期刊文献+
共找到5,760篇文章
< 1 2 250 >
每页显示 20 50 100
BAHGRF^(3):Human gait recognition in the indoor environment using deep learning features fusion assisted framework and posterior probability moth flame optimisation
1
作者 Muhammad Abrar Ahmad Khan Muhammad Attique Khan +5 位作者 Ateeq Ur Rehman Ahmed Ibrahim Alzahrani Nasser Alalwan Deepak Gupta Saima Ahmed Rahin Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期387-401,共15页
Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework... Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques. 展开更多
关键词 deep learning feature fusion feature optimization gait classification indoor environment machine learning
在线阅读 下载PDF
Salient Features Guided Augmentation for Enhanced Deep Learning Classification in Hematoxylin and Eosin Images
2
作者 Tengyue Li Shuangli Song +6 位作者 Jiaming Zhou Simon Fong Geyue Li Qun Song Sabah Mohammed Weiwei Lin Juntao Gao 《Computers, Materials & Continua》 2025年第7期1711-1730,共20页
Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurat... Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurate classification.Enhancing the visibility of these elusive cell features helps train robust deep-learning models.However,the selection and application of image processing techniques for such enhancement have not been systematically explored in the research community.To address this challenge,we introduce Salient Features Guided Augmentation(SFGA),an approach that strategically integrates machine learning and image processing.SFGA utilizes machine learning algorithms to identify crucial features within cell images,subsequently mapping these features to appropriate image processing techniques to enhance training images.By emphasizing salient features and aligning them with corresponding image processing methods,SFGA is designed to enhance the discriminating power of deep learning models in cell classification tasks.Our research undertakes a series of experiments,each exploring the performance of different datasets and data enhancement techniques in classifying cell types,highlighting the significance of data quality and enhancement in mitigating overfitting and distinguishing cell characteristics.Specifically,SFGA focuses on identifying tumor cells from tissue for extranodal extension detection,with the SFGA-enhanced dataset showing notable advantages in accuracy.We conducted a preliminary study of five experiments,among which the accuracy of the pleomorphism experiment improved significantly from 50.81%to 95.15%.The accuracy of the other four experiments also increased,with improvements ranging from 3 to 43 percentage points.Our preliminary study shows the possibilities to enhance the diagnostic accuracy of deep learning models and proposes a systematic approach that could enhance cancer diagnosis,contributing as a first step in using SFGA in medical image enhancement. 展开更多
关键词 Image processing feature extraction deep learning machine learning data augmentation
在线阅读 下载PDF
Active Learning-Enhanced Deep Ensemble Framework for Human Activity Recognition Using Spatio-Textural Features
3
作者 Lakshmi Alekhya Jandhyam Ragupathy Rengaswamy Narayana Satyala 《Computer Modeling in Engineering & Sciences》 2025年第9期3679-3714,共36页
Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computation... Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computational complexity,limited generalizability under varying conditions,and compromised real-time performance.To counter these,this paper introduces an Active Learning-aided Heuristic Deep Spatio-Textural Ensemble Learning(ALH-DSEL)framework.The model initially identifies keyframes from the surveillance videos with a Multi-Constraint Active Learning(MCAL)approach,with features extracted from DenseNet121.The frames are then segmented employing an optimized Fuzzy C-Means clustering algorithm with Firefly to identify areas of interest.A deep ensemble feature extractor,comprising DenseNet121,EfficientNet-B7,MobileNet,and GLCM,extracts varied spatial and textural features.Fused characteristics are enhanced through PCA and Min-Max normalization and discriminated by a maximum voting ensemble of RF,AdaBoost,and XGBoost.The experimental results show that ALH-DSEL provides higher accuracy,precision,recall,and F1-score,validating its superiority for real-time HAR in surveillance scenarios. 展开更多
