期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
How to spot Deepfakes
1
作者 吴爱香 《疯狂英语(初中天地)》 2025年第4期40-41,共2页
Pre-reading What is a Deepfake,and how is it created?What are Deepfakes?A Deepfake is a video,image or audio clip that has been created using artificial intelligence.The idea is to make it as realistic as possible.
关键词 VIDEO artificial intelligencethe audio clip deepfakes make realistic possible audioclip ARTIFICIALINTELLIGENCE image
在线阅读 下载PDF
Deepfakes技术的应用对用户信息安全的影响研究——基于用户对Deepfakes技术的态度调查分析 被引量:2
2
作者 陈方元 高梦盈 郭璐璇 《情报探索》 2020年第11期79-84,共6页
[目的/意义]旨在分析Deepfakes技术的应用对用户信息安全的影响,明确用户对该技术的现有态度,找到Deepfakes技术在信息安全方面存在的问题,并从用户视角提出针对性建议。[方法/过程]采用访谈法和问卷调查法相结合,根据访谈的数据设计调... [目的/意义]旨在分析Deepfakes技术的应用对用户信息安全的影响,明确用户对该技术的现有态度,找到Deepfakes技术在信息安全方面存在的问题,并从用户视角提出针对性建议。[方法/过程]采用访谈法和问卷调查法相结合,根据访谈的数据设计调查问卷,调研了用户对Deepfakes技术的态度,并对结果进行质性分析和描述分析。[结果/结论]Deepfakes对用户带来面部信息泄露的风险担忧、信息真实性遭受挑战、用户产生信任危机等问题。针对上述问题从政府、行业、用户三个角度提出政府应尽快完善相关法律、加强监管力度、行业要加强自律、用户要提高信息安全意识和信息素养等建议。 展开更多
关键词 deepfakes 信息安全 AI换脸 用户
在线阅读 下载PDF
Deepfakes Detection Techniques Using Deep Learning: A Survey 被引量:1
3
作者 Abdulqader M. Almars 《Journal of Computer and Communications》 2021年第5期20-35,共16页
Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technolo... Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technology to manipulate images and videos of a person that humans cannot differentiate them from the real one. In recent years, many studies have been conducted to understand how deepfakes work and many approaches based on deep learning have been introduced to detect deepfakes videos or images. In this paper, we conduct a comprehensive review of deepfakes creation and detection technologies using deep learning approaches. In addition, we give a thorough analysis of various technologies and their application in deepfakes detection. Our study will be beneficial for researchers in this field as it will cover the recent state-of-art methods that discover deepfakes videos or images in social contents. In addition, it will help comparison with the existing works because of the detailed description of the latest methods and dataset used in this domain. 展开更多
关键词 deepfakes Deep Learning Fake Detection Social Media Machine Learning
在线阅读 下载PDF
NEWS WORTHY CLIPS Getting real with deepfakes
4
作者 Jesus Diaz 《空中英语教室(高级版.彭蒙惠英语)》 2025年第6期14-16,41,42,共5页
"Deep Tom Cruise changed everything,,J Lx Metaphysic CEO Tom Graham says over a video call from Porto,Portugal.There had been plenty of other deepfakes before the Al-generated videos of the Mission:Impossible sta... "Deep Tom Cruise changed everything,,J Lx Metaphysic CEO Tom Graham says over a video call from Porto,Portugal.There had been plenty of other deepfakes before the Al-generated videos of the Mission:Impossible star were released on TikTok in 2021.But the Cruise videos were different:The quality was higher,the subject more dazzling and the reaction on the internet far more impressive.In no time at all,the videos had garnered many,many millions of views.Graham,who had previously co-founded the data analysis software company Heavy.Al,saw a business opportunity,and one month later,[he and]the videos,creator,Chris Ume,founded Metaphysic. 展开更多
关键词 business opportunity deepfakes internet reaction cruise videos deep tom cruise TikTok Tom Cruise Metaphysic
