期刊文献+
共找到552篇文章
< 1 2 28 >
每页显示 20 50 100
Visualization Analysis of Multi-Domain Access Control Policy Integration Based on Tree-Maps and Semantic Substrates 被引量:2
1
作者 Li Pan Qian Xu 《Intelligent Information Management》 2012年第5期188-193,共6页
The complexity of multi-domain access control policy integration makes it difficult to understand and manage the policy conflict information. The policy information visualization technology can express the logical rel... The complexity of multi-domain access control policy integration makes it difficult to understand and manage the policy conflict information. The policy information visualization technology can express the logical relation of the complex information intuitively which can effectively improve the management ability of the multi-domain policy integration. Based on the role-based access control model, this paper proposed two policy analyzing methods on the separated domain statistical information of multi-domain policy integration conflicts and the policy element levels of inter-domain and element mapping of cross-domain respectively. In addition, the corresponding visualization tool is developed. We use the tree-maps algorithm to statistically analyze quantity and type of the policy integration conflicts. On that basis, the semantic substrates algorithm is applied to concretely analyze the policy element levels of inter-domain and role and permission mapping of cross-domain. Experimental result shows tree-maps and semantic substrates can effectively analyze the conflicts of multi-domain policy integration and have a good application value. 展开更多
关键词 Cross-Domain Information Exchange visualIZATION ANALYSIS Tree-Maps semantIC SUBSTRATES
在线阅读 下载PDF
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
2
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 visual SLAM dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
基于语义分割模型的城市街景空间评价与资本化效应研究——以杭州市主城区为例
3
作者 张凌 陈庚 张钊 《浙江大学学报(理学版)》 北大核心 2026年第1期13-26,共14页
对居住环境品质的追求体现了新时代居民对美好生活的向往,住宅周边的街景逐渐成为购房者关注的重点。当前,针对住宅邻域环境资本化效应的研究大多专注于讨论公共服务设施的配置,为进一步研究住宅邻域街景视觉特征对住宅价格的影响,采用... 对居住环境品质的追求体现了新时代居民对美好生活的向往,住宅周边的街景逐渐成为购房者关注的重点。当前,针对住宅邻域环境资本化效应的研究大多专注于讨论公共服务设施的配置,为进一步研究住宅邻域街景视觉特征对住宅价格的影响,采用基于深度学习的语义分割模型(segment anything model,SAM),提取住宅周边街道空间的视觉特征,并基于特征价格模型,从多个维度分析街景视觉特征对住宅价格的影响。结果表明:(1)街景视觉特征对住宅价格具有显著影响,且不同购买力、不同城市区域的购房者对城市街景的支付意愿存在差异;(2)街景视觉特征指标与住宅价格呈非线性关系,除天空开阔程度外,其他街景特征均存在阈值,在阈值附近居民表现出强烈的支付意愿;(3)街景视觉特征指标与传统住宅特征存在交互资本化效应,街景视觉特征指标对传统住宅特征起补偿作用。 展开更多
关键词 街景图像 语义分割 邻域视觉环境 住宅价格 资本化效应
在线阅读 下载PDF
基于集成学习的神经母细胞瘤语义分割及半透明可视化
4
作者 潘姣 季申予 +2 位作者 李亮 田中觉 王笑琨 《工程科学学报》 北大核心 2026年第2期360-369,共10页
神经母细胞瘤是一种形态复杂多变的肿瘤,肿瘤的位置、形状和大小差异显著,且常伴随重要解剖结构的包绕,肿瘤与周围组织的边界模糊,导致术前评估与手术规划面临巨大挑战.为提升术前诊疗的智能化与可视化水平,本文提出了一种基于集成学习... 神经母细胞瘤是一种形态复杂多变的肿瘤,肿瘤的位置、形状和大小差异显著,且常伴随重要解剖结构的包绕,肿瘤与周围组织的边界模糊,导致术前评估与手术规划面临巨大挑战.为提升术前诊疗的智能化与可视化水平,本文提出了一种基于集成学习的神经母细胞瘤语义分割及半透明三维可视化方法.在语义分割部分,本文基于预训练的nnU-Net架构构建了能够使用多模态医学图像作为输入的分割框架,并在推理阶段引入了一种基于验证集Dice分数的加权投票集成策略.与nnU-Net默认的等权平均集成不同,该策略根据模型性能分配融合权重,使表现更优的模型在最终预测中占据更大权重,从而在保持整体稳定性的同时提升了分割精度.本方法在SPPIN 2023挑战赛提供的儿童神经母细胞瘤数据集上开展了对比实验,该方法在Dice系数、Hausdorff距离与体积相似性等指标上均优于主流方法.此外,为进一步验证投票集成策略的有效性,我们在BraTS2021给出的脑肿瘤数据集上进行了消融实验,证明了投票策略确实有效.在肿瘤可视化部分,本文使用了一种基于随机点采样的半透明三维可视化方法,通过将分割后的结果进行点云化,并进行多子集点云的统计融合,在无需深度排序的条件下实现快速渲染,实现了肿瘤和周围器官的半透明可视化.本文提出的可视化方案可以提升术前空间理解效率,为复杂病例的术前辅助决策提供直观、精准的视觉支持,具备良好的临床应用前景. 展开更多