关键词 Human activity prediction deep ensemble feature active learning E2E classifier surveillance systems
在线阅读 下载PDF
Hyperspectral Image Super-Resolution Based on Spatial-Spectral-Frequency Multidimensional Features
4
作者 Sifan Zheng Tao Zhang +3 位作者 Haibing Yin Hao Hu Jian Jiang Chenggang Yan 《Journal of Beijing Institute of Technology》 2025年第1期28-41,共14页
Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi... Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance. 展开更多
关键词 deep neural network hyperspectral image spatial feature spectral information frequency feature
在线阅读 下载PDF
BLFM-Net:An Efficient Regional Feature Matching Method for Bronchoscopic Surgery Based on Deep Learning Object Detection
5
作者 He Su Jianwei Gao Kang Kong 《Computers, Materials & Continua》 2025年第6期4193-4213,共21页
Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.This study purposes a bronchoscopic lumen feature matching network(BLFM-Net)based on deep learning to address the ... Accurate and robust navigation in complex surgical environments is crucial for bronchoscopic surgeries.This study purposes a bronchoscopic lumen feature matching network(BLFM-Net)based on deep learning to address the challenges of image noise,anatomical complexity,and the stringent real-time requirements.The BLFM-Net enhances bronchoscopic image processing by integrating several functional modules.The FFA-Net preprocessing module mitigates image fogging and improves visual clarity for subsequent processing.The feature extraction module derives multi-dimensional features,such as centroids,area,and shape descriptors,from dehazed images.The Faster RCNN Object detection module detects bronchial regions of interest and generates bounding boxes to localize key areas.The feature matching module accelerates the process by combining detection boxes,extracted features,and a KD-Tree(K-Dimensional Tree)-based algorithm,ensuring efficient and accurate regional feature associations.The BLFM-Net was evaluated on 5212 bronchoscopic images,demonstrating superior performance compared to traditional and other deep learning-based image matching methods.It achieved real-time matching with an average frame time of 6 ms,with a matching accuracy of over 96%.The method remained robust under challenging conditions including frame dropping(0,5,10,20),shadowed regions,and variable lighting,maintaining accuracy of above 94%even with the frame dropping of 20.This study presents BLFM-Net,a deep learning-based matching network designed to enhance and match bronchial features in bronchoscopic images.The BLFM-Net shows improved accuracy,real-time performance,and reliability,making a valuable tool for bronchoscopic surgeries. 展开更多
关键词 Bronchial region feature matching bronchoscopic tracking real-time processing bronchial texture features bronchial texture features deep learning medical image dehazing
在线阅读 下载PDF
Optimized Feature Selection for Leukemia Diagnosis Using Frog-Snake Optimization and Deep Learning Integration
6
作者 Reza Goodarzi Ali Jalali +2 位作者 Omid Hashemi Pour Tafreshi Jalil Mazloum Peyman Beygi 《Computers, Materials & Continua》 2025年第7期653-679,共27页
Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis... Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis of this malignancy;however,manual observation of the blood smear is very time-consuming and requires labor and expertise.Transfer learning in deep neural networks is of growing importance to intricate medical tasks such as medical imaging.Our work proposes an application of a novel ensemble architecture that puts together Vision Transformer and EfficientNetV2.This approach fuses deep and spatial features to optimize discriminative power by selecting features accurately,reducing redundancy,and promoting sparsity.Besides the architecture of the ensemble,the advanced feature selection is performed by the Frog-Snake Prey-Predation Relationship Optimization(FSRO)algorithm.FSRO prioritizes the most relevant features while dynamically reducing redundant and noisy data,hence improving the efficiency and accuracy of the classification model.We have compared our method for feature selection against state-of-the-art techniques and recorded an accuracy of 94.88%,a recall of 94.38%,a precision of 96.18%,and an F1-score of 95.63%.These figures are therefore better than the classical methods for deep learning.Though our dataset,collected from four different hospitals,is non-standard and heterogeneous,making the analysis more challenging,although computationally expensive,our approach proves diagnostically superior in cancer detection.Source codes and datasets are available on GitHub. 展开更多
