The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work...The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work,a novel quaternary pyridinium-based halide salt,1-ethyl-4-(methoxycarbonyl)pyridinium iodide(EMCP-I),is introduced as an effective post-treatment molecule to improve the quality of the perovskite film.EMCP-I exhibits dual functionality to passivate both negatively and positively charged defects and improve the film morphology.Furthermore,the treatment fine-tunes energy level alignment between the perovskite layer and the hole transport layer(HTL),facilitating more efficient charge transport.Consequently,EMCP-I-treated devices achieve a remarkable power conversion efficiency(PCE)improvement from 20.5% to 22.6%,driven primarily by an enhanced open-circuit voltage(VOC).Beyond efficiency gains,the treatment significantly enhances the environmental and operational stabilities of solar cells.This work provides a guide for tailoring quaternary pyridinium-based molecules for simultaneous improvement of the efficiency and stability of PSCs.展开更多
The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enh...The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enhancement of CZTSSe devices.Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance,an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution.Herein,this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices.In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution.Importantly,the C=O and O-H functional groups induced by hydrogen incorporation,serving as an electron donor,can interact with under-coordinated cations in CZTSSe material,effectively passivating the SnZn-related defects.Consequently,the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination,prolongs minority carrier lifetime,and thus yields a champion efficiency of 14.74%,showing its promising application in kesterite-based CZTSSe devices.展开更多
Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface ...Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.展开更多
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
All-inorganic halide perovskite solar cells(PSCs)have acquired great progress,especially CsPbI2Br.However,their photoelectric conversion efficiency(PCE)remains far below the theoretical predictions.Non-radiative recom...All-inorganic halide perovskite solar cells(PSCs)have acquired great progress,especially CsPbI2Br.However,their photoelectric conversion efficiency(PCE)remains far below the theoretical predictions.Non-radiative recombination is one of the important issues affecting the photoelectric performance of the PSCs,and the defective lead ions derived from the evaporation of halide ions in the inorganic perovskite are the principal non-radiative recombination centers.Herein,the non-radiative recombination is effectively suppressed by introducing the N-methyl-2-pyrrolidone(NMP)as a Lewis base molecule to passivate the defective lead ions.Therefore,by adjusting the dosage of NMP,the smooth and pinhole-free CsPbI_(2)Br perovskite film is obtained and the optimized device exhibits a champion PCE of 16.77%with an excellent fill factor(FF)of 0.80.This work proves the effectiveness of passivation using Lewis base molecules to prevent non-radiative recombination defects in inorganic perovskite.展开更多
Defect passivation is one of the most important strategies to boost both the efficiency and stability of perovskite solar cells(PSCs).Here,nontoxic and sustainable forest-based biomaterial,betulin,is first introduced ...Defect passivation is one of the most important strategies to boost both the efficiency and stability of perovskite solar cells(PSCs).Here,nontoxic and sustainable forest-based biomaterial,betulin,is first introduced into perovskites.The experiments and calculations reveal that betulin can effectively passivate the uncoordinated lead ions in perovskites via sharing the lone pair electrons of hydroxyl group,promoting charge transport.As a result,the power conversion efficiencies of the p-i-n planar PSCs remarkably increase from 19.14%to 21.15%,with the improvement of other parameters.The hydrogen bonds of betulin lock methylamine and halogen ions along the grain boundaries and on the film surface and thus suppress ion migration,further stabilizing perovskite crystal structures.These positive effects enable the PSCs to maintain 90%of the initial efficiency after 30 days in ambient air with 60%±5%relative humidity,75%after 300 h aging at 85℃,and 55%after 250 h light soaking,respectively.This work opens a new pathway for using nontoxic and low-cost biomaterials from forest to make highly efficient and stable PSCs.展开更多
The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achi...The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h.展开更多
Defects as non-radiative recombination centers hinder the further efficiency improvements of perovskite solar cells(PSCs).Additive engineering has been demonstrated to be an effective method for defect passivation in ...Defects as non-radiative recombination centers hinder the further efficiency improvements of perovskite solar cells(PSCs).Additive engineering has been demonstrated to be an effective method for defect passivation in perovskite films.Here,we employed(4-methoxyphenyl)potassium trifluoroborate(C_(7)H_(7)BF_(3)KO)with and K+functional groups to passivate spray-coated(FAPbI_(3))_(x)(MAPbBr_(3))_(1-x) perovskite and eliminate hysteresis.It is shown that the F of can form hydrogen bonds with the H atom in the amino group of MA+/FA+ions of perovskite,thus reducing the generation of MA+/FA+vacancies and improving device efficiency.Meanwhile,K+and reduced MA+/FA+vacancies can inhibit ion migration,thereby eliminating hysteresis.With the aid of C_(7)H_(7)BF_(3)KO,we obtained hysteresis-free PSCs with the maximum efficiency of 19.5%by spray-coating in air.Our work demonstrates that additive engineering is promising to improve the performance of spray-coated PSCs.展开更多