关键词 语义分割 半透明可视化 神经母细胞瘤 集成学习 多模态核磁共振
在线阅读 下载PDF
Answer Semantics-enhanced Medical Visual Question Answering
5
作者 Yuliang Liang Enneng Yang +4 位作者 Guibing Guo Wei Cai Linying Jiang Jianzhe Zhao Xingwei Wang 《Machine Intelligence Research》 2025年第6期1127-1137,共11页
Medical visual question answering(Med-VQA)is a task that aims to answer clinical questions given a medical image.Existing literature generally treats it as a classic classification task based on interaction features o... Medical visual question answering(Med-VQA)is a task that aims to answer clinical questions given a medical image.Existing literature generally treats it as a classic classification task based on interaction features of the image and question.However,such a paradigm ignores the valuable semantics of candidate answers as well as their relations.From the real-world dataset,we observe that:1)The text of candidate answers has a strong intrinsic correlation with medical images;2)Subtle differences among multiple candidate answers are crucial for identifying the correct one.Therefore,we propose an answer semantics enhanced(ASE)method to integrate the semantics of answers and capture their subtle differences.Specifically,we enhance the semantic correlation of image-question-answer triplets by aligning images and question-answer tuples within the feature fusion module.Then,we devise a contrastive learning loss to highlight the semantic differences between the correct answer and other answers.Finally,extensive experiments demonstrate the effectiveness of our method. 展开更多
关键词 Medical visual question answering(Med-VQA) semantic knowledge vision-language model contrastive learning question answering
原文传递
Visual SLAM Based on Object Detection Network:A Review 被引量:2
6
作者 Jiansheng Peng Dunhua Chen +3 位作者 Qing Yang Chengjun Yang Yong Xu Yong Qin 《Computers, Materials & Continua》 SCIE EI 2023年第12期3209-3236,共28页
Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed ... Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed semantic SLAM,which combines object detection,semantic segmentation,instance segmentation,and visual SLAM.Despite the growing body of literature on semantic SLAM,there is currently a lack of comprehensive research on the integration of object detection and visual SLAM.Therefore,this study aims to gather information from multiple databases and review relevant literature using specific keywords.It focuses on visual SLAM based on object detection,covering different aspects.Firstly,it discusses the current research status and challenges in this field,highlighting methods for incorporating semantic information from object detection networks into mileage measurement,closed-loop detection,and map construction.It also compares the characteristics and performance of various visual SLAM object detection algorithms.Lastly,it provides an outlook on future research directions and emerging trends in visual SLAM.Research has shown that visual SLAM based on object detection has significant improvements compared to traditional SLAM in dynamic point removal,data association,point cloud segmentation,and other technologies.It can improve the robustness and accuracy of the entire SLAM system and can run in real time.With the continuous optimization of algorithms and the improvement of hardware level,object visual SLAM has great potential for development. 展开更多
