigation of the impact of uneven external lighting on detection outcomes,and the enhancement of detection accuracy and adaptability.展开更多
Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic instal...Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic installations is detecting hot spots,localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage.Traditional methods for detecting these defects rely on manual inspections using thermal imaging,which are costly,labor-intensive,and impractical for large-scale installations.This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture.The first convolutional neural network efficiently detects and isolates individual solar panels from high-resolution aerial thermal images captured by drones.Subsequently,a second,more advanced convolutional neural network accurately classifies each isolated panel as either defective or healthy,effectively distinguishing genuine thermal anomalies from false positives caused by reflections or glare.Experimental validation on a real-world dataset comprising thousands of thermal images yielded exceptional accuracy,significantly reducing inspection time,costs,and the likelihood of false defect detections.This proposed system enhances the reliability and efficiency of photovoltaic plant inspections,thus contributing to improved operational performance and economic viability.展开更多
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t...Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.展开更多
The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Sw...The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection.展开更多
Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applicat...Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applications such as trapped field magnets.However,for such large-grain superconductor bulks,there are lots of voids and cracks forming during the process of melting preparation,and some of them can be up to hundreds of microns or even millimeters in size.Consequently,these larger size voids/cracks pose a great threat to the strength of the bulks due to the inherent brittleness of superconductor REBCO materials.In order to ensure the operational safety of related superconducting devices with bulk superconductors,it is firstly important to accurately detect these voids/cracks in them.In this paper,we proposed a method for quantitatively evaluating multiple voids/cracks in bulk superconductors through the magnetic field and displacement response signals at superconductor bulk surface.The proposed method utilizes a damage index constructed from the magnetic field signals and displacement responses to identify the number and preliminary location of multiple defects.By dividing the detection area into subdomains and combining the magnetic field signals with displacement responses within each subdomain,a particle swarm algorithm was employed to evaluate the location and size parameters of the defects.In contrast to other evaluation methods using only magnetic field or displacement response signals,the combined evaluation method using both signals can identify the number of cracks effectively.Numerical studies demonstrate that the morphology of voids and cracks reconstructed using the proposed algorithm ideally matches real defects and is applicable to cases where voids and cracks coexist.This study provides a theoretical basis for the quantitative detection of voids/cracks in bulk superconductors.展开更多
High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical propert...High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical properties,service life of lattice structures,and design expectations.This deviation arises from the intense interaction between the laser and powder,which leads to the formation of numerous defects within the lattice structure.To address these issues,this paper proposes a high-performance defect detection model for metal lattice structures based on YOLOv4,called YOLO-Lattice(YOLO-L).The main objectives of this paper are as follows:(1)utilize computed tomography to construct datasets of the diamond lattice and body-centered cubic lattice structures;(2)in the backbone network of YOLOv4,employ deformable convolution to enhance the feature extraction capability of the model for small-scale defects;(3)adopt a dual-attention mechanism to suppress invalid feature information and amplify the distinction between defect and background regions;and(4)implement a channel pruning strategy to eliminate channels carrying less feature information,thereby improving the inference speed of the model.The experimental results on the diamond lattice structure dataset demonstrate that the mean average precision of the YOLO-L model increased from 96.98% to 98.8%(with an intersection over union of 0.5),and the inference speed decreased from 51.3 ms to 32.5 ms when compared to YOLOv4.Thus,the YOLO-L model can be effectively used to detect defects in metal lattice structures.展开更多
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_4084).
文摘To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.
基金National Natural Science Foundation of China(Grant No.61573233)Guangdong Provincial Natural Science Foundation of China(Grant No.2018A0303130188)+1 种基金Guangdong Provincial Science and Technology Special Funds Project of China(Grant No.190805145540361)Special Projects in Key Fields of Colleges and Universities in Guangdong Province of China(Grant No.2020ZDZX2005).
文摘There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model.
文摘Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches.