The light weight,good bending resistance and low production cost make flexible perovskite solar cells(PSCs)good candidates in wearable electronics,portable charger,remote power,and flying objects.High power conversion...The light weight,good bending resistance and low production cost make flexible perovskite solar cells(PSCs)good candidates in wearable electronics,portable charger,remote power,and flying objects.High power conversion efficiency(PCE)plays a crucial role on obtaining the high mass specific power of flexible devices.However,the performance for flexible PSCs is still having a large room to be improved.Here,we added the 2-amino-5-cyanopyridine(ACP)molecule with a polar electron density distribution in the perovskite precursor solution to improve the performance of flexible PSCs.The cyano groups with electron-withdrawing ability are expected to passivate positively charged point defects,while amines with electron donating ability are expected to passivate negatively charged point defects in perovskite films.Thanks to the effective passivation of defects at the grain boundary and surface of perovskite films,the PCE of flexible PSCs is obviously increased from 16.9%to 18.0%.These results provide a universal approach to improve performance of flexible PSCs by healing the defects in perovskite films through electrostatic interactions.展开更多
The buried interface defects severely affect the further enhancements of efficiency and stability of SnO_(2)-based planar perovskite solar cells(PSCs).To well tackle this problem,we propose a passivation strategy empl...The buried interface defects severely affect the further enhancements of efficiency and stability of SnO_(2)-based planar perovskite solar cells(PSCs).To well tackle this problem,we propose a passivation strategy employing NH_(4)PF_6 to modify the buried interface of perovskite layer((FAPbI_(3))_(0.85)(MAPbBr_(3))_(0.15) composition) in planar PSCs.After introducing NH_(4)PF_(6),the oxygen defects on the surface of SnO_(2) film are greatly restricted due to the coordinate interaction between fluorine atoms(F) in PF_(6)^(-)and undercoordinated Sn^(4+).Meanwhile,the hydrogen bonding interaction(N-H…I) between NH_(4)PF_(6) and PbI_(2) can passivate the non-radiative charge recombination sites,significantly optimizing the quality of perovskite film,as well as the charge transfer process at the SnO_(2)/perovskite interface.As a result,the NH_(4)PF_(6)-modified PSC obtains a champion power conversion efficiency(PCE) of 21.11%superior to the reference device(18.46%),and the device with an active area of 1 cm^(2) achieves a PCE as high as17.38%.Furthermore,the unencapsulated NH_(4)PF_(6)-modified PSCs show good humidity stability and retain about80% of the initial PCE after 1080 h aging at the relative humidity(RH) of 35% ± 5%.展开更多
Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal a...Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal an abnormal buried interface anion defect passivation mechanism depending on cationinduced steric hindrance.The IL molecules containing the same anion([BF4]^(-))and different sizes of imidazolium cations induced by substituent size are used to manipulate buried interface.It was revealed what passivated interfacial defects is mainly anions instead of cations.Theoretical and experimental results demonstrate that the large-sized cations can weaken the ionic bond strength between anions and cations,and facilitate the interaction between anions and SnO2as well as perovskites,which is conducive to interfacial defect passivation and ameliorating interfacial contact.It can be concluded that interfacial chemical interaction strength and defect passivation effect are positively correlated with the size of cations.The discovery breaks conventional thinking that large-sized modification molecules would weaken their chemical interaction with perovskite.Compared with the control device(21.54%),the device based on 1,3-Bis(1-adamantyl)-imidazolium tetrafluoroborate(BAIMBF4)with maximum size cations achieves a significantly enhanced efficiency of 23.61%along with much increased moisture,thermal and light stabilities.展开更多
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b...Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.展开更多
Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic ...Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic acid(AA),containing two carbonyl(C=O)groups and different core-units,were incorporated into perovskite as additives for PSCs application.Thanks to the strong coordination interaction between C=O group and under-coordinated Pb^(2+),the additives can effectively passivate film defects and regulate the perovskite crystallization,yielding high-quality perovskite films with lower defect densities.More importantly,the additives can efficiently regulate the charge transport behaviors in PSCs.Benefiting from the defects passivation and the regulation of charge carrier dynamics,the BA and AA-treaded PSCs show the power conversion efficiencies of 21.52%and 20.50%,which are higher than that of the control device(19.41%).Besides,the optimal devices exhibit a remarkable enhanced long-term stability and moisture tolerance compared to the pristine devices.Furthermore,the transient absorption spectrum reveals the mechanism of enhanced photovoltaic performances,attributing to the improvement of charge transport capability at the perovskite/Spiro-OMeTAD interfaces.This work affords a promising strategy to improve the efficiency and stability of PSCs through regulating the charge-carrier dynamic process in perovskite film.展开更多
Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simul...Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simultaneously control the growth of perovskite crystals and passivate defects.Here,4-(trifluoromethyl)benzoic anhydride(4-TBA)composed of benzene rings functionalized with carbonyl and trifluoromethyl groups was used as an example additive to study the characteristics of additives used for producing high-quality perovskites and controlling their surface properties.The interaction between4-TBA and perovskite precursor materials was investigated using density functional theory(DFT)simulations.The electron-rich carbonyl group efficiently passivated the under-coordinated lead-ion defects.Additionally,hydrogen bonding between trifluoromethyl and organic cations prevents the generation of cation vacancies.Because of its intrinsic hydrophobicity,the trifluoromethyl group simultaneously improves the moisture and heat stability of the film.4-TBA serves as a universal modifier for various perovskite compositions.The power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs)based on methylammonium(MA)with 4-TBA was improved from 16.15%to 19.28%.Similarly,the PCE of inverted PSCs based on a cesium formamidinium MA(CsFAMA)perovskite film increased from20.72%to 23.58%,upon addition of 4-TBA.Furthermore,the moisture and thermal stability of 4-TBAtreated films and devices was significantly enhanced,along with prolonged device performance.Our work provides guidance on selecting the structure and functional groups that are essential for surface defect passivation and the production of high-quality perovskites.展开更多
The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium he...The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium hexafluorophosphate)(PTA),and introduce it into the buried interface of PSCs.The quaternary ammonium cation(N(-CH_(3))^(3+))in PTA can fill the vacancies of organic cations within the perovskite structure and reduce shallow energy level defects.Additionally,the hexafluorophosphate(PF6−)in PTA forms a Lewis acid-base interaction with Pb^(2+)in the perovskite layer,effectively passivating deep en-ergy level defects.Furthermore,hydrogen bonding can be established between organic cations and the PF6−anion,preventing the formation of shallow energy level defects.Through this synergistic mecha-nism,the deep and shallow energy level defects are effectively mitigated,resulting in improved device performance.As a result,the resulting treated inverted PSC exhibits an impressive power conversion ef-ficiency(PCE)of 24.72%.Notably,the PTA-treated PSCs exhibit remarkable stability,with 88.5%of the original PCE retained after undergoing heat aging at 85℃ for 1078 h,and 89.1%of the initial PCE main-tained following continuous exposure to light for 1100 h at the maximum power point.Synergistically suppressing multiple defects at the buried interface through the use of polyionic liquids is a promising way to improve the commercial viability of PSCs.展开更多
The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PC...The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PCE).Organic Lewis bases are widely utilized for defect passivation at GBs,but how their passivation efficiency affects energy loss remains unclear.Here we employed triphenylphosphine(TPP)and triphenylphosphine oxide(TPPO)as the model passivators in p-MPSCs.TPPO has a more negatively charged center than TPP,which enables its stronger coordination with one of the most common and detrimental defects at the GBs—undercoordinated lead.When added into the perovskite with the same ratio,TPPO passivates defects more significantly and thus less TPPO remaining inactive compared with TPP.Inactive organic passivators accumulated at the GBs could impose barriers to charge carrier transportation.Indeed,TPPO improves the device performance more significantly with a champion PCE of 20.54%achieved.Besides,the TPPO devices demonstrate excellent stability with 95%of initial PCE remaining after 600 h of maximum power point tracking at(55±5)℃.展开更多
Highly crystalline perovskite absorbers with low defect-state densities minimizing nonradiative recombination losses are a critical prerequisite for fabricating state-of-the-art photovoltaics.Here,we use a tartaric ac...Highly crystalline perovskite absorbers with low defect-state densities minimizing nonradiative recombination losses are a critical prerequisite for fabricating state-of-the-art photovoltaics.Here,we use a tartaric acid(TA)molecule with two carboxyl and two hydroxyl groups as an additive to improve the performance and stability of the device simultaneously.The strong carboxyl-Pb2+coordination slows nucleation kinetics and passivates Pb-related traps,whereas hydroxyl-I-hydrogen bonding can modulate grain growth and stabilize the lattice structure,collectively enabling low-defect-density and high-quality perovskite films.Besides,we also conducted quantitively loss analysis and confirmed that the TA addition effectively reduces trap-assisted non-radiative recombination.Consequently,the champion efficiency of the n-i-p structure is up to 24.77% with outstanding operational and humidity stability.Remarkably,in the triple-cation perovskite system,the incorporation of the TA additive similarly enabled the fabrication of high-quality films,ultimately yielding a p-i-n configuration with a champion efficiency of 26.11%.展开更多
Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bondi...Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bonding with perovskite at the interface lead to additional energy loss.To achieve bifacial passivation on the SnO_(2)electron transport layer and the SnO_(2)/perovskite interface synchronously,a multifunctional surface modulation strategy has been developed by incorporating O-phospho-L-serine monolithium salt(PSLi)to regulate the SnO_(2)nanoparticles.PS-Li coordinates with SnO_(2)through the phosphate/carboxyl groups,with the exposed amino group passivating the uncoordinated lead ions at the interface.The introduction of a lithium ion further regulates the energy band of SnO_(2),accelerating electron extraction and transport.This multifunctional modulation strategy reduces trap states from tin dangling bonds and oxygen vacancies,enhancing film conductivity.It also regulates the growth of the perovskite crystal and reduces nonradiative recombination at the interface.Consequently,the optimized perovskite solar cells achieve power conversion efficiencies(PCEs)of 24.91% for small-area devices and 23.14% for minimodules(aperture area of 30 cm^(2)).The unencapsulated device retains 91% and 89% of its initial PCE after enduring 1000 h under ambient conditions,and 500 h under 1 sun illumination in N2atmosphere,respectively.展开更多