原文传递
基于关键帧的频域多特征融合的Deepfake视频检测
5
作者 王金伟 张玫瑰 +2 位作者 张家伟 罗向阳 马宾 《应用科学学报》 北大核心 2025年第3期451-462,共12页
现有的Deepfake视频检测方法为节约计算资源,避免数据冗余,大多随机选取视频的多帧或部分段作为检测对象,因而会降低检测对象的表征能力以及限制检测的性能。此外,现有算法在单一数据集上的检测效果良好,但在跨数据集检测时性能下降严重... 现有的Deepfake视频检测方法为节约计算资源,避免数据冗余,大多随机选取视频的多帧或部分段作为检测对象,因而会降低检测对象的表征能力以及限制检测的性能。此外,现有算法在单一数据集上的检测效果良好,但在跨数据集检测时性能下降严重,泛化能力有待进一步提升。为此,提出了一种基于关键帧的频域多特征融合的Deepfake视频检测算法。利用频域的均方误差提取关键帧作为检测对象,并将频域学习主帧的伪影特征和关键帧间的时间不一致性进行融合后输入到全连接层中,从而获得最终的检测结果。实验结果表明,所提算法在跨数据集检测任务中的性能优于现有算法,具有较强的泛化性。 展开更多
关键词 Deepfake视频检测 关键帧 频域 多特征融合
在线阅读 下载PDF
A Comprehensive Review on File Containers-Based Image and Video Forensics
6
作者 Pengpeng Yang Chen Zhou +2 位作者 Dasara Shullani Lanxi Liu Daniele Baracchi 《Computers, Materials & Continua》 2025年第11期2487-2526,共40页
Images and videos play an increasingly vital role in daily life and are widely utilized as key evidentiary sources in judicial investigations and forensic analysis.Simultaneously,advancements in image and video proces... Images and videos play an increasingly vital role in daily life and are widely utilized as key evidentiary sources in judicial investigations and forensic analysis.Simultaneously,advancements in image and video processing technologies have facilitated the widespread availability of powerful editing tools,such as Deepfakes,enabling anyone to easily create manipulated or fake visual content,which poses an enormous threat to social security and public trust.To verify the authenticity and integrity of images and videos,numerous approaches have been proposed,which are primarily based on content analysis and their effectiveness is susceptible to interference from various image or video post-processing operations.Recent research has highlighted the potential of file containers analysis as a promising forensic approach that offers efficient and interpretable results.However,there is still a lack of review articles on this kind of approach.In order to fill this gap,we present a comprehensive review of file containers-based image and video forensics in this paper.Specifically,we categorize the existing methods into two distinct stages,qualitative analysis and quantitative analysis.In addition,an overall framework is proposed to organize the exiting approaches.Then,the advantages and disadvantages of the schemes used across different forensic tasks are provided.Finally,we outline the trends in this research area,aiming to provide valuable insights and technical guidance for future research. 展开更多
关键词 Image and video forensics file containers analysis content analysis deepfakes
在线阅读 下载PDF
基于局部纹理差异特征增强的Deepfake检测方法 被引量:1
7
作者 韦争争 《重庆工商大学学报(自然科学版)》 2025年第2期78-85,共8页
目的针对当前Deepfake检测侧重全局伪造特征,而局部纹理差异特征利用不足导致模型泛化性能差的问题,提出一种基于局部纹理差异特征增强的Deepfake检测模型,通过挖掘伪造图像内在的空间伪造模式,提高检测的准确性和泛化性。方法模型首先... 目的针对当前Deepfake检测侧重全局伪造特征,而局部纹理差异特征利用不足导致模型泛化性能差的问题,提出一种基于局部纹理差异特征增强的Deepfake检测模型,通过挖掘伪造图像内在的空间伪造模式,提高检测的准确性和泛化性。方法模型首先通过中心差分卷积操作捕捉像素强度和像素梯度两种信息,从而获得更精确的局部纹理差异信息,提高对伪造图像的敏感性。其次,构建双层注意力模块,旨在利用空间注意力学习位置敏感的权重信息,并通过通道注意力自适应调整通道重要性,定位重要纹理差异特征的位置,增强纹理差异特征的表示。结果在高质量和低质量的FaceForensics++数据集上的实验,平均准确率分别达到了97.36%和92.37%,而Celeb-DF数据集上的跨数据集实验获得了比当前先进的检测模型更好的泛化性,大量的消融实验表明了方法的有效性。结论实验表明:引入中心差分和双层注意力模块后模型能够更好地捕捉图像的纹理差异信息,适应不同场景和压缩率的伪造检测,有效提高了Deepfake检测的准确性和泛化性。 展开更多
关键词 Deepfake检测 纹理差异 中心差分卷积 空间注意力 通道注意力
在线阅读 下载PDF