基金supported by the National Natural Science Foundation of China(No.52275528)the Hefei Municipal Natural Science Foundation(No.2022018)+1 种基金the Open Foundation of Key Laboratory of High-Power Laser and Physics,Chinese Academy of Sciences(No.SGKF202108)the China Scholarship Council(No.202206695004)。
文摘Fabrication of high-quality optics puts a strong demand on high-throughput detection of macroscopic bulk defects in optical components.A dark-field line confocal imaging method is proposed with two distinct advantages:(ⅰ)a point-to-line confocal scheme formed by a columnar elliptical mirror and an optical fiber bundle breaks through the constraint on light collection angle and field of view in the traditional line confocal microscopy using an objective,allowing for an extended confocal line field of more than 100 mm while maintaining a light collection angle of 27°;(ⅱ)the bulk defects are independently illuminated as a function of time to eliminate the cross talk in the direction of the confocal slit,thus preserving point confocality and showing the optical section thicknesses to be 162μm in the axial direction,and 19 and 22μm in the orthogonal transverse directions.The experimental results verify that the method has a minimum detectable bulk defect of less than 5μm and an imaging efficiency of 400 mm2/s.The method shows great potential in high-throughput and highsensitivity bulk defects detection.
基金This research is supported by the National Research Council of Thailand(NRCT).Project ID:618211.
文摘An ideal printed circuit board(PCB)defect inspection system can detect defects and classify PCB defect types.Existing defect inspection technologies can identify defects but fail to classify all PCB defect types.This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types.In the proposed algorithmic scheme,fuzzy cmeans clustering is used for image segmentation via image subtraction prior to defect detection.Arithmetic and logic operations,the circle hough transform(CHT),morphological reconstruction(MR),and connected component labeling(CCL)are used in defect classification.The algorithmic scheme achieves 100%defect detection and 99.05%defect classification accuracies.The novelty of this research lies in the concurrent use of CHT,MR,and CCL algorithms to accurately detect and classify all 14-known PCB defect types and determine the defect characteristics such as the location,area,and nature of defects.This information is helpful in electronic parts manufacturing for finding the root causes of PCB defects and appropriately adjusting the manufacturing process.Moreover,the algorithmic scheme can be integrated into machine vision to streamline the manufacturing process,improve the PCB quality,and lower the production cost.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
文摘The visual automatic detection method based on artificial intelligence has attracted more and more attention. In order to improve the performance of weld nondestructive defect detection,we propose DRepDet(Dilated RepPoints Detector). First, we analyze the weld defect dataset in detail and summarize the distribution characteristics of weld defect data, that is, the defect scale is very different and the aspect ratio distribution range is large. Second, according to the distribution characteristics of defect data, we design DResBlock module, and introduce dilated convolution with different dilated rates in the process of feature extraction to expand the receptive field and improve the detection performance of large-scale defects. Based on DResBlock and anchor-free detection framework RepPoints, we design DRepDet. Extensive experiments show that our proposed detector can detect 7 types of defects. When using combined dilated rate convolution network in detection, the AP50 and Recall50 of big defects are improved by 3.1% and 3.3% respectively, while the performance of small defects is not affected, almost the same or slightly improved. The final performance of the whole network is improved a large margin,with 6% AP50 and 4.2% Recall50 compared with Cascade RCNN and 1.4% AP50 and 2.9% Recall50 compared with RepPoints.
基金Open Fund of the Key Lab of the Ministry of Education for Image Information Processing and Intelligent Control,China(No.200702)
文摘Co-occurrence matrices have been successfully applied in texture classification and segmentation.However,they have poor computation performance in real-time application.In this paper,the efficient co-occurrence matrix solution for defect detection is focused on,and a method of Fuzzy Label Co-occurrence Matrix (FLCM) set is proposed.In this method,all gray levels are supposed to subject to some fuzzy sets called fuzzy tonal sets and three defective features are defined.Features of FLCM set with various parameters are combined for the final judgment.Unlike many methods,image acquired for learning hasn't to be entirely free of defects.It is shown that the method produces high accuracy and can be a competent candidate for plain colour fabric defect detection.