Poly(3-hexylthiophene)(P3HT)has been used in CsPbI_(3)per-ovskite solar cells(PSCs)as the hole transport layer(HTL),due to its excellent hydrophobic prop-erty and cheap cost.However,the inevitable defects in perovskit...Poly(3-hexylthiophene)(P3HT)has been used in CsPbI_(3)per-ovskite solar cells(PSCs)as the hole transport layer(HTL),due to its excellent hydrophobic prop-erty and cheap cost.However,the inevitable defects in perovskite lead to the limited photovoltaic performance of CsPbI_(3)PSCs.In this study,diethylammonium io-dide(DEAI)was doped as an ad-ditive to passivate the defects in P3HT based CsPbI_(3)perovskite.Considering the diethylamine cations can effectively form hydrogen bonds with halide ion,the DEAI doping method could not only reduce the defect density but also facilitate the extraction and transport of carriers in the device.The optimal power conversion efficiency of the device prepared with DEAI doping method increases from 14.68%to 16.75%.In addition,the stability of the device is also signifi-cantly upgraded due to the improvement of CsPbI_(3)perovskite film.This work can provide re-liable theoretical and experimental evidence for further PSCs research.展开更多
A comprehensive understanding of the relevance between molecular structure and passivation ability to screen efficient modifiers is essential for enhancing the performance of perovskite solar cells(PSCs).Here,three si...A comprehensive understanding of the relevance between molecular structure and passivation ability to screen efficient modifiers is essential for enhancing the performance of perovskite solar cells(PSCs).Here,three similarπ-πstacking molecules namely benzophenone(BPN),diphenyl sulfone(DPS),and diphenyl sulfoxide(DPSO)are used as back-interface modifiers in carbon-based CsPbBr_(3)PSCs.After investigation,the results demonstrate the positive effect of the p-πconjugation characteristic inπ-πstacking molecules on maximizing their passivation ability.The p-πco njugation of DPSO enables a higher coordinative activity of oxygen atom in its S=O group than that in 0=S=O group of DPS and C=O group of BPN,which gives a superior passivation effect of DPSO on defects of perovskite films.The modification of DPSO also significantly improves the p-type behavior of perovskite films and the back-interfacial energetics matching,inducing an increase of hole extraction and a decrease of energy loss.Finally,the unencapsulated carbon-based CsPbBr_(3)PSCs with DPSO achieve a maximum power conversion efficiency of 10.60%and outstanding long-term stability in high-temperature,high-humidity(85℃,85%relative humidity)air environment.This work provides insights into the influence of the structure ofπ-πstacking molecules on their ability to improve the perovskite films quality and therefore the PSCs performance.展开更多
基金financially supported by The Scientific and Technological Research Council of Türkiye(TüBITAK)under Project No.119F185the support of the Interdisciplinary Centre for Mathematical and Computational Modelling at the University of Warsaw(ICM UW)under computational allocation no.g93-1617。
文摘The modification of the perovskite surface using functional additives is one of the most promising strategies to reduce nonradiative recombination and improve the stability of perovskite solar cells(PSCs).In this work,a novel quaternary pyridinium-based halide salt,1-ethyl-4-(methoxycarbonyl)pyridinium iodide(EMCP-I),is introduced as an effective post-treatment molecule to improve the quality of the perovskite film.EMCP-I exhibits dual functionality to passivate both negatively and positively charged defects and improve the film morphology.Furthermore,the treatment fine-tunes energy level alignment between the perovskite layer and the hole transport layer(HTL),facilitating more efficient charge transport.Consequently,EMCP-I-treated devices achieve a remarkable power conversion efficiency(PCE)improvement from 20.5% to 22.6%,driven primarily by an enhanced open-circuit voltage(VOC).Beyond efficiency gains,the treatment significantly enhances the environmental and operational stabilities of solar cells.This work provides a guide for tailoring quaternary pyridinium-based molecules for simultaneous improvement of the efficiency and stability of PSCs.
基金supported by the National Natural Science Foundation of China(51802081,62074052,and 62104061)the Natural Science Foundation of Henan Province(232300420145).
文摘The presence of SnZn-related defects in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)absorber results in large irreversible energy loss and extra irreversible electron-hole non-radiative recombination,thus hindering the efficiency enhancement of CZTSSe devices.Although the incorporation of Ag in CZTSSe can effectively suppress the SnZn-related defects and significantly improve the resulting cell performance,an excellent efficiency has not been achieved to date primarily owing to the poor electrical-conductivity and the low carrier density of the CZTSSe film induced by Ag substitution.Herein,this study exquisitely devises an Ag/H co-doping strategy in CZTSSe absorber via Ag substitution programs followed by hydrogen-plasma treatment procedure to suppress SnZn defects for achieving efficient CZTSSe devices.In-depth investigation results demonstrate that the incorporation of H in Ag-based CZTSSe absorber is expected to improve the poor electrical-conductivity and the low carrier density caused by Ag substitution.Importantly,the C=O and O-H functional groups induced by hydrogen incorporation,serving as an electron donor,can interact with under-coordinated cations in CZTSSe material,effectively passivating the SnZn-related defects.Consequently,the incorporation of an appropriate amount of Ag/H in CZTSSe mitigates carrier non-radiative recombination,prolongs minority carrier lifetime,and thus yields a champion efficiency of 14.74%,showing its promising application in kesterite-based CZTSSe devices.