Enhancing Deepfake Detection:Proactive Forensics Techniques Using Digital Watermarking
8
作者 Zhimao Lai Saad Arif +2 位作者 Cong Feng Guangjun Liao Chuntao Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期73-102,共30页
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed... With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics. 展开更多
关键词 Deepfake proactive forensics digital watermarking TRACEABILITY detection techniques
在线阅读 下载PDF
A Contemporary and Comprehensive Bibliometric Exposition on Deepfake Research and Trends
9
作者 Akanbi Bolakale Abdul Qudus Oluwatosin Ahmed Amodu +4 位作者 Umar Ali Bukar Raja Azlina Raja Mahmood Anies Faziehan Zakaria Saki-Ogah Queen Zurina Mohd Hanapi 《Computers, Materials & Continua》 2025年第7期153-236,共84页
This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organi... This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organizations,institutions,publications,and key themes.We performed a search on theWeb of Science(WoS)database,focusing on Artificial Intelligence and Deepfakes,and filtered the results across 21 research areas,yielding 1412 articles.Using VOSviewer visualization tool,we analyzed thisWoS data through keyword co-occurrence graphs,emphasizing on four prominent research themes.Compared with existing bibliometric papers on deepfakes,this paper proceeds to identify and discuss some of the highly cited papers within these themes:deepfake detection,feature extraction,face recognition,and forensics.The discussion highlights key challenges and advancements in deepfake research.Furthermore,this paper also discusses pressing issues surrounding deepfakes such as security,regulation,and datasets.We also provide an analysis of another exhaustive search on Scopus database focusing solely on Deepfakes(while not excluding AI)revealing deep learning as the predominant keyword,underscoring AI’s central role in deepfake research.This comprehensive analysis,encompassing over 500 keywords from 8790 articles,uncovered a wide range of methods,implications,applications,concerns,requirements,challenges,models,tools,datasets,and modalities related to deepfakes.Finally,a discussion on recommendations for policymakers,researchers,and other stakeholders is also provided. 展开更多
关键词 Deepfake BIBLIOMETRIC deepfake detection deep learning RECOMMENDATIONS
在线阅读 下载PDF
深度伪造新闻的类型、特征与防范举措
10
作者 杨俊 顾华峰 《视听界》 2025年第4期123-125,共3页
深度伪造新闻是AI技术滥用带来的新型社会问题,其高仿真性和快速传播特征对个人权利、社会信任和国家安全构成了严重威胁。应对这一问题需要技术、法律、媒体、公众的多方协同,以构建一个更加安全、可信的信息环境。
关键词 Deepfake AI 伪造新闻 信息安全
在线阅读 下载PDF
Real-Time Deepfake Detection via Gaze and Blink Patterns:A Transformer Framework
11
作者 Muhammad Javed Zhaohui Zhang +3 位作者 Fida Hussain Dahri Asif Ali Laghari Martin Krajčík Ahmad Almadhor 《Computers, Materials & Continua》 2025年第10期1457-1493,共37页
Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection m... Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection mechanisms is paramount.This research introduces a novel real-time deepfake video detection framework by analyzing gaze and blink patterns,addressing the spatial-temporal challenges unique to gaze and blink anomalies using the TimeSformer and hybrid Transformer-CNN models.The TimeSformer architecture leverages spatial-temporal attention mechanisms to capture fine-grained blinking intervals and gaze direction anomalies.Compared to state-of-the-art traditional convolutional models like MesoNet and EfficientNet,which primarily focus on global facial features,our approach emphasizes localized eye-region analysis,significantly enhancing detection accuracy.We evaluate our framework on four standard datasets:FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb.The proposed framework results reveal higher accuracy,with the TimeSformer model achieving accuracies of 97.5%,96.3%,95.8%,and 97.1%,and with the hybrid Transformer-CNN model demonstrating accuracies of 92.8%,91.5%,90.9%,and 93.2%,on FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb datasets,respectively,showing robustness in distinguishing manipulated from authentic videos.Our research provides a robust state-of-the-art framework for real-time deepfake video detection.This novel study significantly contributes to video forensics,presenting scalable and accurate real-world application solutions. 展开更多
关键词 Deepfake detection deep learning video forensics gaze and blink patterns TRANSFORMERS TimeSformer MesoNet4
在线阅读 下载PDF
Deepfake对新闻真实性的挑战与应对措施
12
作者 陈星宇 《新闻文化建设》 2025年第24期14-16,共3页
以深度学习为核心的Deepfake技术正以前所未有的逼真度制造虚假内容,对“眼见为实”的传统认知发起颠覆性冲击。本文分析了Deepfake造成的危机,发现Deepfake从四个层面破坏新闻真实性:削弱了视觉证据的可信度,动摇了公众的认知根基;伪... 以深度学习为核心的Deepfake技术正以前所未有的逼真度制造虚假内容,对“眼见为实”的传统认知发起颠覆性冲击。本文分析了Deepfake造成的危机,发现Deepfake从四个层面破坏新闻真实性:削弱了视觉证据的可信度,动摇了公众的认知根基;伪造记者和新闻节目,解构了媒体的公信力;提高了内容核查的难度,增加了新闻媒体的运营成本,使新闻媒体真相“守门人”角色失灵;实现了虚假信息生产的“工业化”,全面恶化了社会舆论生态。为了应对这一挑战,新闻业要建立一套由技术赋能、流程再造、角色转型、多方共治、伦理重构组成的“真实性防线”,不仅要拥抱先进的检测技术,更要重塑内部验证流程、推动从业者角色向“真相验证官”转变。在与虚假信息不断斗争的时代,新闻业只有主动变革,才能重塑公信力、捍卫社会真相。 展开更多
关键词 Deepfake 新闻真实性 生成式人工智能 算法推荐 治理框架 媒体伦理
在线阅读 下载PDF
Deepfake Detection Using Adversarial Neural Network
13
作者 Priyadharsini Selvaraj Senthil Kumar Jagatheesaperumal +3 位作者 Karthiga Marimuthu Oviya Saravanan Bader Fahad Alkhamees Mohammad Mehedi Hassan 《Computer Modeling in Engineering & Sciences》 2025年第5期1575-1594,共20页
With expeditious advancements in AI-driven facial manipulation techniques,particularly deepfake technology,there is growing concern over its potential misuse.Deepfakes pose a significant threat to society,partic-ularl... With expeditious advancements in AI-driven facial manipulation techniques,particularly deepfake technology,there is growing concern over its potential misuse.Deepfakes pose a significant threat to society,partic-ularly by infringing on individuals’privacy.Amid significant endeavors to fabricate systems for identifying deepfake fabrications,existing methodologies often face hurdles in adjusting to innovative forgery techniques and demonstrate increased vulnerability to image and video clarity variations,thereby hindering their broad applicability to images and videos produced by unfamiliar technologies.In this manuscript,we endorse resilient training tactics to amplify generalization capabilities.In adversarial training,models are trained using deliberately crafted samples to deceive classification systems,thereby significantly enhancing their generalization ability.In response to this challenge,we propose an innovative hybrid adversarial training framework integrating Virtual Adversarial Training(VAT)with Two-Generated Blurred Adversarial Training.This combined framework bolsters the model’s resilience in detecting deepfakes made using unfamiliar deep learning technologies.Through such adversarial training,models are prompted to acquire more versatile attributes.Through experimental studies,we demonstrate that our model achieves higher accuracy than existing models. 展开更多