关键词 Object detection visual SLAM visual odometry loop closure detection semantic map
在线阅读 下载PDF
Large-scale 3D Semantic Mapping Using Stereo Vision 被引量:1
7
作者 Yi Yang Fan Qiu +3 位作者 Hao Li Lu Zhang Mei-Ling Wang Meng-Yin Fu 《International Journal of Automation and computing》 EI CSCD 2018年第2期194-206,共13页
In recent years, there have been a lot of interests in incorporating semantics into simultaneous localization and mapping (SLAM) systems. This paper presents an approach to generate an outdoor large-scale 3D dense s... In recent years, there have been a lot of interests in incorporating semantics into simultaneous localization and mapping (SLAM) systems. This paper presents an approach to generate an outdoor large-scale 3D dense semantic map based on binocular stereo vision. The inputs to system are stereo color images from a moving vehicle. First, dense 3D space around the vehicle is constructed, and tile motion of camera is estimated by visual odometry. Meanwhile, semantic segmentation is performed through the deep learning technology online, and the semantic labels are also used to verify tim feature matching in visual odometry. These three processes calculate the motion, depth and semantic label of every pixel in the input views. Then, a voxel conditional random field (CRF) inference is introduced to fuse semantic labels to voxel. After that, we present a method to remove the moving objects by incorporating the semantic labels, which improves the motion segmentation accuracy. The last is to generate tile dense 3D semantic map of an urban environment from arbitrary long image sequence. We evaluate our approach on KITTI vision benchmark, and the results show that the proposed method is effective. 展开更多
关键词 semantic map stereo vision motion segmentation visual odometry simultaneous localization and mapping (SLAM).
原文传递
Linking a Game Engine Environment to Architectural Information on the Semantic Web 被引量:2
8
作者 Pieter Pauwels Ronald De Meyer Jan Van Campenhout 《Journal of Civil Engineering and Architecture》 2011年第9期787-798,共12页
Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualization technology and information management technolo... Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualization technology and information management technology is of utter importance in the development of appropriately supporting design and construction applications. Virtual environments, however, tend not to make this information available. The sparse number of applications that present additional information furthermore tend to limit their scope to pure construction information and do not incorporate information from loosely related knowledge domains, such as cultural heritage or architectural history information. We therefore started an investigation of two of the newest developments in these domains, namely game engine technology and semantic web technology. This paper documents part of this research, containing a review and comparison of the most prominent game engines and documenting our architectural semantic web. A short test-case illustrates how both can be combined to enhance information visualization for architectural design and construction. 展开更多