基金National Natural Science Foundation of China (62104136, 22179051, 62204098, 52104258)Project of Shandong Province Higher Educational Young Innovative Team (2022KJ218)+3 种基金China Postdoctoral Science Foundation (2023M732104)Qingdao Postdoctoral Funding Program (QDBSH20220201002)Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202303032)Shandong Provincial Natural Science Foundation (ZR2021ME016)。
文摘Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金supported by the National Key R&D Program of China(2016YFB0303602)Sichuan and Technology Program(Grant No.2018JY0015)Yong Science and Technology Innovation Team Project of SWPU(No.2019CXTD04)。
文摘All-inorganic halide perovskite solar cells(PSCs)have acquired great progress,especially CsPbI2Br.However,their photoelectric conversion efficiency(PCE)remains far below the theoretical predictions.Non-radiative recombination is one of the important issues affecting the photoelectric performance of the PSCs,and the defective lead ions derived from the evaporation of halide ions in the inorganic perovskite are the principal non-radiative recombination centers.Herein,the non-radiative recombination is effectively suppressed by introducing the N-methyl-2-pyrrolidone(NMP)as a Lewis base molecule to passivate the defective lead ions.Therefore,by adjusting the dosage of NMP,the smooth and pinhole-free CsPbI_(2)Br perovskite film is obtained and the optimized device exhibits a champion PCE of 16.77%with an excellent fill factor(FF)of 0.80.This work proves the effectiveness of passivation using Lewis base molecules to prevent non-radiative recombination defects in inorganic perovskite.
基金supported by the National Natural Science Foundation of China(21875067,51811530011,11604099)the Fundamental Research Funds for the Central Universities,Shanghai Rising-Star(19QA1403100)+2 种基金ECNU Multifunctional Platform for Innovation(006)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support。
文摘Defect passivation is one of the most important strategies to boost both the efficiency and stability of perovskite solar cells(PSCs).Here,nontoxic and sustainable forest-based biomaterial,betulin,is first introduced into perovskites.The experiments and calculations reveal that betulin can effectively passivate the uncoordinated lead ions in perovskites via sharing the lone pair electrons of hydroxyl group,promoting charge transport.As a result,the power conversion efficiencies of the p-i-n planar PSCs remarkably increase from 19.14%to 21.15%,with the improvement of other parameters.The hydrogen bonds of betulin lock methylamine and halogen ions along the grain boundaries and on the film surface and thus suppress ion migration,further stabilizing perovskite crystal structures.These positive effects enable the PSCs to maintain 90%of the initial efficiency after 30 days in ambient air with 60%±5%relative humidity,75%after 300 h aging at 85℃,and 55%after 250 h light soaking,respectively.This work opens a new pathway for using nontoxic and low-cost biomaterials from forest to make highly efficient and stable PSCs.
基金financially supported by the National Key R&D Program of China(2018YFB1500102,2018YFB2200101)the National Natural Science Foundation of China(61974063,61921005)+3 种基金Natural Science Foundation of Jiangsu Province(BK20190315)the Fundamental Research Funds for the Central Universities(14380168)the Thousand Talent Program for Young Outstanding Scientists in ChinaProgram for Innovative Talents and Entrepreneur in Jiangsu。
文摘The grain surfaces(film surface and grain boundary)of polycrystalline perovskite films are vulnerable sites in solar cells since they pose a high defect density and initiate the degradation of perovskite absorber.Achieving simultaneously defect passivation and grain protection from moisture is crucial for the viability of perovskite solar cells.Here,an in situ cross-linked grain encapsulation(CLGE)strategy that improves both device stability and defect passivation is reported.Cross-linkable semiconducting small molecules are mixed into the antisolvent to uniformly form a compact and conducting cross-linked layer over the grain surfaces.This cross-linked coating layer not only passivates trap states and facilitates hole extraction,but also enhances the device stability by preventing moisture diffusion.Using the CLGE strategy,a high power conversion efficiency(PCE)of 22.7%is obtained in 1.55-eV bandgap planar perovskite solar cells.The unencapsulated devices with CLGE exhibit significantly enhanced device stability again moisture and maintain>90%of their initial PCE after shelf storage under ambient condition for over10,000 h.
基金the National Natural Science Foundation of China(51861145101).
文摘Defects as non-radiative recombination centers hinder the further efficiency improvements of perovskite solar cells(PSCs).Additive engineering has been demonstrated to be an effective method for defect passivation in perovskite films.Here,we employed(4-methoxyphenyl)potassium trifluoroborate(C_(7)H_(7)BF_(3)KO)with and K+functional groups to passivate spray-coated(FAPbI_(3))_(x)(MAPbBr_(3))_(1-x) perovskite and eliminate hysteresis.It is shown that the F of can form hydrogen bonds with the H atom in the amino group of MA+/FA+ions of perovskite,thus reducing the generation of MA+/FA+vacancies and improving device efficiency.Meanwhile,K+and reduced MA+/FA+vacancies can inhibit ion migration,thereby eliminating hysteresis.With the aid of C_(7)H_(7)BF_(3)KO,we obtained hysteresis-free PSCs with the maximum efficiency of 19.5%by spray-coating in air.Our work demonstrates that additive engineering is promising to improve the performance of spray-coated PSCs.
基金financial support from the National Natural Science Foundation of China(No.NSFC21773218)。
文摘The light weight,good bending resistance and low production cost make flexible perovskite solar cells(PSCs)good candidates in wearable electronics,portable charger,remote power,and flying objects.High power conversion efficiency(PCE)plays a crucial role on obtaining the high mass specific power of flexible devices.However,the performance for flexible PSCs is still having a large room to be improved.Here,we added the 2-amino-5-cyanopyridine(ACP)molecule with a polar electron density distribution in the perovskite precursor solution to improve the performance of flexible PSCs.The cyano groups with electron-withdrawing ability are expected to passivate positively charged point defects,while amines with electron donating ability are expected to passivate negatively charged point defects in perovskite films.Thanks to the effective passivation of defects at the grain boundary and surface of perovskite films,the PCE of flexible PSCs is obviously increased from 16.9%to 18.0%.These results provide a universal approach to improve performance of flexible PSCs by healing the defects in perovskite films through electrostatic interactions.