关键词 Acute lymphocyte leukemia feature fusion deep learning feature selection frog-snake prey-predation relationship optimization
在线阅读 下载PDF
Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
7
作者 Iman S.Al-Mahdi Saad M.Darwish Magda M.Madbouly 《Computer Modeling in Engineering & Sciences》 2025年第4期875-909,共35页
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr... Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction. 展开更多
关键词 Heart disease prediction feature selection ensemble deep learning optimization genetic algorithm(GA) ensemble deep learning tunicate swarm algorithm(TSA) feature selection
在线阅读 下载PDF
A Novelty Framework in Image-Captioning with Visual Attention-Based Refined Visual Features
8
作者 Alaa Thobhani Beiji Zou +4 位作者 Xiaoyan Kui Amr Abdussalam Muhammad Asim Mohammed ELAffendi Sajid Shah 《Computers, Materials & Continua》 2025年第3期3943-3964,共22页
Image captioning,the task of generating descriptive sentences for images,has advanced significantly with the integration of semantic information.However,traditional models still rely on static visual features that do ... Image captioning,the task of generating descriptive sentences for images,has advanced significantly with the integration of semantic information.However,traditional models still rely on static visual features that do not evolve with the changing linguistic context,which can hinder the ability to form meaningful connections between the image and the generated captions.This limitation often leads to captions that are less accurate or descriptive.In this paper,we propose a novel approach to enhance image captioning by introducing dynamic interactions where visual features continuously adapt to the evolving linguistic context.Our model strengthens the alignment between visual and linguistic elements,resulting in more coherent and contextually appropriate captions.Specifically,we introduce two innovative modules:the Visual Weighting Module(VWM)and the Enhanced Features Attention Module(EFAM).The VWM adjusts visual features using partial attention,enabling dynamic reweighting of the visual inputs,while the EFAM further refines these features to improve their relevance to the generated caption.By continuously adjusting visual features in response to the linguistic context,our model bridges the gap between static visual features and dynamic language generation.We demonstrate the effectiveness of our approach through experiments on the MS-COCO dataset,where our method outperforms state-of-the-art techniques in terms of caption quality and contextual relevance.Our results show that dynamic visual-linguistic alignment significantly enhances image captioning performance. 展开更多
关键词 Image-captioning visual attention deep learning visual features
在线阅读 下载PDF
Face recognition algorithm using collaborative sparse representation based on CNN features
9
作者 ZHAO Shilin XU Chengjun LIU Changrong 《Journal of Measurement Science and Instrumentation》 2025年第1期85-95,共11页
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac... Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods. 展开更多
关键词 sparse representation deep learning face recognition dictionary update feature extraction
在线阅读 下载PDF
A Global-Local Parallel Dual-Branch Deep Learning Model with Attention-Enhanced Feature Fusion for Brain Tumor MRI Classification
10
作者 Zhiyong Li Xinlian Zhou 《Computers, Materials & Continua》 2025年第4期739-760,共22页