关键词 3D BIM construction industry game engines INFORMATION semantic web virtual environments visualization.
在线阅读 下载PDF
A PERSONALIZED IMAGE RETRIEVAL BASED ON VISUAL PERCEPTION 被引量:1
9
作者 Zhang Jing Shen Lansun David Dagan Feng 《Journal of Electronics(China)》 2008年第1期129-133,共5页
A new scheme named personalized image retrieval technique based on visual perception is proposed in this letter, whose motive is to narrow the semantic gap by directly perceiving user's visual information. It uses... A new scheme named personalized image retrieval technique based on visual perception is proposed in this letter, whose motive is to narrow the semantic gap by directly perceiving user's visual information. It uses visual attention model to segment image regions and eye-tracking technique to record fixations. Visual perception is obtained by analyzing the fixations in regions to measure gaze interests. Integrating visual perception into attention model is to detect the Regions Of Interest (ROIs), whose features are extracted and analyzed, then feedback interests to optimize the results and construct user profiles. 展开更多
关键词 Personalized image retrieval visual perception semantic gap Regions Of Interest (ROIs)
在线阅读 下载PDF
A language to analyze,describe,and explore collections of visual art
10
作者 Hermann Pflüger 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期29-49,共21页
A vast quantity of art in existence today is inaccessible to individuals.If people want to know the different types of art that exist,how individual works are connected,and how works of art are interpreted and discuss... A vast quantity of art in existence today is inaccessible to individuals.If people want to know the different types of art that exist,how individual works are connected,and how works of art are interpreted and discussed in the context of other works,they must utilize means other than simply viewing the art.Therefore,this paper proposes a language to analyze,describe,and explore collections of visual art(LadeCA).LadeCA combines human interpretation and automatic analyses of images,allowing users to assess collections of visual art without viewing every image in them.This paper focuses on the lexical base of LadeCA.It also outlines how collections of visual art can be analyzed,described,and explored using a LadeCA vocabulary.Additionally,the relationship between LadeCA and indexing systems,such as ICONCLASS or AAT,is demonstrated,and ways in which LadeCA and indexing systems can complement each other are highlighted. 展开更多
关键词 Collections of visual art visual computing Personalized digital libraries Digital humanities semantics
在线阅读 下载PDF
Visualizing risk factors of dementia from scholarly literature using knowledge maps and next-generation data models
11
