期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
YOLO-L:A High-Precision Model for Defect Detection in Lattice Structures
1
作者 Baosu Guo Hang Li +5 位作者 Shichen Ding Longhua Xu Meina Qu Dijia Zhang Yintang Wen Chuanzhen Huang 《Additive Manufacturing Frontiers》 2025年第2期185-193,共9页
High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical propert... High-performance lattice structures produced through powder bed fusion-laser beam exhibit high specific strength and energy absorption capabilities.However,a significant deviation exists between the mechanical properties,service life of lattice structures,and design expectations.This deviation arises from the intense interaction between the laser and powder,which leads to the formation of numerous defects within the lattice structure.To address these issues,this paper proposes a high-performance defect detection model for metal lattice structures based on YOLOv4,called YOLO-Lattice(YOLO-L).The main objectives of this paper are as follows:(1)utilize computed tomography to construct datasets of the diamond lattice and body-centered cubic lattice structures;(2)in the backbone network of YOLOv4,employ deformable convolution to enhance the feature extraction capability of the model for small-scale defects;(3)adopt a dual-attention mechanism to suppress invalid feature information and amplify the distinction between defect and background regions;and(4)implement a channel pruning strategy to eliminate channels carrying less feature information,thereby improving the inference speed of the model.The experimental results on the diamond lattice structure dataset demonstrate that the mean average precision of the YOLO-L model increased from 96.98% to 98.8%(with an intersection over union of 0.5),and the inference speed decreased from 51.3 ms to 32.5 ms when compared to YOLOv4.Thus,the YOLO-L model can be effectively used to detect defects in metal lattice structures. 展开更多
关键词 defect detecting Metal lattice structure YOLO Additive manufacturing
在线阅读 下载PDF
Method for Detecting Industrial Defects in Intelligent Manufacturing Using Deep Learning 被引量:1
2
作者 Bowen Yu Chunli Xie 《Computers, Materials & Continua》 SCIE EI 2024年第1期1329-1343,共15页
With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivo... With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components. 展开更多
关键词 Industrial defect detection deep learning intelligent manufacturing
在线阅读 下载PDF
YOLO-VSI: An Improved YOLOv8 Model for Detecting Railway Turnouts Defects in Complex Environments
3
作者 Chenghai Yu Zhilong Lu 《Computers, Materials & Continua》 SCIE EI 2024年第11期3261-3280,共20页
Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despi... Railway turnouts often develop defects such as chipping,cracks,and wear during use.If not detected and addressed promptly,these defects can pose significant risks to train operation safety and passenger security.Despite advances in defect detection technologies,research specifically targeting railway turnout defects remains limited.To address this gap,we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments.To enhance detection accuracy,we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU(YOLO-VSI).The model employs a state-space model(SSM)to enhance the C2f module in the YOLOv8 backbone,proposed the C2f-VSS module to better capture long-range dependencies and contextual features,thus improving feature extraction in complex environments.In the network’s neck layer,we integrate SPDConv and Omni-Kernel Network(OKM)modules to improve the original PAFPN(Path Aggregation Feature Pyramid Network)structure,and proposed the Small Object Upgrade Pyramid(SOUP)structure to enhance small object detection capabilities.Additionally,the Inner-CIoU loss function with a scale factor is applied to further enhance the model’s detection capabilities.Compared to the baseline model,YOLO-VSI demonstrates a 3.5%improvement in average precision on our railway turnout dataset,showcasing increased accuracy and robustness.Experiments on the public NEU-DET dataset reveal a 2.3%increase in average precision over the baseline,indicating that YOLO-VSI has good generalization capabilities. 展开更多
关键词 YOLO railway turnouts defect detection mamba FPN(Feature Pyramid Network)
在线阅读 下载PDF
Weld defects detection method based on improved YOLOv5s 被引量:1
4
作者 Runchao Liu Jiyang Qi +1 位作者 Dongliang Shui Tang Ebolo Micheline Hortense 《China Welding》 2025年第2期119-131,共13页
To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t... To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy. 展开更多