Brain tumor classification is crucial for personalized treatment planning.Although deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may b... Brain tumor classification is crucial for personalized treatment planning.Although deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may be overlooked during global feature extraction.Therefore,we propose a brain tumor Magnetic Resonance Imaging(MRI)classification model based on a global-local parallel dual-branch structure.The global branch employs ResNet50 with a Multi-Head Self-Attention(MHSA)to capture global contextual information from whole brain images,while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions.The features from both branches are processed through designed attention-enhanced feature fusion module to filter and integrate important features.Additionally,to address sample imbalance in the dataset,we introduce a category attention block to improve the recognition of minority classes.Experimental results indicate that our method achieved a classification accuracy of 98.04%and a micro-average Area Under the Curve(AUC)of 0.989 in the classification of three types of brain tumors,surpassing several existing pre-trained Convolutional Neural Network(CNN)models.Additionally,feature interpretability analysis validated the effectiveness of the proposed model.This suggests that the method holds significant potential for brain tumor image classification. 展开更多
关键词 deep learning attention mechanism feature fusion dual-branch structure brain tumor MRI classification
在线阅读 下载PDF
Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics
11
作者 Emad Sami Jaha 《Computer Modeling in Engineering & Sciences》 2025年第9期3645-3678,共34页
The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models ... The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models have recently offered high-performance and reliable systems.However,their performance can still be further improved using the capabilities of soft biometrics,a research question yet to be investigated.This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits.It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving new,more perceptive,comparative soft biometrics for feature-level fusion with hard biometric deep features.It conducts several identification and verification experiments for performance evaluation,analysis,and comparison while varying ear image datasets,hard biometric deep-feature extractors,soft biometric augmentation methods,and classifiers used.The experimental work yields promising results,reaching up to 99.94%accuracy and up to 14%improvement using the AMI and AMIC datasets,along with their corresponding soft biometric label data.The results confirm the proposed augmented approaches’superiority over their standard counterparts and emphasize the robustness of the new ear comparative soft biometrics over their categorical peers. 展开更多
关键词 Ear recognition soft biometrics human identification human verification comparative labeling ranking SVM deep features feature-level fusion convolutional neural networks(CNNs) deep learning
在线阅读 下载PDF
A Deep Learning-Based Salient Feature-Preserving Algorithm for Mesh Simplification
12
作者 Jiming Lan Bo Zeng +2 位作者 Suiqun Li Weihan Zhang Xinyi Shi 《Computers, Materials & Continua》 2025年第5期2865-2888,共24页
The Quadric Error Metrics(QEM)algorithm is a widely used method for mesh simplification;however,it often struggles to preserve high-frequency geometric details,leading to the loss of salient features.To address this l... The Quadric Error Metrics(QEM)algorithm is a widely used method for mesh simplification;however,it often struggles to preserve high-frequency geometric details,leading to the loss of salient features.To address this limitation,we propose the Salient Feature Sampling Points-based QEM(SFSP-QEM)—also referred to as the Deep Learning-Based Salient Feature-Preserving Algorithm for Mesh Simplification—which incorporates a Salient Feature-Preserving Point Sampler(SFSP).This module leverages deep learning techniques to prioritize the preservation of key geometric features during simplification.Experimental results demonstrate that SFSP-QEM significantly outperforms traditional QEM in preserving geometric details.Specifically,for general models from the Stanford 3D Scanning Repository,which represent typical mesh structures used in mesh simplification benchmarks,the Hausdorff distance of simplified models using SFSP-QEM is reduced by an average of 46.58% compared to those simplified using traditional QEM.In customized models such as the Zigong Lantern used in cultural heritage preservation,SFSP-QEM achieves an average reduction of 28.99% in Hausdorff distance.Moreover,the running time of this method is only 6%longer than that of traditional QEM while significantly improving the preservation of geometric details.These results demonstrate that SFSP-QEMis particularly effective for applications requiring high-fidelity simplification while retaining critical features. 展开更多
