Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However...In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However,a significant challenge lies in the necessity of numerous high-fidelity training simulations to construct these deep-learning models,which limits their application to field-scale problems.To overcome this limitation,we introduce a training procedure that leverages transfer learning with multi-fidelity training data to construct surrogate models efficiently.The procedure begins with the pre-training of the surrogate model using a relatively larger amount of data that can be efficiently generated from upscaled coarse-scale models.Subsequently,the model parameters are finetuned with a much smaller set of high-fidelity simulation data.For the cases considered in this study,this method leads to about a 75%reduction in total computational cost,in comparison with the traditional training approach,without any sacrifice of prediction accuracy.In addition,a dedicated well-control embedding model is introduced to the traditional U-Net architecture to improve the surrogate model's prediction accuracy,which is shown to be particularly effective when dealing with large-scale reservoir models under time-varying well control parameters.Comprehensive results and analyses are presented for the prediction of well rates,pressure and saturation states of a 3D synthetic reservoir system.Finally,the proposed procedure is applied to a field-scale production optimization problem.The trained surrogate model is shown to provide excellent generalization capabilities during the optimization process,in which the final optimized net-present-value is much higher than those from the training data ranges.展开更多
The press-fit connector is a typical plug-and-play solderless connection,and it is widely used in signal transmission in fields such as communication and automotive devices.This paper focuses on inverse designing and ...The press-fit connector is a typical plug-and-play solderless connection,and it is widely used in signal transmission in fields such as communication and automotive devices.This paper focuses on inverse designing and optimization of geometric structure,as well as insertion-withdrawal forces of press-fit connector using artificial neural network(ANN)-assisted optimization method.The ANN model is established to approximate the relationship between geometric parameters and insertion-withdrawal forces,of which hyper-parameters of neural network are optimized to improve model performance.Two numerical methods are proposed for inverse designing structural parameters(Model-I)and multi-objective optimization of insertion-withdrawal forces(Model-II)of press-fit connector.In Model-I,a method for inverse designing structure parameters is established,of which an ANN model is coupled with single-objective optimization algorithm.The objective function is established,the inverse problem is solved,and effectiveness is verified.In Model-II,a multi-objective optimization method is proposed,of which an ANN model is coupled with genetic algorithm.The Pareto solution sets of insertion-withdrawal forces are obtained,and results are analyzed.The established ANN-coupled numerical optimization methods are beneficial for improving the design efficiency,and enhancing the connection reliability of the press-fit connector.展开更多
In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy...In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.展开更多
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha...In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.展开更多
Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is empl...Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor.展开更多
Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery,which has an important impact on gas field development planning and economic evaluation.Owing to the model’s...Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery,which has an important impact on gas field development planning and economic evaluation.Owing to the model’s simplicity,the decline curve analysis method has been widely used to predict production performance.The advancement of deep-learning methods provides an intelligent way of analyzing production performance in tight gas reservoirs.In this paper,a sequence learning method to improve the accuracy and efficiency of tight gas production forecasting is proposed.The sequence learning methods used in production performance analysis herein include the recurrent neural network(RNN),long short-term memory(LSTM)neural network,and gated recurrent unit(GRU)neural network,and their performance in the tight gas reservoir production prediction is investigated and compared.To further improve the performance of the sequence learning method,the hyperparameters in the sequence learning methods are optimized through a particle swarm optimization algorithm,which can greatly simplify the optimization process of the neural network model in an automated manner.Results show that the optimized GRU and RNN models have more compact neural network structures than the LSTM model and that the GRU is more efficiently trained.The predictive performance of LSTM and GRU is similar,and both are better than the RNN and the decline curve analysis model and thus can be used to predict tight gas production.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus o...Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively.展开更多
To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre...To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.展开更多
