Deep storage tunnels(DSTs)are used in densely urbanized areas to relieve stormwater collection systems,thereby reducing urban floods and runoff pollution,due to their substantial storage capacity.The computation of th...Deep storage tunnels(DSTs)are used in densely urbanized areas to relieve stormwater collection systems,thereby reducing urban floods and runoff pollution,due to their substantial storage capacity.The computation of the hydraulic characteristics and flow trajectories of DSTs under rapid filling scenarios can help to predict sediment deposition and pollutant accumulation associated with the stored runoff,as well as the likelihood of operational problems,such as excessive surging.However,such assessments are complicated by various inflow scenarios encountered in tunnel systems during their operation.In this study,the Suzhou River DST in China is selected as a study case.Particles were tracked,and hydraulic analysis was conducted with scaled model experiments and numerical models.The flow field,particle movement,air‒water phase,and pressure patterns in the DST were simulated under various one-and two-sided inflow scenarios.The results showed that with regards to the design conditions involving two-sided inflows,flow reversals occurred with stepwise increases in the water surface and pressure.In contrast,this phenomenon was not observed under the one-sided inflow scenario.Under the asymmetric two-sided inflow scenarios,water inflows led to particle accumulation near the shaft,reducing the received inflows.However,under the symmetric inflow conditions,particles were concentrated near the middle of the tunnel.Compared to those under the symmetric inflow scenario,asymmetric inflow caused surface wave and entrapped air reductions.This study could provide support for regulation of the inflow of the Suzhou River DST and for prediction of sediment and pollutant accumulation.展开更多
For the sake of mine water drainage and sustainable groundwater protection,the new approach of mine water deep geological storage(MWDGS)is highly necessary to save water resources in the semi-arid region of China.Howe...For the sake of mine water drainage and sustainable groundwater protection,the new approach of mine water deep geological storage(MWDGS)is highly necessary to save water resources in the semi-arid region of China.However,up to now,little academic research has been done on mine water geological storage.Given this situation,the hydrogeological feasibility of MWDGS was explored in Baotashan coarse sandstone(BCS)of Jurassic measure in Ordos Basin.The results show that the white-gray BCS with a fragile skeleton of quartz(41.4%),feldspar(21.1%),and clay minerals(16.4%)provides the potential variable-void for mine water;and its hydro-chemical type of BCS aquifer is CO_(3)-Na and Cl-Na.As the burial depth increases,the strong alkaline groundwater is in stagnant and poor recharge-runoff-discharge condition.The lab test shows that the pores whose diameter is over 10μm could be treated as the main storage of mine water;and the effective porosity varies from 1.36%to 3.46%.When mine water is injected,the strong hydrodynamics of mine water storage would change the permeability significantly and about 0.201%soluble solids would be dissolved.Partial clay minerals obstruct the pores and induce the saturated phase of high permeability to evolve into steady phase of lower permeability.Under the condition of nonhydraulic fracturing during continuous storage,the heterogeneous anisotropic medium obtained by Transition PRObability GeoStatistics(TPROGS)shows that the capacity of BCS aquifer is 0.455 to 1.226Mm^(3)for 1 km^(2)in the study area.The simulation shows that the groundwater mound in well-scale and mine-scale would be formed.The groundwater quality characteristics of“Three Zone”would occur around and gradually drop to approximate the original brine within 10 years.The hydrogeological feasibility reveals that this approach is useful for the well design and groundwater environment management during the mine water deep geological storage project in the Ordos basin.展开更多
基金supported by the National Natural Science Foundation of Jiangsu Province(Grant No.BK20230099)the National Natural Science Foundation of China(Grants No.52379061 and 52179062)the Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(Grant No.QTKS0034W23292).
文摘Deep storage tunnels(DSTs)are used in densely urbanized areas to relieve stormwater collection systems,thereby reducing urban floods and runoff pollution,due to their substantial storage capacity.The computation of the hydraulic characteristics and flow trajectories of DSTs under rapid filling scenarios can help to predict sediment deposition and pollutant accumulation associated with the stored runoff,as well as the likelihood of operational problems,such as excessive surging.However,such assessments are complicated by various inflow scenarios encountered in tunnel systems during their operation.In this study,the Suzhou River DST in China is selected as a study case.Particles were tracked,and hydraulic analysis was conducted with scaled model experiments and numerical models.The flow field,particle movement,air‒water phase,and pressure patterns in the DST were simulated under various one-and two-sided inflow scenarios.The results showed that with regards to the design conditions involving two-sided inflows,flow reversals occurred with stepwise increases in the water surface and pressure.In contrast,this phenomenon was not observed under the one-sided inflow scenario.Under the asymmetric two-sided inflow scenarios,water inflows led to particle accumulation near the shaft,reducing the received inflows.However,under the symmetric inflow conditions,particles were concentrated near the middle of the tunnel.Compared to those under the symmetric inflow scenario,asymmetric inflow caused surface wave and entrapped air reductions.This study could provide support for regulation of the inflow of the Suzhou River DST and for prediction of sediment and pollutant accumulation.
基金Fundamental Research Funds for the Universities,Grant/Award Numbers:2020ZDPY0201,2022QN1061National Key Research and Development Project of China,Grant/Award Number:2019YFC1805400+1 种基金National Science Foundation of Jiangsu Province,Grant/Award Number:BK20210524National Natural Science Foundation,Grant/Award Number:42202268。
文摘For the sake of mine water drainage and sustainable groundwater protection,the new approach of mine water deep geological storage(MWDGS)is highly necessary to save water resources in the semi-arid region of China.However,up to now,little academic research has been done on mine water geological storage.Given this situation,the hydrogeological feasibility of MWDGS was explored in Baotashan coarse sandstone(BCS)of Jurassic measure in Ordos Basin.The results show that the white-gray BCS with a fragile skeleton of quartz(41.4%),feldspar(21.1%),and clay minerals(16.4%)provides the potential variable-void for mine water;and its hydro-chemical type of BCS aquifer is CO_(3)-Na and Cl-Na.As the burial depth increases,the strong alkaline groundwater is in stagnant and poor recharge-runoff-discharge condition.The lab test shows that the pores whose diameter is over 10μm could be treated as the main storage of mine water;and the effective porosity varies from 1.36%to 3.46%.When mine water is injected,the strong hydrodynamics of mine water storage would change the permeability significantly and about 0.201%soluble solids would be dissolved.Partial clay minerals obstruct the pores and induce the saturated phase of high permeability to evolve into steady phase of lower permeability.Under the condition of nonhydraulic fracturing during continuous storage,the heterogeneous anisotropic medium obtained by Transition PRObability GeoStatistics(TPROGS)shows that the capacity of BCS aquifer is 0.455 to 1.226Mm^(3)for 1 km^(2)in the study area.The simulation shows that the groundwater mound in well-scale and mine-scale would be formed.The groundwater quality characteristics of“Three Zone”would occur around and gradually drop to approximate the original brine within 10 years.The hydrogeological feasibility reveals that this approach is useful for the well design and groundwater environment management during the mine water deep geological storage project in the Ordos basin.