期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Weld defects detection method based on improved YOLOv5s 被引量:1
1
作者 Runchao Liu Jiyang Qi +1 位作者 Dongliang Shui Tang Ebolo Micheline Hortense 《China Welding》 2025年第2期119-131,共13页
To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t... To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy. 展开更多
关键词 Weld defects detection Improved YOLOv5s scSE-ASFF Feature fusion
在线阅读 下载PDF
Internal Defects Detection Method of the Railway Track Based on Generalization Features Cluster Under Ultrasonic Images 被引量:4
2
作者 Fupei Wu Xiaoyang Xie +1 位作者 Jiahua Guo Qinghua Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期364-381,共18页
There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods... There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model. 展开更多
关键词 Railway track Generalization features cluster defects classification Ultrasonic image defects detection
在线阅读 下载PDF
Evaluation of On-Vehicle Bone-Conduct Acoustic Emission Detection for Rail Defects
3
作者 Lei Jia Jee Woong Park +2 位作者 Ming Zhu Yingtao Jiang Hualiang Teng 《Journal of Transportation Technologies》 2025年第1期95-121,共27页
Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects,... Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches. 展开更多
关键词 Railroad Infrastructure Rail Defect detection Rail Health Monitoring Wavelet Analysis Acoustic Emission detection
在线阅读 下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision 被引量:3
4
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
在线阅读 下载PDF
YOLO-RLC:An Advanced Target-Detection Algorithm for Surface Defects of Printed Circuit Boards Based on YOLOv5
5
作者 Yuanyuan Wang Jialong Huang +4 位作者 Md Sharid Kayes Dipu Hu Zhao Shangbing Gao Haiyan Zhang Pinrong Lv 《Computers, Materials & Continua》 SCIE EI 2024年第9期4973-4995,共23页
Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.There... Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection. 展开更多
关键词 Deep learning PCB defect detection large kernel noise filtering weighted fusion YOLO
在线阅读 下载PDF
Industry-Oriented Detection Method of PCBA Defects Using Semantic Segmentation Models
6
作者 Yang Li Xiao Wang +10 位作者 Zhifan He Ze Wang Ke Cheng Sanchuan Ding Yijing Fan Xiaotao Li Yawen Niu Shanpeng Xiao Zhenqi Hao Bin Gao Huaqiang Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1438-1446,共9页
Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including lo... Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including low throughput,large computation cost,high latency,and poor flexibility,which limits the efficiency of online PCBA inspection.In this paper,a novel PCBA defect detection method based on a lightweight deep convolution neural network is proposed.In this method,the semantic segmentation model is combined with a rule-based defect recognition algorithm to build up a defect detection frame-work.To improve the performance of the model,extensive real PCBA images are collected from production lines as datasets.Some optimization methods have been applied in the model according to production demand and enable integration in lightweight computing devices.Experiment results show that the production line using our method realizes a throughput more than three times higher than traditional methods.Our method can be integrated into a lightweight inference system and pro-mote the flexibility of AOI.The proposed method builds up a general paradigm and excellent example for model design and optimization oriented towards industrial requirements. 展开更多
关键词 Automated optical inspection(AOI) deep learning defect detection printed circuit board assembly(PCBA) semantic segmentation.