关键词 deep learning mesh simplification quadric error metrics(QEM) salient feature preservation point sampling
在线阅读 下载PDF
Correction to DeepCNN:Spectro-temporal feature representation for speech emotion recognition
13
《CAAI Transactions on Intelligence Technology》 2025年第2期633-633,共1页
Saleem,N.,et al.:DeepCNN:Spectro-temporal feature representation for speech emotion recognition.CAAI Trans.Intell.Technol.8(2),401-417(2023).https://doi.org/10.1049/cit2.12233.The affiliation of Hafiz Tayyab Rauf shou... Saleem,N.,et al.:DeepCNN:Spectro-temporal feature representation for speech emotion recognition.CAAI Trans.Intell.Technol.8(2),401-417(2023).https://doi.org/10.1049/cit2.12233.The affiliation of Hafiz Tayyab Rauf should be[Independent Researcher,UK]. 展开更多
关键词 independent researcher speech emotion recognition deep cnn uk speech emotion recognitioncaai spectro temporal feature representation hafiz tayyab rauf
在线阅读 下载PDF
Progress in feature research topics in deep underground
14
作者 Jianguo Wang Chunfai Leung 《Deep Underground Science and Engineering》 2025年第3期339-340,共2页
Deep Underground Science and Engineering(DUSE)is pleased to release this issue with feature articles reporting the advancement in several research topics related to deep underground.This issue contains one perspective... Deep Underground Science and Engineering(DUSE)is pleased to release this issue with feature articles reporting the advancement in several research topics related to deep underground.This issue contains one perspective article,two review articles,six research articles,and one case study article.These articles focus on underground energy storage,multiscale modeling for correlation between micro-scale damage and macro-scale structural degradation,mineralization and formation of gold mine,interface and fracture seepage,experimental study on tunnel-sand-pile interaction,and high water-content materials for deep underground space backfilling,analytical solutions for the crack evolution direction in brittle rocks,and a case study on the squeezing-induced failure in a water drainage tunnel and the rehabilitation measures. 展开更多
关键词 deep undergroundthis multiscale modeling underground energy storage underground energy storagemultiscale modeling formation gold mineinterface fracture s micro scale damage macro scale structural degradation feature articles
原文传递
Prediction of Pediatric Sepsis Using a Deep Encoding Network with Cross Features
15
作者 陈潇 张瑞 +1 位作者 汤心溢 钱娟 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第1期131-140,共10页
Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacillicul... Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacilliculture detection method is too time-consuming to receive timely treatment.In this research,we propose a new framework:a deep encoding network with cross features(CF-DEN)that enables accurate early detection of sepsis.Cross features are automatically constructed via the gradient boosting decision tree and distilled into the deep encoding network(DEN)we designed.The DEN is aimed at learning sufficiently effective representation from clinical test data.Each layer of the DEN fltrates the features involved in computation at current layer via attention mechanism and outputs the current prediction which is additive layer by layer to obtain the embedding feature at last layer.The framework takes the advantage of tree-based method and neural network method to extract effective representation from small clinical dataset and obtain accurate prediction in order to prompt patient to get timely treatment.We evaluate the performance of the framework on the dataset collected from Shanghai Children's Medical Center.Compared with common machine learning methods,our method achieves the increase on F1-score by 16.06%on the test set. 展开更多
关键词 pediatric sepsis gradient boosting decision tree cross feature neural network deep encoding network with cross features(CF-DEN)
原文传递