作者 Kiran Fahd Sitalakshmi Venkatraman 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期165-182,共18页
Scholarly communication of knowledge is predominantly document-based in digital repositories,and researchers find it tedious to automatically capture and process the semantics among related articles.Despite the presen... Scholarly communication of knowledge is predominantly document-based in digital repositories,and researchers find it tedious to automatically capture and process the semantics among related articles.Despite the present digital era of big data,there is a lack of visual representations of the knowledge present in scholarly articles,and a time-saving approach for a literature search and visual navigation is warranted.The majority of knowledge display tools cannot cope with current big data trends and pose limitations in meeting the requirements of automatic knowledge representation,storage,and dynamic visualization.To address this limitation,the main aim of this paper is to model the visualization of unstructured data and explore the feasibility of achieving visual navigation for researchers to gain insight into the knowledge hidden in scientific articles of digital repositories.Contemporary topics of research and practice,including modifiable risk factors leading to a dramatic increase in Alzheimer’s disease and other forms of dementia,warrant deeper insight into the evidence-based knowledge available in the literature.The goal is to provide researchers with a visual-based easy traversal through a digital repository of research articles.This paper takes the first step in proposing a novel integrated model using knowledge maps and next-generation graph datastores to achieve a semantic visualization with domain-specific knowledge,such as dementia risk factors.The model facilitates a deep conceptual understanding of the literature by automatically establishing visual relationships among the extracted knowledge from the big data resources of research articles.It also serves as an automated tool for a visual navigation through the knowledge repository for faster identification of dementia risk factors reported in scholarly articles.Further,it facilitates a semantic visualization and domain-specific knowledge discovery from a large digital repository and their associations.In this study,the implementation of the proposed model in the Neo4j graph data repository,along with the results achieved,is presented as a proof of concept.Using scholarly research articles on dementia risk factors as a case study,automatic knowledge extraction,storage,intelligent search,and visual navigation are illustrated.The implementation of contextual knowledge and its relationship for a visual exploration by researchers show promising results in the knowledge discovery of dementia risk factors.Overall,this study demonstrates the significance of a semantic visualization with the effective use of knowledge maps and paves the way for extending visual modeling capabilities in the future. 展开更多
关键词 Big data Data visualization Knowledge maps DEMENTIA Non-relational database Graph database Neo4j semantic visualization
在线阅读 下载PDF
A Real-Time Semantic Segmentation Method Based on Transformer for Autonomous Driving