关键词 Deepfake GENERALIZATION forgery detection pixel-wise Gaussian blurring virtual adversarial training
在线阅读 下载PDF
SMNDNet for Multiple Types of Deepfake Image Detection
14
作者 Qin Wang Xiaofeng Wang +3 位作者 Jianghua Li Ruidong Han Zinian Liu Mingtao Guo 《Computers, Materials & Continua》 2025年第6期4607-4621,共15页
The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technol... The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images,which limits their ability to keep pace with the rapid advancements in deepfake technology.Therefore,in this study,we propose a novel algorithm,StereoMixture Density Network(SMNDNet),which can detect multiple types of deepfake face manipulations using a single network framework.SMNDNet is an end-to-end CNNbased network specially designed for detecting various manipulation types of deepfake face images.First,we design a Subtle Distinguishable Feature Enhancement Module to emphasize the differentiation between authentic and forged features.Second,we introduce aMulti-Scale Forged Region AdaptiveModule that dynamically adapts to extract forged features from images of varying synthesis scales.Third,we integrate a Nonlinear Expression Capability Enhancement Module to augment the model’s capacity for capturing intricate nonlinear patterns across various types of deepfakes.Collectively,these modules empower our model to efficiently extract forgery features fromdiverse manipulation types,ensuring a more satisfactory performance in multiple-types deepfake detection.Experiments show that the proposed method outperforms alternative approaches in detection accuracy and AUC across all four types of deepfake images.It also demonstrates strong generalization on cross-dataset and cross-type detection,along with robust performance against post-processing manipulations. 展开更多
关键词 Convolutional neural network deepfake detection generative adversarial network feature enhancement
在线阅读 下载PDF
Deepfake Detection Method Based on Spatio-Temporal Information Fusion
15
作者 Xinyi Wang Wanru Song +1 位作者 Chuanyan Hao Feng Liu 《Computers, Materials & Continua》 2025年第5期3351-3368,共18页
As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limi... As Deepfake technology continues to evolve,the distinction between real and fake content becomes increasingly blurred.Most existing Deepfake video detectionmethods rely on single-frame facial image features,which limits their ability to capture temporal differences between frames.Current methods also exhibit limited generalization capabilities,struggling to detect content generated by unknown forgery algorithms.Moreover,the diversity and complexity of forgery techniques introduced by Artificial Intelligence Generated Content(AIGC)present significant challenges for traditional detection frameworks,whichmust balance high detection accuracy with robust performance.To address these challenges,we propose a novel Deepfake detection framework that combines a two-stream convolutional network with a Vision Transformer(ViT)module to enhance spatio-temporal feature