关键词 Weld defects detection Improved YOLOv5s scSE-ASFF Feature fusion
在线阅读 下载PDF
Steel Surface Defect Detection Using Learnable Memory Vision Transformer
5
作者 Syed Tasnimul Karim Ayon Farhan Md.Siraj Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2025年第1期499-520,共22页
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o... This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems. 展开更多
关键词 Learnable Memory Vision Transformer(LMViT) Convolutional Neural Networks(CNN) metal surface defect detection deep learning computer vision image classification learnable memory gradient clipping label smoothing t-SNE visualization
在线阅读 下载PDF
Steel surface defect detection based on lightweight YOLOv7
6
作者 SHI Tao WU Rongxin +1 位作者 ZHU Wenxu MA Qingliang 《Optoelectronics Letters》 2025年第5期306-313,共8页
Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version... Aiming at the problems of low detection efficiency and difficult positioning of traditional steel surface defect detection methods,a lightweight steel surface defect detection model based on you only look once version 7(YOLOv7)is proposed.First,a cascading style sheets(CSS)block module is proposed,which uses more lightweight operations to obtain redundant information in the feature map,reduces the amount of computation,and effectively improves the detection speed.Secondly,the improved spatial pyramid pooling with cross stage partial convolutions(SPPCSPC)structure is adopted to ensure that the model can also pay attention to the defect location information while predicting the defect category information,obtain richer defect features.In addition,the convolution operation in the original model is simplified,which significantly reduces the size of the model and helps to improve the detection speed.Finally,using efficient intersection over union(EIOU)loss to focus on high-quality anchors,speed up convergence and improve positioning accuracy.Experiments were carried out on the Northeastern University-defect(NEU-DET)steel surface defect dataset.Compared with the original YOLOv7 model,the number of parameters of this model was reduced by 40%,the frames per second(FPS)reached 112,and the average accuracy reached 79.1%,the detection accuracy and speed have been improved,which can meet the needs of steel surface defect detection. 展开更多
关键词 obtain redundant information defect detection steel surface cascading style sheets block module lightweight yolov lightweight operations spatial pyramid pooling steel surface defect detection
原文传递
A review of concrete bridge surface defect detection based on deep learning
7
作者 LIAO Yanna HUANG Chaoyang Abdel-Hamid SOLIMAN 《Optoelectronics Letters》 2025年第9期562-576,共15页
The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect... The detection of surface defects in concrete bridges using deep learning is of significant importance for reducing operational risks,saving maintenance costs,and driving the intelligent transformation of bridge defect detection.In contrast to the subjective and inefficient manual visual inspection,deep learning-based algorithms for concrete defect detection exhibit remarkable advantages,emerging as a focal point in recent research.This paper comprehensively analyzes the research progress of deep learning algorithms in the field of surface defect detection in concrete bridges in recent years.It introduces the early detection methods for surface defects in concrete bridges and the development of deep learning.Subsequently,it provides an overview of deep learning-based concrete bridge surface defect detection research from three aspects:image classification,object detection,and semantic segmentation.The paper summarizes the strengths and weaknesses of existing methods and the challenges they face.Additionally,it analyzes and prospects the development trends of surface defect detection in concrete bridges. 展开更多
关键词 deep learning detection surface defects intelligent transformation manual visual inspectiondeep concrete bridges reducing operational riskssaving concrete bridge concrete defect detection
原文传递
Research on YOLO algorithm for lightweight PCB defect detection based on MobileViT
8
作者 LIU Yuchen LIU Fuzheng JIANG Mingshun 《Optoelectronics Letters》 2025年第8期483-490,共8页
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t... Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment. 展开更多
关键词 YOLO lightweight network mobile vision transformer mobile Lightweight Network convolutional block attention module cbam mechanism MobileViT CBAM PCB defect Detection Regression Loss Function
原文传递