在线阅读 下载PDF
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
7
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable Memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
Steel surface defect detection based on lightweight YOLOv7
8
作者 SHI Tao WU Rongxin +1 位作者 ZHU Wenxu MA Qingliang 《Optoelectronics Letters》 2025年第5期306-313,共8页
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version... Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection. 展开更多
关键词 obtain redundant information defect detection steel surface cascading style sheets block module lightweight yolov lightweight operations spatial pyramid pooling steel surface defect detection
原文传递
A review of concrete bridge surface defect detection based on deep learning
9
作者 LIAO Yanna HUANG Chaoyang Abdel-Hamid SOLIMAN 《Optoelectronics Letters》 2025年第9期562-576,共15页
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect... The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges. 展开更多
关键词 deep learning detection surface defects intelligent transformation manual visual inspectiondeep concrete bridges reducing operational riskssaving concrete bridge concrete defect detection
原文传递
Hybrid CNN Architecture for Hot Spot Detection in Photovoltaic Panels Using Fast R-CNN and GoogleNet
10
作者 Carlos Quiterio Gómez Muñoz Fausto Pedro García Márquez Jorge Bernabé Sanjuán 《Computer Modeling in Engineering & Sciences》 2025年第9期3369-3386,共18页
Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic instal... Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic installations is detecting hot spots,localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage.Traditional methods for detecting these defects rely on manual inspections using thermal imaging,which are costly,labor-intensive,and impractical for large-scale installations.This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture.The first convolutional neural network efficiently detects and isolates individual solar panels from high-resolution aerial thermal images captured by drones.Subsequently,a second,more advanced convolutional neural network accurately classifies each isolated panel as either defective or healthy,effectively distinguishing genuine thermal anomalies from false positives caused by reflections or glare.Experimental validation on a real-world dataset comprising thousands of thermal images yielded exceptional accuracy,significantly reducing inspection time,costs,and the likelihood of false defect detections.This proposed system enhances the reliability and efficiency of photovoltaic plant inspections,thus contributing to improved operational performance and economic viability. 展开更多
关键词 Photovoltaic panel convolutional neural network deep learning hot spots thermal imaging unmanned aerial vehicle inspection GoogleNet fast regions with convolutional neural networks automated defect detection transfer learning aerial thermography
在线阅读 下载PDF
Research on YOLO algorithm for lightweight PCB defect detection based on MobileViT
11
作者 LIU Yuchen LIU Fuzheng JIANG Mingshun 《Optoelectronics Letters》 2025年第8期483-490,共8页
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t... Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment. 展开更多
关键词 YOLO lightweight network mobile vision transformer mobile Lightweight Network convolutional block attention module cbam mechanism MobileViT CBAM PCB Defect detection Regression Loss Function
原文传递
Enhanced surface defect detection of cylinder liners using Swin Transformer and YOLOv8
12
作者 Feng Pan Junqiang Li +3 位作者 Yonggang Yan Sihai Guan Bharat Biswal Yong Zhao 《Journal of Automation and Intelligence》 2025年第3期227-235,共9页
The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Sw... The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection. 展开更多
关键词 Cylinder liner Surface defect detection Improved YOLOv8 Multiscale defects Swin Transformer
在线阅读 下载PDF
Voids and cracks detection in bulk superconductors through magnetic field and displacement signals
13
作者 Dongming An Pengpeng Shi Xiaofan Gou 《Acta Mechanica Sinica》 2025年第5期148-161,共14页
Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applicat... Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applications such as trapped field magnets.However,for such large-grain superconductor bulks,there are lots of voids and cracks forming during the process of melting preparation,and some of them can be up to hundreds of microns or even millimeters in size.Consequently,these larger size voids/cracks pose a great threat to the strength of the bulks due to the inherent brittleness of superconductor REBCO materials.In order to ensure the operational safety of related superconducting devices with bulk superconductors,it is firstly important to accurately detect these voids/cracks in them.In this paper,we proposed a method for quantitatively evaluating multiple voids/cracks in bulk superconductors through the magnetic field and displacement response signals at superconductor bulk surface.The proposed method utilizes a damage index constructed from the magnetic field signals and displacement responses to identify the number and preliminary location of multiple defects.By dividing the detection area into subdomains and combining the magnetic field signals with displacement responses within each subdomain,a particle swarm algorithm was employed to evaluate the location and size parameters of the defects.In contrast to other evaluation methods using only magnetic field or displacement response signals,the combined evaluation method using both signals can identify the number of cracks effectively.Numerical studies demonstrate that the morphology of voids and cracks reconstructed using the proposed algorithm ideally matches real defects and is applicable to cases where voids and cracks coexist.This study provides a theoretical basis for the quantitative detection of voids/cracks in bulk superconductors. 展开更多