12
作者 Weiyu Hao Jingyi Wang Huimin Lu 《Computers, Materials & Continua》 SCIE EI 2024年第12期4419-4433,共15页
While traditional Convolutional Neural Network(CNN)-based semantic segmentation methods have proven effective,they often encounter significant computational challenges due to the requirement for dense pixel-level pred... While traditional Convolutional Neural Network(CNN)-based semantic segmentation methods have proven effective,they often encounter significant computational challenges due to the requirement for dense pixel-level predictions,which complicates real-time implementation.To address this,we introduce an advanced real-time semantic segmentation strategy specifically designed for autonomous driving,utilizing the capabilities of Visual Transformers.By leveraging the self-attention mechanism inherent in Visual Transformers,our method enhances global contextual awareness,refining the representation of each pixel in relation to the overall scene.This enhancement is critical for quickly and accurately interpreting the complex elements within driving sce-narios—a fundamental need for autonomous vehicles.Our experiments conducted on the DriveSeg autonomous driving dataset indicate that our model surpasses traditional segmentation methods,achieving a significant 4.5%improvement in Mean Intersection over Union(mIoU)while maintaining real-time responsiveness.This paper not only underscores the potential for optimized semantic segmentation but also establishes a promising direction for real-time processing in autonomous navigation systems.Future work will focus on integrating this technique with other perception modules in autonomous driving to further improve the robustness and efficiency of self-driving perception frameworks,thereby opening new pathways for research and practical applications in scenarios requiring rapid and precise decision-making capabilities.Further experimentation and adaptation of this model could lead to broader implications for the fields of machine learning and computer vision,particularly in enhancing the interaction between automated systems and their dynamic environments. 展开更多
关键词 visual transformer semantic segmentation autonomous driving
在线阅读 下载PDF
Next Generation Semantic and Spatial Joint Perception——Neural Metric-Semantic Understanding
13
作者 ZHU Fang 《ZTE Communications》 2021年第1期61-71,共11页
Efficient perception of the real world is a long-standing effort of computer vision.Mod⁃ern visual computing techniques have succeeded in attaching semantic labels to thousands of daily objects and reconstructing dens... Efficient perception of the real world is a long-standing effort of computer vision.Mod⁃ern visual computing techniques have succeeded in attaching semantic labels to thousands of daily objects and reconstructing dense depth maps of complex scenes.However,simultaneous se⁃mantic and spatial joint perception,so-called dense 3D semantic mapping,estimating the 3D ge⁃ometry of a scene and attaching semantic labels to the geometry,remains a challenging problem that,if solved,would make structured vision understanding and editing more widely