基金financially supported by the National Natural Science Foundation of China (Nos. 22179053, 22279046 and 21905119)the Natural Science Excellent Youth Foundation of Jiangsu Provincial (No. BK20220112)the Six-Peak Top Talents in Jiangsu province (No. XNY066)。
文摘The buried interface defects severely affect the further enhancements of efficiency and stability of SnO_(2)-based planar perovskite solar cells(PSCs).To well tackle this problem,we propose a passivation strategy employing NH_(4)PF_6 to modify the buried interface of perovskite layer((FAPbI_(3))_(0.85)(MAPbBr_(3))_(0.15) composition) in planar PSCs.After introducing NH_(4)PF_(6),the oxygen defects on the surface of SnO_(2) film are greatly restricted due to the coordinate interaction between fluorine atoms(F) in PF_(6)^(-)and undercoordinated Sn^(4+).Meanwhile,the hydrogen bonding interaction(N-H…I) between NH_(4)PF_(6) and PbI_(2) can passivate the non-radiative charge recombination sites,significantly optimizing the quality of perovskite film,as well as the charge transfer process at the SnO_(2)/perovskite interface.As a result,the NH_(4)PF_(6)-modified PSC obtains a champion power conversion efficiency(PCE) of 21.11%superior to the reference device(18.46%),and the device with an active area of 1 cm^(2) achieves a PCE as high as17.38%.Furthermore,the unencapsulated NH_(4)PF_(6)-modified PSCs show good humidity stability and retain about80% of the initial PCE after 1080 h aging at the relative humidity(RH) of 35% ± 5%.
基金financially supported by the Support Plan for Overseas Students to Return to China for Entrepreneurship and Innovation(cx2020003)the Fundamental Research Funds for the Central Universities(2020CDJ-LHZZ-074 and 2021CDJQY-022)Natural Science Foundation of Chongqing(cstc2020jcyjmsxmX0629)。
文摘Although ionic liquids(ILs)have been widely employed to heal the defects in perovskite solar cells(PSCs),the corresponding defect passivation mechanisms are not thoroughly understood up to now.Herein,we first reveal an abnormal buried interface anion defect passivation mechanism depending on cationinduced steric hindrance.The IL molecules containing the same anion([BF4]^(-))and different sizes of imidazolium cations induced by substituent size are used to manipulate buried interface.It was revealed what passivated interfacial defects is mainly anions instead of cations.Theoretical and experimental results demonstrate that the large-sized cations can weaken the ionic bond strength between anions and cations,and facilitate the interaction between anions and SnO2as well as perovskites,which is conducive to interfacial defect passivation and ameliorating interfacial contact.It can be concluded that interfacial chemical interaction strength and defect passivation effect are positively correlated with the size of cations.The discovery breaks conventional thinking that large-sized modification molecules would weaken their chemical interaction with perovskite.Compared with the control device(21.54%),the device based on 1,3-Bis(1-adamantyl)-imidazolium tetrafluoroborate(BAIMBF4)with maximum size cations achieves a significantly enhanced efficiency of 23.61%along with much increased moisture,thermal and light stabilities.
基金supported by the National Natural Science Foundation of China(Grant Nos.62321166653,22090044,and 12350410372).Calculations were performed in part at the high-performance computing center of Jilin University.
文摘Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.
基金National Natural Science Foundation of China(No.22065038)High-Level Talents Introduction in Yunnan Province(No.C619300A010)+3 种基金the Fund for Excellent Young Scholars of Yunnan(No.202001AW070008)Spring City Plan:the Highlevel Talent Promotion and Training Project of Kunming(No.2022SCP005)for financial supportthe support from the Postdoctoral Research Foundation of Yunnan University(No.W8223004)the Postdoctoral Foundation of Department of Human Resources and Social Security of Yunnan Province(No.C615300504046)。
文摘Defects at the grain boundaries(GBs)of perovskite film highly restrict both the efficiency and stability of perovskite solar cells(PSCs).Herein,organic small molecules of butanedioic acid(BA)and acetylenedicarboxylic acid(AA),containing two carbonyl(C=O)groups and different core-units,were incorporated into perovskite as additives for PSCs application.Thanks to the strong coordination interaction between C=O group and under-coordinated Pb^(2+),the additives can effectively passivate film defects and regulate the perovskite crystallization,yielding high-quality perovskite films with lower defect densities.More importantly,the additives can efficiently regulate the charge transport behaviors in PSCs.Benefiting from the defects passivation and the regulation of charge carrier dynamics,the BA and AA-treaded PSCs show the power conversion efficiencies of 21.52%and 20.50%,which are higher than that of the control device(19.41%).Besides,the optimal devices exhibit a remarkable enhanced long-term stability and moisture tolerance compared to the pristine devices.Furthermore,the transient absorption spectrum reveals the mechanism of enhanced photovoltaic performances,attributing to the improvement of charge transport capability at the perovskite/Spiro-OMeTAD interfaces.This work affords a promising strategy to improve the efficiency and stability of PSCs through regulating the charge-carrier dynamic process in perovskite film.