Mesh representation matters:investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models
16
作者 Robert KOSK Richard SOUTHERN +3 位作者 Lihua YOU Shaojun BIAN Willem KOKKE Greg MAGUIRE 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期383-395,共13页
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys... Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods. 展开更多
关键词 Shape modelling deep 3D morphable models Representation learning feature engineering Perceptual metrics
在线阅读 下载PDF
Combining Handcrafted Features and Deep Learning for Automatic Classification of Lung Cancer on CT Scans
17
作者 Pallavi Deshpande Mohammed Wasim Bhatt +4 位作者 Santaji Krishna Shinde Neelam Labhade-Kumar N.Ashokkumar K.G.S.Venkatesan Finney Daniel Shadrach 《Journal of Artificial Intelligence and Technology》 2024年第2期102-113,共12页
On a global scale,lung cancer is responsible for around 27%of all cancer fatalities.Even though there have been great strides in diagnosis and therapy in recent years,the five-year cure rate is just 19%.Classification... On a global scale,lung cancer is responsible for around 27%of all cancer fatalities.Even though there have been great strides in diagnosis and therapy in recent years,the five-year cure rate is just 19%.Classification is crucial for diagnosing lung nodules.This is especially true today that automated categorization may provide a professional opinion that can be used by doctors.New computer vision and machine learning techniques have made possible accurate and quick categorization of CT images.This field of research has exploded in popularity in recent years because of its high efficiency and ability to decrease labour requirements.Here,they want to look carefully at the current state of automated categorization of lung nodules.Generalpurpose structures are briefly discussed,and typical algorithms are described.Our results show deep learning-based lung nodule categorization quickly becomes the industry standard.Therefore,it is critical to pay greater attention to the coherence of the data inside the study and the consistency of the research topic.Furthermore,there should be greater collaboration between designers,medical experts,and others in the field. 展开更多
关键词 CT image classification deep learning handcrafted features lung cancer lung nodule classification
在线阅读 下载PDF
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:37
18
作者 Xiong-Qi Pang Cheng-Zao Jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap... As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 Petroliferous basin deep petroleum geology features Hydrocarbon accumulation Petroleum exploration Petroleum resources
原文传递
基于改进DeepLabV3+算法的遥感影像滑坡识别 被引量:1
19
作者 李旺平 尉文博 +6 位作者 刘晓杰 柴成富 张雪莹 周兆叶 张秀霞 郝君明 魏玉明 《地球信息科学学报》 北大核心 2025年第6期1448-1461,共14页
【目的】深度学习方法在地物识别中可以通过自动提取复杂地形特征从而显著提升效率,其中DeepLabV3+算法能够有效捕获多像素特征,被广泛地应用于遥感影像的分割和识别。但其在滑坡识别中细节处理能力受限,容易导致目标边界的模糊和识别错... 【目的】深度学习方法在地物识别中可以通过自动提取复杂地形特征从而显著提升效率,其中DeepLabV3+算法能够有效捕获多像素特征,被广泛地应用于遥感影像的分割和识别。但其在滑坡识别中细节处理能力受限,容易导致目标边界的模糊和识别错误,此外,该模型依靠卷积运算捕获的是局部信息,难以有效地建立长距离依赖关系。【方法】本文提出了一种基于DeepLabV3+的改进模型,首先,引入坐标注意力(Coordinate Attention,CA)机制,增强特征表达能力。其次,使用密集空间空洞金字塔池化(Dense Atrous Spatial Pyramid Pooling,DenseASPP)模块替换原有的空间空洞金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块,提升多尺度特征提取效果并有效地解决了空洞卷积低效或失效的问题;同时,通过并联加入条形池化(Strip Pooling,SP)分支模块,提升主干网络对长距离依赖关系的建模能力。最后,引入级联特征融合(Cascade Feature Fusion,CFF)模块,用于整合不同层次的特征信息,进一步优化分割性能。【结果】使用毕节滑坡数据集进行实验,结果表明,改进后模型相较原模型的MIoU提高了2.2%,F1分数提高了1.2%;与其他主流深度学习模型进行对比,该模型在提取精度方面均表现出一定优势。在分割效果上,该模型在识别滑坡区域的整体准确性上有显著提高,分割结果与原始滑坡形态保持很高的一致性,减少了错分和漏分现象,在滑坡边界的分割上更加精确。【结论】通过验证数据集测试及实际应用验证,本文提出的方法在不同场景、不同复杂程度下的滑坡影像均表现出较强的识别能力,尤其在植被覆盖区、河流邻近区域等复杂背景环境中表现更加稳定,展现出较强的泛化能力和普适性。 展开更多
关键词 滑坡识别 遥感影像 深度学习 语义分割 deepLabV3+ 注意力机制 DenseASPP 特征融合
原文传递
Multiclass Stomach Diseases Classication Using Deep Learning Features Optimization 被引量:3
20
作者 Muhammad Attique Khan Abdul Majid +4 位作者 Nazar Hussain Majed Alhaisoni Yu-Dong Zhang Seifedine Kadry Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第6期3381-3399,共19页
In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomac... In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance. 展开更多
关键词 Stomach infections deep features features optimization FUSION classication
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部