文摘Aimed at low contrast effect on fabric detection,a method based on bilateral filter and frangi filter is proposed. Firstly,in order to reduce the influence of fabric background texture information on the detection results,bilateral filter is used to deal with the fabric image. Then frangi filter is used to filter the fabric image after bilateral filtering to enhance the fabric defect area information. Finally,a maximum entropy method is implemented on the fabric image after frangi filtering to separate the defected area. Experimental results show that the proposed method can effectively detect defects.
基金supported by the Ministry of Education Humanities and Social Science Research Project(No.23YJAZH034)The Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.SJCX24_2147,SJCX24_2148)+1 种基金National Computer Basic Education Research Project in Higher Education Institutions(Nos.2024-AFCEC-056,2024-AFCEC-057)Enterprise Collaboration Project(Nos.Z421A22349,Z421A22304,Z421A210045).
文摘Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection.
基金supported in part by the IoT Intelligent Microsystem Center of Tsinghua University-China Mobile Joint Research Institute.
文摘Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including low throughput,large computation cost,high latency,and poor flexibility,which limits the efficiency of online PCBA inspection.In this paper,a novel PCBA defect detection method based on a lightweight deep convolution neural network is proposed.In this method,the semantic segmentation model is combined with a rule-based defect recognition algorithm to build up a defect detection frame-work.To improve the performance of the model,extensive real PCBA images are collected from production lines as datasets.Some optimization methods have been applied in the model according to production demand and enable integration in lightweight computing devices.Experiment results show that the production line using our method realizes a throughput more than three times higher than traditional methods.Our method can be integrated into a lightweight inference system and pro-mote the flexibility of AOI.The proposed method builds up a general paradigm and excellent example for model design and optimization oriented towards industrial requirements.
基金funded by Woosong University Academic Research 2024.
文摘This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.
基金supported by the National Natural Science Foundation of China(No.62103298)the Natural Science Foundation of Hebei Province(No.F2018209289)。
文摘Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection.
基金supported by the Key Research and Development Program of Shaanxi Province-International Science and Technology Cooperation Program Project (No.2020KW-001)the Contract for Xi'an Municipal Science and Technology Plan Project-Xi'an City Strong Foundation Innovation Plan (No.21XJZZ0074)the Key Project of Graduate Student Innovation Fund at Xi'an University of Posts and Telecommunications (No.CXJJZL2023013)。
文摘The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges.
文摘To address the high cost of online detection equipment and the low adaptability and accuracy of online detection models that are caused by uneven lighting,high noise,low contrast and so on,a block-based template matching method incorporating fabric texture characteristics is proposed.Firstly,the template image set is evenly divided into N groups of sub-templates at the same positions to mitigate the effects of image illumination,reduce the model computation,and enhance the detection speed,with all image blocks being preprocessed.Then,the feature value information is extracted from the processed set of subtemplates at the same position,extracting two gray-level cooccurrence matrix(GLCM)feature values for each image block.These two feature values are then fused to construct a matching template.The mean feature value of all image blocks at the same position is calculated and used as the threshold for template detection,enabling automatic selection of template thresholds for different positions.Finally,the feature values of the image blocks in the experimental set are traversed and matched with subtemplates at the same positions to obtain fabric defect detection results.The detection experiments are conducted on a platform that simulates a fabric weaving environment,using defective gray fabrics from a weaving factory as the detected objects.The outcomes demonstrate the efficacy of the proposed method in detecting defects in gray fabrics,the mitigation of the impact of uneven external lighting on detection outcomes,and the enhancement of detection accuracy and adaptability.