基金supported by a Research Grant of Pukyong National University(2023)。
文摘Achieving high-quality perovskite films without surface defects is regarded as a crucial target for the development of durable high-performance perovskite solar cells.Additive engineering is commonly employed to simultaneously control the growth of perovskite crystals and passivate defects.Here,4-(trifluoromethyl)benzoic anhydride(4-TBA)composed of benzene rings functionalized with carbonyl and trifluoromethyl groups was used as an example additive to study the characteristics of additives used for producing high-quality perovskites and controlling their surface properties.The interaction between4-TBA and perovskite precursor materials was investigated using density functional theory(DFT)simulations.The electron-rich carbonyl group efficiently passivated the under-coordinated lead-ion defects.Additionally,hydrogen bonding between trifluoromethyl and organic cations prevents the generation of cation vacancies.Because of its intrinsic hydrophobicity,the trifluoromethyl group simultaneously improves the moisture and heat stability of the film.4-TBA serves as a universal modifier for various perovskite compositions.The power conversion efficiency(PCE)of inverted perovskite solar cells(PSCs)based on methylammonium(MA)with 4-TBA was improved from 16.15%to 19.28%.Similarly,the PCE of inverted PSCs based on a cesium formamidinium MA(CsFAMA)perovskite film increased from20.72%to 23.58%,upon addition of 4-TBA.Furthermore,the moisture and thermal stability of 4-TBAtreated films and devices was significantly enhanced,along with prolonged device performance.Our work provides guidance on selecting the structure and functional groups that are essential for surface defect passivation and the production of high-quality perovskites.
基金supported by the Science,Technology,and Innovation Commission of Shenzhen Municipality(No.GJHZ20220913143204008)the Shccig-Qinling Program(No.SMYJY202300294C)+3 种基金National Natural Science Foundation of China(Nos.22261142666,52372225,52172237,22305191)the Shaanxi Science Fund for Distinguished Young Scholars(No.2022JC-21)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)China(No.2021-QZ-02).
文摘The stability of perovskite solar cells(PSCs)is adversely affected by nonradiative recombination resulting from buried interface defects.Herein,we synthesize a polyionic liquid,poly(p-vinylbenzyl trimethylam-monium hexafluorophosphate)(PTA),and introduce it into the buried interface of PSCs.The quaternary ammonium cation(N(-CH_(3))^(3+))in PTA can fill the vacancies of organic cations within the perovskite structure and reduce shallow energy level defects.Additionally,the hexafluorophosphate(PF6−)in PTA forms a Lewis acid-base interaction with Pb^(2+)in the perovskite layer,effectively passivating deep en-ergy level defects.Furthermore,hydrogen bonding can be established between organic cations and the PF6−anion,preventing the formation of shallow energy level defects.Through this synergistic mecha-nism,the deep and shallow energy level defects are effectively mitigated,resulting in improved device performance.As a result,the resulting treated inverted PSC exhibits an impressive power conversion ef-ficiency(PCE)of 24.72%.Notably,the PTA-treated PSCs exhibit remarkable stability,with 88.5%of the original PCE retained after undergoing heat aging at 85℃ for 1078 h,and 89.1%of the initial PCE main-tained following continuous exposure to light for 1100 h at the maximum power point.Synergistically suppressing multiple defects at the buried interface through the use of polyionic liquids is a promising way to improve the commercial viability of PSCs.
基金financial support from the National Natural Science Foundation of China(Grant numbers 22439001,52172198,51902117)the China Postdoctoral Science Foundation(Grant number BX20240123)the Fundamental Research Funds for the Central Universities(Grant number HUST:2024JYCXJJ043)。
文摘The stacking of multiple defect-rich grain boundaries(GBs)along the long transportation path(~3μm)of charge carriers in printable mesoscopic perovskite solar cells(p-MPSCs)impedes their power conversion efficiency(PCE).Organic Lewis bases are widely utilized for defect passivation at GBs,but how their passivation efficiency affects energy loss remains unclear.Here we employed triphenylphosphine(TPP)and triphenylphosphine oxide(TPPO)as the model passivators in p-MPSCs.TPPO has a more negatively charged center than TPP,which enables its stronger coordination with one of the most common and detrimental defects at the GBs—undercoordinated lead.When added into the perovskite with the same ratio,TPPO passivates defects more significantly and thus less TPPO remaining inactive compared with TPP.Inactive organic passivators accumulated at the GBs could impose barriers to charge carrier transportation.Indeed,TPPO improves the device performance more significantly with a champion PCE of 20.54%achieved.Besides,the TPPO devices demonstrate excellent stability with 95%of initial PCE remaining after 600 h of maximum power point tracking at(55±5)℃.