Objective The aim of this study was to develop and evaluate two deep-learning(DL)models for predicting spontaneous ureteral stone passage(SSP).Materials and methods A total of 1217 patients with thin-layer computed to...Objective The aim of this study was to develop and evaluate two deep-learning(DL)models for predicting spontaneous ureteral stone passage(SSP).Materials and methods A total of 1217 patients with thin-layer computed tomography–confirmed ureteral stones in our hospital from January 2019 to December 2022 were retrospectively examined.These patients were grouped into 3 data sets:the training set(n=1000),the validation set(n=100),and the test set(n=117).Two DL models based on residual neural network(ResNet)—2-dimensional(2D)ResNet29 and 3-dimensional(3D)ResNet29—were separately developed,trained,and assessed.The predictive ability of a conventional approach using a stone diameter of<5 mm on computed tomography was investigated,and the results were compared with those of the two DL models.Results Of the 1217 patients,SSP was reported in 446(36.6%).The total accuracy,sensitivity,and specificity were 76.9%,56.1%,and 90.8%for the stone diameter approach;87.1%,84.2%,and 92.7%for the 2D ResNet29 model;and 90.6%,88.2%,and 95.1%for the 3D ResNet29 model,respectively.Both the 2D and 3D ResNet29 models showed significantly higher accuracy than the stone diameter approach.Receiver operating characteristic curve analysis showed that both DL models had a significantly higher area under the curve than the stone diameter–based classification.Conclusions The DL models,particularly the 3D model,are novel and effective methods for predicting SSP rates.Using such models may help determine whether a patient should receive surgical intervention or expect a long interval before stone passage.展开更多
In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocal...In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.展开更多
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ...BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
In the lush heart of Uganda’s Busoga sub-region,Isaac Imaka is charting a new course for rural development.After seven years in national media,he left the newsroom and stepped into the soil.The former reporter with t...In the lush heart of Uganda’s Busoga sub-region,Isaac Imaka is charting a new course for rural development.After seven years in national media,he left the newsroom and stepped into the soil.The former reporter with the Daily Monitor was driven by the belief that communities like his in Jinja North deserved more than chronic poverty and hand-to-mouth survival.展开更多
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn...Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.展开更多
BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recogn...BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recognized in family-centered clinical practice.Concurrently,against the backdrop of rising rates of delayed marriage and China’s Maternity Incentive Policy,the proportion of women giving birth at an advanced maternal age is increasing.Nevertheless,research specifically examining PPD among spouses of older mothers remains critically scarce,both in China and globally.AIM To investigate PPD and its influencing factors in Chinese advanced maternal age families.METHODS This cross-sectional study included 358 participants;it was conducted among fathers of pregnant women of advanced maternal age at five hospitals in the Pearl River Delta region of China from September 2023 to June 2024.Data were collected via a general information questionnaire,the Social Support Rating Scale,and the Edinburgh Postnatal Depression Scale.Latent profile analysis and regression mixture models(RMMs)were adopted to analyze the latent PPD types and factors that influenced PPD.RESULTS The incidence of PPD was 16.48%,and three profiles were identified:Low-symptomatic(175 cases,48.89%),monophasic(140 cases,39.10%),and high-symptomatic(43 cases,12.01%).The RMM analysis revealed that first pregnancy,low income(<¥3000/month),part-time work,and a history of abnormal pregnancy were positively associated with the high-symptomatic type(P<0.05).Conversely,high subjective support and support utilization were negatively associated with the high-symptomatic type compared with the low-symptomatic type(P<0.05).Good couple relationships,high objective and subjective support,and high support utilization were negatively associated with monophasic disorder(P<0.05).CONCLUSION PPD incidence is high among Chinese fathers with advanced maternal age partners,and the characteristics of depression are varied.Healthcare practitioners should prioritize individuals with low levels of social support.展开更多
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ...Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.展开更多
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
基金funding support from the National Natural Science Foundation of China(No.52204065,No.ZX20230398)supported by a grant from the Human Resources Development Program(No.20216110100070)of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)。
文摘In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However,a significant challenge lies in the necessity of numerous high-fidelity training simulations to construct these deep-learning models,which limits their application to field-scale problems.To overcome this limitation,we introduce a training procedure that leverages transfer learning with multi-fidelity training data to construct surrogate models efficiently.The procedure begins with the pre-training of the surrogate model using a relatively larger amount of data that can be efficiently generated from upscaled coarse-scale models.Subsequently,the model parameters are finetuned with a much smaller set of high-fidelity simulation data.For the cases considered in this study,this method leads to about a 75%reduction in total computational cost,in comparison with the traditional training approach,without any sacrifice of prediction accuracy.In addition,a dedicated well-control embedding model is introduced to the traditional U-Net architecture to improve the surrogate model's prediction accuracy,which is shown to be particularly effective when dealing with large-scale reservoir models under time-varying well control parameters.Comprehensive results and analyses are presented for the prediction of well rates,pressure and saturation states of a 3D synthetic reservoir system.Finally,the proposed procedure is applied to a field-scale production optimization problem.The trained surrogate model is shown to provide excellent generalization capabilities during the optimization process,in which the final optimized net-present-value is much higher than those from the training data ranges.