Enhanced surface defect detection of cylinder liners using Swin Transformer and YOLOv8
9
作者 Feng Pan Junqiang Li +3 位作者 Yonggang Yan Sihai Guan Bharat Biswal Yong Zhao 《Journal of Automation and Intelligence》 2025年第3期227-235,共9页
The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Sw... The service life of internal combustion engines is significantly influenced by surface defects in cylinder liners.To address the limitations of traditional detection methods,we propose an enhanced YOLOv8 model with Swin Transformer as the backbone network.This approach leverages Swin Transformer's multi-head self-attention mechanism for improved feature extraction of defects spanning various scales.Integrated with the YOLOv8 detection head,our model achieves a mean average precision of 85.1%on our dataset,outperforming baseline methods by 1.4%.The model's effectiveness is further demonstrated on a steel-surface defect dataset,indicating its broad applicability in industrial surface defect detection.Our work highlights the potential of combining Swin Transformer and YOLOv8 for accurate and efficient defect detection. 展开更多
关键词 Cylinder liner Surface defect detection Improved YOLOv8 Multiscale defects Swin Transformer
在线阅读 下载PDF
Evaluation of On-Vehicle Bone-Conduct Acoustic Emission Detection for Rail Defects
10
作者 Lei Jia Jee Woong Park +2 位作者 Ming Zhu Yingtao Jiang Hualiang Teng 《Journal of Transportation Technologies》 2025年第1期95-121,共27页
Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects,... Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches. 展开更多
关键词 Railroad Infrastructure Rail defect Detection Rail Health Monitoring Wavelet Analysis Acoustic Emission Detection
在线阅读 下载PDF
An Optimized Unsupervised Defect Detection Approach via Federated Learning and Adaptive Embeddings Knowledge Distillation
11
作者 Jinhai Wang Junwei Xue +5 位作者 Hongyan Zhang Hui Xiao Huiling Wei Mingyou Chen Jiang Liao Lufeng Luo 《Computers, Materials & Continua》 2025年第7期1839-1861,共23页
Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the ... Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the scarcity of labeled samples,limited adaptability of pre-trained models,and the data heterogeneity in distributed environments.To address these issues,this research proposes an unsupervised defect detection method,FLAME(Federated Learning with Adaptive Multi-Model Embeddings).The method comprises three stages:(1)Feature learning stage:this work proposes FADE(Feature-Adaptive Domain-Specific Embeddings),a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator for defect detection,thereby enhancing the pre-trained model’s industrial imagery representation capabilities.(2)Knowledge distillation co-training stage:a multi-model feature knowledge distillation mechanism is introduced.Through feature-level knowledge transfer between the global model and historical local models,the current local model is guided to learn better feature representations from the global model.The approach prevents local models from converging to local optima and mitigates performance degradation caused by data heterogeneity.(3)Model parameter aggregation stage:participating clients utilize weighted averaging aggregation to synthesize an updated global model,facilitating efficient knowledge consolidation.Experimental results demonstrate that FADE improves the average image-level Area under the Receiver Operating Characteristic Curve(AUROC)by 7.34%compared to methods directly utilizing pre-trained models.In federated learning environments,FLAME’s multi-model feature knowledge distillation mechanism outperforms the classic FedAvg algorithm by 2.34%in average image-level AUROC,while exhibiting superior convergence properties. 展开更多
关键词 Federated learning defect detection knowledge distillation unsupervised learning
在线阅读 下载PDF
MSCM-Net:Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network
12
作者 Xin Wen Xiao Zheng Yu He 《Computers, Materials & Continua》 2025年第3期4371-4388,共18页
Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as com... Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation.However,existing detection methods often struggle with challenges such as complex defect morphology,texture similarity,and fuzzy edges,leading to poor accuracy and missed detections.In order to resolve these problems,we propose MSCM-Net(Multi-Scale Cross-Modal Network),a multiscale cross-modal framework focused on detecting rail surface defects.MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps,effectively capturing and enhancing features at different scales for each modality.To further enrich feature representation and improve edge detection in blurred areas,we propose a multi-scale void fusion module that integrates multi-scale feature information.To improve cross-modal feature fusion,we develop a cross-enhanced fusion module that transfers fused features between layers to incorporate interlayer information.We also introduce a multimodal feature integration module,which merges modality-specific features from separate decoders into a shared decoder,enhancing detection by leveraging richer complementary information.Finally,we validate MSCM-Net on the NEU RSDDS-AUG RGB-depth dataset,comparing it against 12 leading methods,and the results show that MSCM-Net achieves superior performance on all metrics. 展开更多
关键词 Surface defect detection multiscale framework cross-modal fusion edge detection
在线阅读 下载PDF
A YOLOv11 Empowered Road Defect Detection Model
13
作者 Xubo Liu Yunxiang Liu Peng Luo 《Computers, Materials & Continua》 2025年第10期1073-1094,共22页
Roads inevitably have defects during use,which not only seriously affect their service life but also pose a hidden danger to traffic safety.Existing algorithms for detecting road defects are unsatisfactory in terms of... Roads inevitably have defects during use,which not only seriously affect their service life but also pose a hidden danger to traffic safety.Existing algorithms for detecting road defects are unsatisfactory in terms of accuracy and generalization,so this paper proposes an algorithm based on YOLOv11.The method embeds wavelet transform convolution(WTConv)into the backbone’s C3k2 module to enhance low-frequency feature extraction while avoiding parameter bloat.Secondly,a novel multi-scale fusion diffusion network(MFDN)architecture is designed for the neck to strengthen cross-scale feature interactions,boosting detection precision.In terms of model optimization,the traditional downsampling method is discarded,and the innovative Adown(adaptive downsampling)technique is adopted,which streamlines the parameter scales while effectively mitigating the information loss problem during downsampling.Finally,in this paper,we propose Wise-PIDIoU by combining WiseIoU and MPDIoU to minimize the negative impact of low-quality anchor frames and enhance the detection capability of the model.The experimental results indicate that the proposed algorithm achieves an average detection accuracy of 86.5%for mAP@50 on the RDD2022 dataset,which is 2%higher than the original algorithm while ensuring that the amount of computation is basically unchanged.The number of parameters is reduced by 17%,and the F1 score is improved by 3%,showing better detection performance than other algorithms when facing different types of defects.The excellent performance on embedded devices proves that the algorithm also has favorable application prospects in practical inspection. 展开更多
关键词 Deep learning road defect detection YOLOv11 wavelet transform convolution
在线阅读 下载PDF
RC2DNet:Real-Time Cable Defect Detection Network Based on Small Object Feature Extraction
14
作者 Zilu Liu Hongjin Zhu 《Computers, Materials & Continua》 2025年第10期681-694,共14页
Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,... Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds. 展开更多
关键词 Surface defect detection computer vision small object feature extraction boundary feature enhancement
在线阅读 下载PDF
The Application of Machine Vision in Defect Detection Systems
15
作者 Peihang Zhong Jiawei Lin Muling Wang 《Journal of Electronic Research and Application》 2025年第2期191-196,共6页
With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated produ... With the rapid development of computer vision technology,artificial intelligence algorithms,and high-performance computing platforms,machine vision technology has gradually shown its great potential in automated production lines,especially in defect detection.Machine vision technology can be applied in many industries such as semiconductor,automobile manufacturing,aerospace,food,and drugs,which can significantly improve detection efficiency and accuracy,reduce labor costs,improve product quality,enhance market competitiveness,and provide strong support for the arrival of Industry 4.0 era.In this article,the concept,advantages,and disadvantages of machine vision and the algorithm framework of machine vision in the defect detection system are briefly described,aiming to promote the rapid development of industry and strengthen China’s industry. 展开更多
关键词 Machine vision defect detection system Image preprocessing
在线阅读 下载PDF
Deep Learning Based Online Defect Detection Method for Automotive Sealing Rings