representation.The ViT model extracts spatial features from the forged video,while the 3D convolutional network captures temporal features.The 3D convolution enables cross-frame feature extraction,allowing the model to detect subtle facial changes between frames.The confidence scores from both the ViT and 3D convolution submodels are fused at the decision layer,enabling themodel to effectively handle unknown forgery techniques.Focusing on Deepfake videos and GAN-generated images,the proposed approach is evaluated on two widely used public face forgery datasets.Compared to existing state-of-theartmethods,it achieves higher detection accuracy and better generalization performance,offering a robust solution for deepfake detection in real-world scenarios. 展开更多
关键词 Deepfake detection vision transformer spatio-temporal information
在线阅读 下载PDF
论Deepfake技术风险现状与治理探究
16
作者 孙艺嘉 《科技视界》 2025年第20期8-11,共4页
随着生产力的发展与科学技术的进步,人工智能技术蓬勃发展,在极大地便利了人们生活的同时,也出现了Deepfake等一系列威胁风险较大的技术,此类问题是随着科技生产力变革与突破的必然结果,需要正确认识,并及时解决其造成的问题。本文以人... 随着生产力的发展与科学技术的进步,人工智能技术蓬勃发展,在极大地便利了人们生活的同时,也出现了Deepfake等一系列威胁风险较大的技术,此类问题是随着科技生产力变革与突破的必然结果,需要正确认识,并及时解决其造成的问题。本文以人工智能深度伪造技术(Deepfake)为讨论对象,对其技术内涵、发展导源、风险现状、应对方案、治理反思等进行了分析阐述,旨在规避与治理人工智能技术自身带来的威胁与风险的同时,让其更专注地服务于人民的生活,满足人民需求。 展开更多
关键词 深度伪造技术(Deepfake) 深度伪造 深度合成技术 人工智能风险治理
在线阅读 下载PDF
基于时空特征一致性的Deepfake视频检测模型 被引量:3
17
作者 赵磊 葛万峰 +3 位作者 毛钰竹 韩萌 李文欣 李学 《工程科学与技术》 EI CAS CSCD 北大核心 2020年第4期243-250,共8页
针对目前大部分研究仅关注Deepfake单幅图像的空间域特征而设计检测模型的问题,以Deepfake视频中人物面部表情变化存在细微的不一致、不连续等现象为出发点,提出一种基于时空特征一致性的检测模型。该模型使用卷积神经网络对待检测图像... 针对目前大部分研究仅关注Deepfake单幅图像的空间域特征而设计检测模型的问题,以Deepfake视频中人物面部表情变化存在细微的不一致、不连续等现象为出发点,提出一种基于时空特征一致性的检测模型。该模型使用卷积神经网络对待检测图像提取空域特征,利用光流法在待检测图像的连续帧间进行时域特征的捕获,同时利用卷积神经网络对时域特征进行深层次特征提取,在时域特征和空域特征经过多重的特征变换后,使用全连接神经网络对空域特征和时域特征的组合空间进行分类实现检测目标。将本文提出的模型在Faceforensics++开源Deepfake数据集上开展模型的训练,并对模型的检测效果进行实验验证。实验结果表明,本文模型的检测准确率可达98.1%,AUC值可达0.9981。通过与现有的Deepfake检测模型进行对比,本文模型在检测准确率和AUC取值方面均优于现有模型,验证了本文模型的有效性。 展开更多
关键词 虚假图像 Deepfake检测 时域特征 空域特征
在线阅读 下载PDF
深度伪造技术应用的公共安全挑战与治理 被引量:5
18
作者 姜文瀚 田青 郭小波 《警察技术》 2023年第1期3-9,共7页
面向公共安全领域深度伪造技术应用带来的安全问题,分析了相应的风险和挑战,概述了视频、音频、图像、文本各类型伪造应用和伪造检测技术现状,以及相关法律法规、标准规范情况,提出了技术研究、规制管理、宣传教育三个方面的系统性治理... 面向公共安全领域深度伪造技术应用带来的安全问题,分析了相应的风险和挑战,概述了视频、音频、图像、文本各类型伪造应用和伪造检测技术现状,以及相关法律法规、标准规范情况,提出了技术研究、规制管理、宣传教育三个方面的系统性治理措施建议,展望了未来技术发展趋势和安全治理方向。 展开更多
关键词 深度伪造 Deepfake 深度合成 音视频伪造 身份鉴别 身份认证 活体检测 数字克隆
在线阅读 下载PDF
Deepfake加持下短视频类假新闻的演变与治理 被引量:3
19
作者 翟红蕾 邹心晨 《今传媒》 2020年第11期34-36,共3页
人工智能时代,假新闻在Deepfake等新兴技术的影响下不断嬗变,形态也从文本转向音频、视频,这不仅在一定程度上纵容了更多假新闻的产生,也对受众辨别信息的能力提出了更高的要求。但是,技术并没有邪恶之分,媒介技术的革新也不是假新闻出... 人工智能时代,假新闻在Deepfake等新兴技术的影响下不断嬗变,形态也从文本转向音频、视频,这不仅在一定程度上纵容了更多假新闻的产生,也对受众辨别信息的能力提出了更高的要求。但是,技术并没有邪恶之分,媒介技术的革新也不是假新闻出现的根源,当前人类认知能力、道德水平及媒介规范程度跟不上技术的变革,如何借助人工智能技术有利的一面营造良好的内容生态,进而帮助用户提高媒介素养,才是治理假新闻的有效途径,也是当前亟待解决的问题。 展开更多
关键词 Deepfake 假新闻 深度伪造 人工智能时代
在线阅读 下载PDF
AI换脸技术的法律风险评估--从APP“ZAO”谈起 被引量:5
20
作者 赵超 《江苏工程职业技术学院学报》 2020年第1期103-108,共6页
AI换脸技术作为一种对人物面部图像进行替换的技术工具,因其深度拟真、低制作门槛的特点,在互联网时代呈现出了强大的传播力和影响力。在服务影视制作、满足公众社交、娱乐等需求的同时,AI换脸技术的应用也给现代社会带来诸多潜在危险... AI换脸技术作为一种对人物面部图像进行替换的技术工具,因其深度拟真、低制作门槛的特点,在互联网时代呈现出了强大的传播力和影响力。在服务影视制作、满足公众社交、娱乐等需求的同时,AI换脸技术的应用也给现代社会带来诸多潜在危险和不安全性。不当利用这一技术可能会给个人信息保护带来难题、增加侵权问题、诱发刑事犯罪,对此我们应当以客观中立的态度看待AI技术的应用,理性地分析并防范由此带来的法律风险,这样才能更好地享受技术进步的成果与福利。 展开更多
关键词 AI换脸 deepfakes 人工智能 法律风险评估
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部