关键词 Bulk superconductor Defect detection Multiple voids and cracks Damage index Particle swarm optimization
原文传递
YOLO-L:A High-Precision Model for Defect Detection in Lattice Structures
14
作者 Baosu Guo Hang Li +5 位作者 Shichen Ding Longhua Xu Meina Qu Dijia Zhang Yintang Wen Chuanzhen Huang 《Additive Manufacturing Frontiers》 2025年第2期185-193,共9页
High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical propert... High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical properties,service life of lattice structures,and design expectations.This deviation arises from the intense interaction between the laser and powder,which leads to the formation of numerous defects within the lattice structure.To address these issues,this paper proposes a high-performance defect detection model for metal lattice structures based on YOLOv4,called YOLO-Lattice(YOLO-L).The main objectives of this paper are as follows:(1)utilize computed tomography to construct datasets of the diamond lattice and body-centered cubic lattice structures;(2)in the backbone network of YOLOv4,employ deformable convolution to enhance the feature extraction capability of the model for small-scale defects;(3)adopt a dual-attention mechanism to suppress invalid feature information and amplify the distinction between defect and background regions;and(4)implement a channel pruning strategy to eliminate channels carrying less feature information,thereby improving the inference speed of the model.The experimental results on the diamond lattice structure dataset demonstrate that the mean average precision of the YOLO-L model increased from 96.98% to 98.8%(with an intersection over union of 0.5),and the inference speed decreased from 51.3 ms to 32.5 ms when compared to YOLOv4.Thus,the YOLO-L model can be effectively used to detect defects in metal lattice structures. 展开更多
关键词 Defect detecting Metal lattice structure YOLO Additive manufacturing
在线阅读 下载PDF
An Optimized Unsupervised Defect Detection Approach via Federated Learning and Adaptive Embeddings Knowledge Distillation
15
作者 Jinhai Wang Junwei Xue +5 位作者 Hongyan Zhang Hui Xiao Huiling Wei Mingyou Chen Jiang Liao Lufeng Luo 《Computers, Materials & Continua》 2025年第7期1839-1861,共23页
Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the ... Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the scarcity of labeled samples,limited adaptability of pre-trained models,and the data heterogeneity in distributed environments.To address these issues,this research proposes an unsupervised defect detection method,FLAME(Federated Learning with Adaptive Multi-Model Embeddings).The method comprises three stages:(1)Feature learning stage:this work proposes FADE(Feature-Adaptive Domain-Specific Embeddings),a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator for defect detection,thereby enhancing the pre-trained model’s industrial imagery representation capabilities.(2)Knowledge distillation co-training stage:a multi-model feature knowledge distillation mechanism is introduced.Through feature-level knowledge transfer between the global model and historical local models,the current local model is guided to learn better feature representations from the global model.The approach prevents local models from converging to local optima and mitigates performance degradation caused by data heterogeneity.(3)Model parameter aggregation stage:participating clients utilize weighted averaging aggregation to synthesize an updated global model,facilitating efficient knowledge consolidation.Experimental results demonstrate that FADE improves the average image-level Area under the Receiver Operating Characteristic Curve(AUROC)by 7.34%compared to methods directly utilizing pre-trained models.In federated learning environments,FLAME’s multi-model feature knowledge distillation mechanism outperforms the classic FedAvg algorithm by 2.34%in average image-level AUROC,while exhibiting superior convergence properties. 展开更多
关键词 Federated learning defect detection knowledge distillation unsupervised learning
在线阅读 下载PDF
MSCM-Net:Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network
16
作者 Xin Wen Xiao Zheng Yu He 《Computers, Materials & Continua》 2025年第3期4371-4388,共18页
Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as com... Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics. 展开更多
关键词 Surface defect detection multiscale framework cross-modal fusion edge detection
在线阅读 下载PDF
A YOLOv11 Empowered Road Defect Detection Model
17
作者 Xubo Liu Yunxiang Liu Peng Luo 《Computers, Materials & Continua》 2025年第10期1073-1094,共22页