基金supported by the National Natural Science Foundation of China(No.52005378)the opening project fund of Materials Service Safety Assessment Facilities(No.MSAF-2021-107).
文摘The press-fit connector is a typical plug-and-play solderless connection,and it is widely used in signal transmission in fields such as communication and automotive devices.This paper focuses on inverse designing and optimization of geometric structure,as well as insertion-withdrawal forces of press-fit connector using artificial neural network(ANN)-assisted optimization method.The ANN model is established to approximate the relationship between geometric parameters and insertion-withdrawal forces,of which hyper-parameters of neural network are optimized to improve model performance.Two numerical methods are proposed for inverse designing structural parameters(Model-I)and multi-objective optimization of insertion-withdrawal forces(Model-II)of press-fit connector.In Model-I,a method for inverse designing structure parameters is established,of which an ANN model is coupled with single-objective optimization algorithm.The objective function is established,the inverse problem is solved,and effectiveness is verified.In Model-II,a multi-objective optimization method is proposed,of which an ANN model is coupled with genetic algorithm.The Pareto solution sets of insertion-withdrawal forces are obtained,and results are analyzed.The established ANN-coupled numerical optimization methods are beneficial for improving the design efficiency,and enhancing the connection reliability of the press-fit connector.
基金Supported by the National Natural Science Foundation of China(12261018)Universities Key Laboratory of Mathematical Modeling and Data Mining in Guizhou Province(2023013)。
文摘In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.
基金the World Climate Research Programme(WCRP),Climate Variability and Predictability(CLIVAR),and Global Energy and Water Exchanges(GEWEX)for facilitating the coordination of African monsoon researchsupport from the Center for Earth System Modeling,Analysis,and Data at the Pennsylvania State Universitythe support of the Office of Science of the U.S.Department of Energy Biological and Environmental Research as part of the Regional&Global Model Analysis(RGMA)program area。
文摘In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.
文摘Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor.
基金funded by the Joint Funds of the National Natural Science Foundation of China(U19B6003)the PetroChina Innovation Foundation(Grant No.2020D5007-0203)it was further supported by the Science Foundation of China University of Petroleum,Beijing(Nos.2462021YXZZ010,2462018QZDX13,and 2462020YXZZ028).
文摘Production performance prediction of tight gas reservoirs is crucial to the estimation of ultimate recovery,which has an important impact on gas field development planning and economic evaluation.Owing to the model’s simplicity,the decline curve analysis method has been widely used to predict production performance.The advancement of deep-learning methods provides an intelligent way of analyzing production performance in tight gas reservoirs.In this paper,a sequence learning method to improve the accuracy and efficiency of tight gas production forecasting is proposed.The sequence learning methods used in production performance analysis herein include the recurrent neural network(RNN),long short-term memory(LSTM)neural network,and gated recurrent unit(GRU)neural network,and their performance in the tight gas reservoir production prediction is investigated and compared.To further improve the performance of the sequence learning method,the hyperparameters in the sequence learning methods are optimized through a particle swarm optimization algorithm,which can greatly simplify the optimization process of the neural network model in an automated manner.Results show that the optimized GRU and RNN models have more compact neural network structures than the LSTM model and that the GRU is more efficiently trained.The predictive performance of LSTM and GRU is similar,and both are better than the RNN and the decline curve analysis model and thus can be used to predict tight gas production.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金supported by the National Key R&D Program of China(2022YFD1401600)the National Science Foundation for Distinguished Young Scholars of Zhejang Province,China(LR23C140001)supported by the Key Area Research and Development Program of Guangdong Province,China(2018B020205003 and 2020B0202090001).
文摘Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively.
基金Funded by State Railway Administration Research Project(No.2023JS007)National Natural Science Foundation of China(No.52438002)+1 种基金Research and Development Programs for Science and Technology of China Railways Corporation(No.J2023G003)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%.