基金funding support from the National Key Research and Development Program of China(2022YFE0137400)the National Natural Science Foundation of China(62274040)+3 种基金funding support from the National Natural Science Foundation of China(62304046)the National Key Research and Development Program of China(2022YFB2802802)the Key Laboratory of Rare Earths,Ganjiang Innovation Academy,Chinese Academy of Sciencessupport from the Shanghai Science and Technology Innovation Action Plan 2023 Special Project for Supporting Carbon Peak Carbon Neutrality Project(23DZ1200400)。
文摘Highly crystalline perovskite absorbers with low defect-state densities minimizing nonradiative recombination losses are a critical prerequisite for fabricating state-of-the-art photovoltaics.Here,we use a tartaric acid(TA)molecule with two carboxyl and two hydroxyl groups as an additive to improve the performance and stability of the device simultaneously.The strong carboxyl-Pb2+coordination slows nucleation kinetics and passivates Pb-related traps,whereas hydroxyl-I-hydrogen bonding can modulate grain growth and stabilize the lattice structure,collectively enabling low-defect-density and high-quality perovskite films.Besides,we also conducted quantitively loss analysis and confirmed that the TA addition effectively reduces trap-assisted non-radiative recombination.Consequently,the champion efficiency of the n-i-p structure is up to 24.77% with outstanding operational and humidity stability.Remarkably,in the triple-cation perovskite system,the incorporation of the TA additive similarly enabled the fabrication of high-quality films,ultimately yielding a p-i-n configuration with a champion efficiency of 26.11%.
基金financially supported by the Science Foundation of the Chinese Academy of Sciences。
文摘Tin oxide has emerged as a promising electron transport material in perovskite solar cells due to its high conductivity and photostability.However,the inherent defects in SnO_(2)nanoparticles and their imperfect bonding with perovskite at the interface lead to additional energy loss.To achieve bifacial passivation on the SnO_(2)electron transport layer and the SnO_(2)/perovskite interface synchronously,a multifunctional surface modulation strategy has been developed by incorporating O-phospho-L-serine monolithium salt(PSLi)to regulate the SnO_(2)nanoparticles.PS-Li coordinates with SnO_(2)through the phosphate/carboxyl groups,with the exposed amino group passivating the uncoordinated lead ions at the interface.The introduction of a lithium ion further regulates the energy band of SnO_(2),accelerating electron extraction and transport.This multifunctional modulation strategy reduces trap states from tin dangling bonds and oxygen vacancies,enhancing film conductivity.It also regulates the growth of the perovskite crystal and reduces nonradiative recombination at the interface.Consequently,the optimized perovskite solar cells achieve power conversion efficiencies(PCEs)of 24.91% for small-area devices and 23.14% for minimodules(aperture area of 30 cm^(2)).The unencapsulated device retains 91% and 89% of its initial PCE after enduring 1000 h under ambient conditions,and 500 h under 1 sun illumination in N2atmosphere,respectively.
基金supported by the National Natural Scientific Foundation of China(No.62305243)Fundamental Research Program of Shanxi Province(Nos.20210302124629,20210302124163,20210302124392,202203021212217)funded by China Scholarship Council。
文摘Poly(3-hexylthiophene)(P3HT)has been used in CsPbI_(3)per-ovskite solar cells(PSCs)as the hole transport layer(HTL),due to its excellent hydrophobic prop-erty and cheap cost.However,the inevitable defects in perovskite lead to the limited photovoltaic performance of CsPbI_(3)PSCs.In this study,diethylammonium io-dide(DEAI)was doped as an ad-ditive to passivate the defects in P3HT based CsPbI_(3)perovskite.Considering the diethylamine cations can effectively form hydrogen bonds with halide ion,the DEAI doping method could not only reduce the defect density but also facilitate the extraction and transport of carriers in the device.The optimal power conversion efficiency of the device prepared with DEAI doping method increases from 14.68%to 16.75%.In addition,the stability of the device is also signifi-cantly upgraded due to the improvement of CsPbI_(3)perovskite film.This work can provide re-liable theoretical and experimental evidence for further PSCs research.
基金financial supports from the Natural Science Foundation of Shandong Province(ZR2021ME037)the National Natural Science Foundation of China(52472259,22179051 and 61604143)+2 种基金the National Key Research and Development Program of China(2021YFE0111000)the Special Fund of Taishan Scholar Program of Shandong Province(tsqnz20221141)the Foundation of Key Laboratory of Advanced Technique&Preparation for Renewable Energy Materials,Ministry of Education,Yunnan Normal University(OF2022-02)。
文摘A comprehensive understanding of the relevance between molecular structure and passivation ability to screen efficient modifiers is essential for enhancing the performance of perovskite solar cells(PSCs).Here,three similarπ-πstacking molecules namely benzophenone(BPN),diphenyl sulfone(DPS),and diphenyl sulfoxide(DPSO)are used as back-interface modifiers in carbon-based CsPbBr_(3)PSCs.After investigation,the results demonstrate the positive effect of the p-πconjugation characteristic inπ-πstacking molecules on maximizing their passivation ability.The p-πco njugation of DPSO enables a higher coordinative activity of oxygen atom in its S=O group than that in 0=S=O group of DPS and C=O group of BPN,which gives a superior passivation effect of DPSO on defects of perovskite films.The modification of DPSO also significantly improves the p-type behavior of perovskite films and the back-interfacial energetics matching,inducing an increase of hole extraction and a decrease of energy loss.Finally,the unencapsulated carbon-based CsPbBr_(3)PSCs with DPSO achieve a maximum power conversion efficiency of 10.60%and outstanding long-term stability in high-temperature,high-humidity(85℃,85%relative humidity)air environment.This work provides insights into the influence of the structure ofπ-πstacking molecules on their ability to improve the perovskite films quality and therefore the PSCs performance.