Roads inevitably have defects during use,which not only seriously affect their service life but also pose a hidden danger to traffic safety.Existing algorithms for detecting road defects are unsatisfactory in terms of... Roads inevitably have defects during use,which not only seriously affect their service life but also pose a hidden danger to traffic safety.Existing algorithms for detecting road defects are unsatisfactory in terms of accuracy and generalization,so this paper proposes an algorithm based on YOLOv11.The method embeds wavelet transform convolution(WTConv)into the backbone’s C3k2 module to enhance low-frequency feature extraction while avoiding parameter bloat.Secondly,a novel multi-scale fusion diffusion network(MFDN)architecture is designed for the neck to strengthen cross-scale feature interactions,boosting detection precision.In terms of model optimization,the traditional downsampling method is discarded,and the innovative Adown(adaptive downsampling)technique is adopted,which streamlines the parameter scales while effectively mitigating the information loss problem during downsampling.Finally,in this paper,we propose Wise-PIDIoU by combining WiseIoU and MPDIoU to minimize the negative impact of low-quality anchor frames and enhance the detection capability of the model.The experimental results indicate that the proposed algorithm achieves an average detection accuracy of 86.5%for mAP@50 on the RDD2022 dataset,which is 2%higher than the original algorithm while ensuring that the amount of computation is basically unchanged.The number of parameters is reduced by 17%,and the F1 score is improved by 3%,showing better detection performance than other algorithms when facing different types of defects.The excellent performance on embedded devices proves that the algorithm also has favorable application prospects in practical inspection. 展开更多
关键词 Deep learning road defect detection YOLOv11 wavelet transform convolution
在线阅读 下载PDF
RC2DNet:Real-Time Cable Defect Detection Network Based on Small Object Feature Extraction
18
作者 Zilu Liu Hongjin Zhu 《Computers, Materials & Continua》 2025年第10期681-694,共14页
Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,... Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds. 展开更多
关键词 Surface defect detection computer vision small object feature extraction boundary feature enhancement
在线阅读 下载PDF
The Application of Machine Vision in Defect Detection Systems
19
作者 Peihang Zhong Jiawei Lin Muling Wang 《Journal of Electronic Research and Application》 2025年第2期191-196,共6页
With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated produ... With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated production lines,especially in defect detection.Machine vision technology can be applied in many industries such as semiconductor,automobile manufacturing,aerospace,food,and drugs,which can significantly improve detection efficiency and accuracy,reduce labor costs,improve product quality,enhance market competitiveness,and provide strong support for the arrival of Industry 4.0 era.In this article,the concept,advantages,and disadvantages of machine vision and the algorithm framework of machine vision in the defect detection system are briefly described,aiming to promote the rapid development of industry and strengthen China’s industry. 展开更多
关键词 Machine vision Defect detection system Image preprocessing
在线阅读 下载PDF
Deep Learning Based Online Defect Detection Method for Automotive Sealing Rings
20
作者 Jian Ge Qin Qin +3 位作者 Jinhua Jiang Zhiwei Shen Zimei Tu Yahui Zhang 《Computers, Materials & Continua》 2025年第5期3211-3226,共16页
Manufacturers must identify and classify various defects in automotive sealing rings to ensure product quality.Deep learning algorithms show promise in this field,but challenges remain,especially in detecting small-sc... Manufacturers must identify and classify various defects in automotive sealing rings to ensure product quality.Deep learning algorithms show promise in this field,but challenges remain,especially in detecting small-scale defects under harsh industrial conditions with multimodal data.This paper proposes an enhanced version of You Only Look Once(YOLO)v8 for improved defect detection in automotive sealing rings.We introduce the Multi-scale Adaptive Feature Extraction(MAFE)module,which integrates Deformable ConvolutionalNetwork(DCN)and Spaceto-Depth(SPD)operations.This module effectively captures long-range dependencies,enhances spatial aggregation,and minimizes information loss of small objects during feature extraction.Furthermore,we introduce the Blur-Aware Wasserstein Distance(BAWD)loss function,which improves regression accuracy and detection capabilities for small object anchor boxes,particularly in scenarios involving defocus blur.Additionally,we have constructed a high-quality dataset of automotive sealing ring defects,providing a valuable resource for evaluating defect detection methods.Experimental results demonstrate our method’s high performance,achieving 98.30% precision,96.62% recall,and an inference speed of 20.3 ms. 展开更多
关键词 Deep learning automotive sealing ring defect detection
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部