文摘Objective The aim of this study was to develop and evaluate two deep-learning(DL)models for predicting spontaneous ureteral stone passage(SSP).Materials and methods A total of 1217 patients with thin-layer computed tomography–confirmed ureteral stones in our hospital from January 2019 to December 2022 were retrospectively examined.These patients were grouped into 3 data sets:the training set(n=1000),the validation set(n=100),and the test set(n=117).Two DL models based on residual neural network(ResNet)—2-dimensional(2D)ResNet29 and 3-dimensional(3D)ResNet29—were separately developed,trained,and assessed.The predictive ability of a conventional approach using a stone diameter of<5 mm on computed tomography was investigated,and the results were compared with those of the two DL models.Results Of the 1217 patients,SSP was reported in 446(36.6%).The total accuracy,sensitivity,and specificity were 76.9%,56.1%,and 90.8%for the stone diameter approach;87.1%,84.2%,and 92.7%for the 2D ResNet29 model;and 90.6%,88.2%,and 95.1%for the 3D ResNet29 model,respectively.Both the 2D and 3D ResNet29 models showed significantly higher accuracy than the stone diameter approach.Receiver operating characteristic curve analysis showed that both DL models had a significantly higher area under the curve than the stone diameter–based classification.Conclusions The DL models,particularly the 3D model,are novel and effective methods for predicting SSP rates.Using such models may help determine whether a patient should receive surgical intervention or expect a long interval before stone passage.
基金Supported by the National Natural Science Foundation of China(Grant No.12261081).
文摘In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.
基金Supported by the National Key Specialty of Traditional Chinese Medicine(Spleen and Stomach Diseases),No.0500004National Natural Science Foundation of China,No.82205104 and No.82104850+1 种基金Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0303-07the Fundamental Research Funds for the Central Public Welfare Research Institutes,Excellent Young Scientists Training Program of China Academy of Chinese Medical Sciences,No.ZZ16-YQ-002.
文摘BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
文摘In the lush heart of Uganda’s Busoga sub-region,Isaac Imaka is charting a new course for rural development.After seven years in national media,he left the newsroom and stepped into the soil.The former reporter with the Daily Monitor was driven by the belief that communities like his in Jinja North deserved more than chronic poverty and hand-to-mouth survival.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation):project ID 431549029-SFB 1451the Marga-und-Walter-Boll-Stiftung(#210-10-15)(to MAR)a stipend from the'Gerok Program'(Faculty of Medicine,University of Cologne,Germany)。
文摘Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
基金Supported by High-level Professional Groups in Gangdong Province,No.GSPZYQ2020101Guangdong Province Educational Research Planning Project,No.2024GXJK742。
文摘BACKGROUND Paternal perinatal depression(PPD)is closely associated with maternal mental health challenges,marital strain,and adverse child developmental outcomes.Despite its significant impact,PPD remains under-recognized in family-centered clinical practice.Concurrently,against the backdrop of rising rates of delayed marriage and China’s Maternity Incentive Policy,the proportion of women giving birth at an advanced maternal age is increasing.Nevertheless,research specifically examining PPD among spouses of older mothers remains critically scarce,both in China and globally.AIM To investigate PPD and its influencing factors in Chinese advanced maternal age families.METHODS This cross-sectional study included 358 participants;it was conducted among fathers of pregnant women of advanced maternal age at five hospitals in the Pearl River Delta region of China from September 2023 to June 2024.Data were collected via a general information questionnaire,the Social Support Rating Scale,and the Edinburgh Postnatal Depression Scale.Latent profile analysis and regression mixture models(RMMs)were adopted to analyze the latent PPD types and factors that influenced PPD.RESULTS The incidence of PPD was 16.48%,and three profiles were identified:Low-symptomatic(175 cases,48.89%),monophasic(140 cases,39.10%),and high-symptomatic(43 cases,12.01%).The RMM analysis revealed that first pregnancy,low income(<¥3000/month),part-time work,and a history of abnormal pregnancy were positively associated with the high-symptomatic type(P<0.05).Conversely,high subjective support and support utilization were negatively associated with the high-symptomatic type compared with the low-symptomatic type(P<0.05).Good couple relationships,high objective and subjective support,and high support utilization were negatively associated with monophasic disorder(P<0.05).CONCLUSION PPD incidence is high among Chinese fathers with advanced maternal age partners,and the characteristics of depression are varied.Healthcare practitioners should prioritize individuals with low levels of social support.
文摘Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.