accessible.Concurrently,progress in computer vision and machine learning has motivated us to pursue the capability of understanding and digitally reconstructing the surrounding world.Neural metric-se⁃mantic understanding is a new and rapidly emerging field that combines differentiable machine learning techniques with physical knowledge from computer vision,e.g.,the integration of visualinertial simultaneous localization and mapping(SLAM),mesh reconstruction,and semantic un⁃derstanding.In this paper,we attempt to summarize the recent trends and applications of neural metric-semantic understanding.Starting with an overview of the underlying computer vision and machine learning concepts,we discuss critical aspects of such perception approaches.Specifical⁃ly,our emphasis is on fully leveraging the joint semantic and 3D information.Later on,many im⁃portant applications of the perception capability such as novel view synthesis and semantic aug⁃mented reality(AR)contents manipulation are also presented.Finally,we conclude with a dis⁃cussion of the technical implications of the technology under a 5G edge computing scenario. 展开更多
关键词 visual computing semantic and spatial joint perception dense 3D semantic map⁃ping neural metric-semantic understanding
在线阅读 下载PDF
以语言为媒介的遥感图像跨时空领域自适应语义分割 被引量:1
14
作者 陶超 郭鑫 +2 位作者 胡柯彦 沈羽翔 王昊 《中国图象图形学报》 北大核心 2025年第9期3153-3170,共18页
目的随着视觉大模型的发展,利用多源无标注遥感影像预训练学习全局视觉特征,并在局部目标任务上进行迁移微调,已成为遥感影像领域自适应的一种新范式。然而,现有的全局预训练策略主要聚焦于学习低级的通用视觉特征,难以捕捉复杂、高层... 目的随着视觉大模型的发展,利用多源无标注遥感影像预训练学习全局视觉特征,并在局部目标任务上进行迁移微调,已成为遥感影像领域自适应的一种新范式。然而,现有的全局预训练策略主要聚焦于学习低级的通用视觉特征,难以捕捉复杂、高层次的语义关联。此外,微调过程中使用的少量标注样本往往只反映目标域的特定场景,无法充分激活全局模型中与目标域匹配的领域知识。因此,面对复杂多变的遥感影像跨时空领域偏移,现有方法得到的全局模型与目标任务之间仍然存在巨大的语义鸿沟。为应对这一挑战,本文提出一种语言文本引导的“全局模型预训练—局部模型微调”的领域自适应框架。方法提出框架针对遥感数据的时空异质性特点,借助大型视觉语言助手LLaVA(large language and vision assistant)生成包含季节、地理区域及地物分布等时空信息的遥感影像文本描述。通过语言文本引导的学习帮助全局模型挖掘地物的时空分布规律,增强局部任务微调时相关领域知识的激活。结果在对比判别式、掩码生成式和扩散生成式3种不同全局预训练策略上设置了3组“全局—局部”跨时空领域自适应语义分割实验来验证提出框架的有效性。以全局→局部(长沙)为例,使用语言文本引导相比于无文本引导在3种不同预训练策略上分别提升了8.7%、4.4%和2.9%。同样地,提出框架在全局→局部(湘潭)和全局→局部(武汉)上也都有性能提升。结论证明了语言文本对准确理解跨时空遥感影像中的语义内容具有积极影响。与无文本引导的学习方法相比,提出框架显著提升了模型的迁移性能。 展开更多
关键词 遥感影像 语义分割 领域自适应 视觉语言模型 时空异质性
原文传递
基于多语义关联与融合的视觉问答模型
15
作者 周浩 王超 +1 位作者 崔国恒 罗廷金 《计算机应用》 北大核心 2025年第3期739-745,共7页
弥合视觉图像和文本问题之间的语义差异是提高视觉问答(VQA)模型推理准确性的重要方法之一。然而现有的相关模型大多数基于低层图像特征的提取并利用注意力机制推理问题的答案,忽略了高层图像语义特征如关系和属性特征等在视觉推理中的... 弥合视觉图像和文本问题之间的语义差异是提高视觉问答(VQA)模型推理准确性的重要方法之一。然而现有的相关模型大多数基于低层图像特征的提取并利用注意力机制推理问题的答案,忽略了高层图像语义特征如关系和属性特征等在视觉推理中的作用。为解决上述问题,提出一种基于多语义关联与融合的VQA模型以建立问题与图像之间的语义联系。首先,基于场景图生成框架提取图像中的多种语义并把它们进行特征精炼后作为VQA模型的特征输入,从而充分挖掘图像场景中的信息;其次,为提高图像特征的语义价值,设计一个信息过滤器过滤图像特征中的噪声和冗余信息;最后,设计多层注意力融合和推理模块将多种图像语义分别与问题特征进行语义融合,以强化视觉图像重点区域与文本问题之间的语义关联。与BAN(Bilinear Attention Network)和CFR(Coarse-to-Fine Reasoning)模型的对比实验结果表明,所提模型在VQA2.0测试集上的准确率分别提高了2.9和0.4个百分点,在GQA测试集上的准确率分别提高了17.2和0.3个百分点。这表明所提模型能够更好地理解图像场景中的语义并回答组合式视觉问题。 展开更多
关键词 多语义特征融合 视觉问答 场景图 属性注意力 关系注意力
在线阅读 下载PDF
6世纪末至7世纪中叶敦煌石窟藻井类型和特征演进
16
作者 陈振旺 辛颖 《艺术百家》 北大核心 2025年第5期32-39,共8页