基金funded by the Spanish Ministerio de Ciencia,Innovación y Universidades,grant number RTC2019-007364-3(FPGM)by the Comunidad de Madrid through the direct grant with ref.SI4/PJI/2024-00233 for the promotion of research and technology transfer at the Universidad Autónoma de Madrid。
文摘Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic installations is detecting hot spots,localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage.Traditional methods for detecting these defects rely on manual inspections using thermal imaging,which are costly,labor-intensive,and impractical for large-scale installations.This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture.The first convolutional neural network efficiently detects and isolates individual solar panels from high-resolution aerial thermal images captured by drones.Subsequently,a second,more advanced convolutional neural network accurately classifies each isolated panel as either defective or healthy,effectively distinguishing genuine thermal anomalies from false positives caused by reflections or glare.Experimental validation on a real-world dataset comprising thousands of thermal images yielded exceptional accuracy,significantly reducing inspection time,costs,and the likelihood of false defect detections.This proposed system enhances the reliability and efficiency of photovoltaic plant inspections,thus contributing to improved operational performance and economic viability.
基金supported by the National Natural Science Foundation of China(Nos.62373215,62373219 and 62073193)the Natural Science Foundation of Shandong Province(No.ZR2023MF100)+1 种基金the Key Projects of the Ministry of Industry and Information Technology(No.TC220H057-2022)the Independently Developed Instrument Funds of Shandong University(No.zy20240201)。
文摘Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.
基金supported by the Scientific and technological key project in Henan Province 22210224002the Natural Science Foundation of Henan Polytechnic University B2021-38.
文摘The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection.
基金supported by the National Natural Science Foundation of China(Grant Nos.12232005 and 12072101).
文摘Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applications such as trapped field magnets.However,for such large-grain superconductor bulks,there are lots of voids and cracks forming during the process of melting preparation,and some of them can be up to hundreds of microns or even millimeters in size.Consequently,these larger size voids/cracks pose a great threat to the strength of the bulks due to the inherent brittleness of superconductor REBCO materials.In order to ensure the operational safety of related superconducting devices with bulk superconductors,it is firstly important to accurately detect these voids/cracks in them.In this paper,we proposed a method for quantitatively evaluating multiple voids/cracks in bulk superconductors through the magnetic field and displacement response signals at superconductor bulk surface.The proposed method utilizes a damage index constructed from the magnetic field signals and displacement responses to identify the number and preliminary location of multiple defects.By dividing the detection area into subdomains and combining the magnetic field signals with displacement responses within each subdomain,a particle swarm algorithm was employed to evaluate the location and size parameters of the defects.In contrast to other evaluation methods using only magnetic field or displacement response signals,the combined evaluation method using both signals can identify the number of cracks effectively.Numerical studies demonstrate that the morphology of voids and cracks reconstructed using the proposed algorithm ideally matches real defects and is applicable to cases where voids and cracks coexist.This study provides a theoretical basis for the quantitative detection of voids/cracks in bulk superconductors.
基金supported by Natural Science Foundation of China(Grant No.52175488)Scientific Research Program for Young Outstanding Talent of Higher Education of Hebei Province(China)(Grant No.BJ2021045)S&T Program of Hebei(China)(Grant No.236Z1808G).
文摘High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical properties,service life of lattice structures,and design expectations.This deviation arises from the intense interaction between the laser and powder,which leads to the formation of numerous defects within the lattice structure.To address these issues,this paper proposes a high-performance defect detection model for metal lattice structures based on YOLOv4,called YOLO-Lattice(YOLO-L).The main objectives of this paper are as follows:(1)utilize computed tomography to construct datasets of the diamond lattice and body-centered cubic lattice structures;(2)in the backbone network of YOLOv4,employ deformable convolution to enhance the feature extraction capability of the model for small-scale defects;(3)adopt a dual-attention mechanism to suppress invalid feature information and amplify the distinction between defect and background regions;and(4)implement a channel pruning strategy to eliminate channels carrying less feature information,thereby improving the inference speed of the model.The experimental results on the diamond lattice structure dataset demonstrate that the mean average precision of the YOLO-L model increased from 96.98% to 98.8%(with an intersection over union of 0.5),and the inference speed decreased from 51.3 ms to 32.5 ms when compared to YOLOv4.Thus,the YOLO-L model can be effectively used to detect defects in metal lattice structures.