16
作者 Jian Ge Qin Qin +3 位作者 Jinhua Jiang Zhiwei Shen Zimei Tu Yahui Zhang 《Computers, Materials & Continua》 2025年第5期3211-3226,共16页
Manufacturers must identify and classify various defects in automotive sealing rings to ensure product quality.Deep learning algorithms show promise in this field,but challenges remain,especially in detecting small-sc... Manufacturers must identify and classify various defects in automotive sealing rings to ensure product quality.Deep learning algorithms show promise in this field,but challenges remain,especially in detecting small-scale defects under harsh industrial conditions with multimodal data.This paper proposes an enhanced version of You Only Look Once(YOLO)v8 for improved defect detection in automotive sealing rings.We introduce the Multi-scale Adaptive Feature Extraction(MAFE)module,which integrates Deformable ConvolutionalNetwork(DCN)and Spaceto-Depth(SPD)operations.This module effectively captures long-range dependencies,enhances spatial aggregation,and minimizes information loss of small objects during feature extraction.Furthermore,we introduce the Blur-Aware Wasserstein Distance(BAWD)loss function,which improves regression accuracy and detection capabilities for small object anchor boxes,particularly in scenarios involving defocus blur.Additionally,we have constructed a high-quality dataset of automotive sealing ring defects,providing a valuable resource for evaluating defect detection methods.Experimental results demonstrate our method’s high performance,achieving 98.30% precision,96.62% recall,and an inference speed of 20.3 ms. 展开更多
关键词 Deep learning automotive sealing ring defect detection
在线阅读 下载PDF
Improved Roberts operator for detecting surface defects of heavy rails with superior precision and efficiency 被引量:7
17
作者 石甜 Kong Jianyi +2 位作者 Wang Xingdong Liu Zhao Xiong Jianliang 《High Technology Letters》 EI CAS 2016年第2期207-214,共8页
An experimental platform accompanying with the improved Roberts algorithm has been developed to achieve accurate and real-time edge detection of surface defects on heavy rails.Detection results of scratching defects s... An experimental platform accompanying with the improved Roberts algorithm has been developed to achieve accurate and real-time edge detection of surface defects on heavy rails.Detection results of scratching defects show that the improved Roberts operator can attain accurate positioning to defect contour and get complete edge information.Meanwhile,a decreasing amount of interference noises as well as more precise characteristic parameters of the extracted defects can also be confirmed for the improved algorithm.Furthermore,the BP neural network adopted for defects classification with the improved Roberts operator can obtain the target training precision with 98 iterative steps and time of 2s while that of traditional Roberts operator is 118 steps and 4s.Finally,an enhanced defects identification rate of 13.33%has also been confirmed after the Roberts operator is improved.The proposed detecting platform will be positive in producing high-quality heavy rails and guaranteeing the national transportation safety. 展开更多
关键词 detecting platform Roberts operator defects detection heavy rails identificationrate
在线阅读 下载PDF
3D reconstruction and defect pattern recognition of bonding wire based on stereo vision 被引量:4
18
作者 Naigong Yu Hongzheng Li +2 位作者 Qiao Xu Ouattara Sie Essaf Firdaous 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期348-364,共17页
Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dim... Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection. 展开更多
关键词 bonding wire defect detection point cloud point cloud segmentation
在线阅读 下载PDF
Strip steel surface defect detection algorithm based on improved Faster R-CNN 被引量:7
19
作者 齐继阳 吴宇帆 《China Welding》 CAS 2024年第2期11-22,共12页
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ... To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value. 展开更多
关键词 defect detection RC-Swin Transformer CBAM-BiFPN RoI align Soft NMS
在线阅读 下载PDF
DLF-YOLOF:an improved YOLOF-based surface defect detection for steel plate 被引量:3
20
作者 Guang-hu Liu Mao-xiang Chu +1 位作者 Rong-fen Gong Ze-hao Zheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期442-451,共10页
Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of ... Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection. 展开更多
关键词 Steel surface defects detection YOLOF Anchor-free detector Small object detection Real-time detection
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部