6世纪末至7世纪中叶,敦煌地区佛教净土信仰兴起,敦煌石窟藻井纹样在形制、构图、语义等方面发生重要转折。伴随佛教净土信仰的兴起与本土化进程的逐步深化,藻井形制发生显著转型,由北朝具有宗教象征意义的“建筑式”范式逐步发展为隋唐... 6世纪末至7世纪中叶,敦煌地区佛教净土信仰兴起,敦煌石窟藻井纹样在形制、构图、语义等方面发生重要转折。伴随佛教净土信仰的兴起与本土化进程的逐步深化,藻井形制发生显著转型,由北朝具有宗教象征意义的“建筑式”范式逐步发展为隋唐之际富于世俗审美意蕴的“华盖式”样式,形成一套结构繁复、富有叙事性与韵律感的复合图像系统。这一时期的藻井艺术呈现出“疏体”与“密体”风格并存、交替影响的特征,反映出隋至初唐佛教艺术从神秘主义向人文性、世俗化审美过渡的整体趋势。图像语义从宗教象征向装饰旨趣的深层转变,不仅与石窟建筑形制、空间布局的演变密切相关,亦深受佛教义理中国化、南北艺术风格融合及丝绸之路文化交流等多重因素影响。敦煌石窟藻井的类型演进与视觉重构,既是中古中国佛教艺术本土化进程的典型体现,亦折射出多元文明在丝绸之路节点交汇融合的历史路径,揭示了藻井图像演化背后承载的信仰变迁与文化互鉴。 展开更多
关键词 敦煌石窟 藻井形制 净土信仰 图像语义 文化交融
在线阅读 下载PDF
中外经典座椅视觉偏好差异研究
17
作者 赵立杉 张茜玥 张凯旋 《家具与室内装饰》 北大核心 2025年第7期8-14,共7页
为探索Z世代专业用户群体与非专业用户群体对中外经典座椅的视觉偏好差异,总结归纳其视觉偏好,并从中获得设计启示与指导方法。首先收集整理中外设计史上的经典座椅,将样本进行分类、灰度处理及拉丁方形式排列;其次采用语义感知差异法,... 为探索Z世代专业用户群体与非专业用户群体对中外经典座椅的视觉偏好差异,总结归纳其视觉偏好,并从中获得设计启示与指导方法。首先收集整理中外设计史上的经典座椅,将样本进行分类、灰度处理及拉丁方形式排列;其次采用语义感知差异法,对不同背景用户进行语义差异法评价调查,运用眼动追踪技术获取用户眼动指标数据,对比不同背景用户的语义感知与视觉偏好差异。通过实验分析发现,不同背景用户均对有靠背有扶手类型的座椅视觉偏好均值较高;有靠背无扶手类型的座椅在语义评价及视觉关注度均值上均存在显著性。本研究通过眼动实验弥补了传统主观评价的不足,增加定量数据支撑,研究表明不同背景用户对于座椅外观造型的语义感知度与视觉偏好具有相关性,为座椅造型设计领域提供了科学的数据支持与理论指导。 展开更多
关键词 眼动实验 Z世代 经典座椅 语义感知 视觉偏好差异
在线阅读 下载PDF
基于文本-视觉和信息熵最小化的对比学习模型
18
作者 蔡晓东 董丽芳 +1 位作者 黄业洋 周丽 《华南理工大学学报(自然科学版)》 北大核心 2025年第3期50-56,共7页
当前的无监督对比学习方法主要依赖纯文本信息来构建句子嵌入,在全面理解句子所表达的深层含义时存在局限性。同时,传统的对比学习方法过于注重最大化文本正实例之间的互信息,忽视了句子嵌入中潜在的噪声干扰。为了既能保留文本中的有... 当前的无监督对比学习方法主要依赖纯文本信息来构建句子嵌入,在全面理解句子所表达的深层含义时存在局限性。同时,传统的对比学习方法过于注重最大化文本正实例之间的互信息,忽视了句子嵌入中潜在的噪声干扰。为了既能保留文本中的有用信息,又能有效地剔除文本嵌入中的噪声干扰,该文提出了一种基于文本-视觉和信息熵最小化的对比学习模型。首先,将文本与对应的视觉信息在对比学习的框架下进行深度融合,共同映射到一个统一的地面空间,并确保它们的表示在该空间中保持一致,从而克服了仅依赖纯文本信息进行句子嵌入学习的限制,使得对比学习过程更加全面且精确;然后,遵循信息最小化原则,在最大化文本正实例间互信息的同时,基于信息熵最小化对文本正实例进行重构。在标准语义文本相似度(STS)任务上的实验结果表明,所提出的模型在Spearman相关系数评价指标上取得了显著提升,相较于现有先进方法具有显著的优势,同时也证明了该模型的有效性。 展开更多
关键词 无监督对比学习 互信息 文本-视觉 信息熵最小化 语义文本相似度
在线阅读 下载PDF
左江花山岩画信息可视化设计与传播策略研究
19
作者 吴红梅 李思淮 《广西民族大学学报(自然科学版)》 2025年第3期44-52,共9页
左江花山岩画作为中国南方地区极具代表性的文化遗产,在传播实践中长期面临路径单一、图像结构难以识读、内容碎片化、表达方式学术化、形式浅表化,以及公众参与度低等问题。文章基于对岩画语义系统的深入梳理,提出以空间结构重构、图... 左江花山岩画作为中国南方地区极具代表性的文化遗产,在传播实践中长期面临路径单一、图像结构难以识读、内容碎片化、表达方式学术化、形式浅表化,以及公众参与度低等问题。文章基于对岩画语义系统的深入梳理,提出以空间结构重构、图像语义转译、交互机制优化与文创路径拓展为核心的信息可视化策略,构建起花山岩画从认知引导到文化体验的多维传播路径。通过对点位分布、图像类型、历史演变与文化象征的视觉化表达,结合互动装置与实物文创的嵌入式传播机制,研究在提高受众理解效率与增加记忆深度、强化沉浸参与感方面取得了积极成效。该设计路径不仅优化了花山岩画的传播方式,也为区域民族文化遗产的当代表达提供了可复制的视觉传播范式。 展开更多
关键词 花山岩画 信息可视化 文化遗产传播 图像语义转译
在线阅读 下载PDF
CATrans:基于跨尺度注意力Transformer的高分辨率遥感影像土地覆盖语义分割框架 被引量:1
20
作者 陈丽佳 陈宏辉 +3 位作者 谢艳秋 何天友 叶菁 吴林煌 《地球信息科学学报》 北大核心 2025年第7期1624-1637,共14页
【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力... 【目的】高分辨率遥感影像语义分割通过精准提取地物信息,为城市规划、土地分析利用提供了重要的数据支持。当前分割方法通常将遥感影像划分为标准块,进行多尺度局部分割和层次推理,未充分考虑影像中的上下文先验知识和局部特征交互能力,影响了推理分割质量。【方法】为了解决这一问题,本文提出了一种联合跨尺度注意力和语义视觉Transformer的遥感影像分割框架(Cross-scale Attention Transformer,CATrans),融合跨尺度注意力模块和语义视觉Transformer,提取上下文先验知识增强局部特征表示和分割性能。首先,跨尺度注意力模块通过空间和通道两个维度进行并行特征处理,分析浅层-深层和局部-全局特征之间的依赖关系,提升对遥感影像中不同粒度对象的注意力。其次,语义视觉Transformer通过空间注意力机制捕捉上下文语义信息,建模语义信息之间的依赖关系。【结果】本文在DeepGlobe、Inria Aerial和LoveDA数据集上进行对比实验,结果表明:CATrans的分割性能优于现有的WSDNet(Discrete Wavelet Smooth Network)和ISDNet(Integrating Shallow and Deep Network)等分割算法,分别取得了76.2%、79.2%、54.2%的平均交并比(Mean Intersection over Union,mIoU)和86.5%、87.8%、66.8%的平均F1得分(Mean F1 Score,mF1),推理速度分别达到38.1 FPS、13.2 FPS和95.22 FPS。相较于本文所对比的最佳方法WSDNet,mIoU和mF1在3个数据集中分别提升2.1%、4.0%、5.3%和1.3%、1.8%、5.6%,在每类地物的分割中都具有显著优势。【结论】本方法实现了高效率、高精度的高分辨率遥感影像语义分割。 展开更多
关键词 高分辨率 语义分割 跨尺度注意力 视觉Transformer 上下文先验 空间注意力 语义信息
原文传递
上一页 1 2 28 下一页 到第
使用帮助 返回顶部