期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
B^(2)C^(3)NetF^(2):Breast cancer classification using an end‐to‐end deep learning feature fusion and satin bowerbird optimization controlled Newton Raphson feature selection 被引量:1
1
作者 Mamuna Fatima Muhammad Attique Khan +2 位作者 Saima Shaheen Nouf Abdullah Almujally Shui‐Hua Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1374-1390,共17页
Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show mor... Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show more remarkable performance than the traditional methods for medical image processing tasks,such as skin cancer,colorectal cancer,brain tumour,cardiac disease,Breast cancer(BrC),and a few more.The manual diagnosis of medical issues always requires an expert and is also expensive.Therefore,developing some computer diagnosis techniques based on deep learning is essential.Breast cancer is the most frequently diagnosed cancer in females with a rapidly growing percentage.It is estimated that patients with BrC will rise to 70%in the next 20 years.If diagnosed at a later stage,the survival rate of patients with BrC is shallow.Hence,early detection is essential,increasing the survival rate to 50%.A new framework for BrC classification is presented that utilises deep learning and feature optimization.The significant steps of the presented framework include(i)hybrid contrast enhancement of acquired images,(ii)data augmentation to facilitate better learning of the Convolutional Neural Network(CNN)model,(iii)a pre‐trained ResNet‐101 model is utilised and modified according to selected dataset classes,(iv)deep transfer learning based model training for feature extraction,(v)the fusion of features using the proposed highly corrected function‐controlled canonical correlation analysis approach,and(vi)optimal feature selection using the modified Satin Bowerbird Optimization controlled Newton Raphson algorithm that finally classified using 10 machine learning classifiers.The experiments of the proposed framework have been carried out using the most critical and publicly available dataset,such as CBISDDSM,and obtained the best accuracy of 94.5%along with improved computation time.The comparison depicts that the presented method surpasses the current state‐ofthe‐art approaches. 展开更多
关键词 artificial intelligence artificial neural network deep learning medical image processing multi‐objective optimization
在线阅读 下载PDF
Call for Papers Special Section on Deep Learning for Natural Language Processing
2
作者 Maosong Sun 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第3期366-366,共1页
The publication of Tsinghua Science and Technology was started in 1996.Since then,it has been an international academic journal sponsored by Tsinghua University and published bimonthly.This journal aims at presenting ... The publication of Tsinghua Science and Technology was started in 1996.Since then,it has been an international academic journal sponsored by Tsinghua University and published bimonthly.This journal aims at presenting the state-of-the-art scientific achievements in computer science and other IT fields. 展开更多
关键词 Call for Papers Special Section on deep learning for Natural Language processing
原文传递
DSC based Dual-Resunet for radio frequency interference identification 被引量:1
3
作者 Yan-Jun Zhang Yan-Zuo Li +1 位作者 Jun Cheng Yi-Hua Yan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第12期315-325,共11页
Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use... Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use a deep learning method to identify RFI in frequency spectrum data,and propose a neural network based on Unet that combines the principles of depthwise separable convolution and residual,named DSC Based Dual-Resunet.Compared with the existing Unet network,DSC Based Dual-Resunet performs better in terms of accuracy,F1 score,and MIoU,and is also better in terms of computation cost where the model size and parameter amount are 12.5%of Unet and the amount of computation is 38%of Unet.The experimental results show that the proposed network is a high-performance and lightweight network,and it is hopeful to be applied to RFI identification of radio telescopes on a large scale. 展开更多
关键词 techniques:deep learning and image processing radio frequency interference telescopes Sun:radio radiation
在线阅读 下载PDF
Automated extraction of attributes from natural language attribute-based access control(ABAC)Policies 被引量:4
4
作者 Manar Alohaly Hassan Takabi Eduardo Blanco 《Cybersecurity》 CSCD 2019年第1期38-62,共25页
The National Institute of Standards and Technology(NIST)has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access... The National Institute of Standards and Technology(NIST)has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access control policy(NLACP)to a machine-readable form.To study the automation process,we consider the hierarchical ABAC model as our reference model since it better reflects the requirements of real-world organizations.Therefore,this paper focuses on the questions of:how can we automatically infer the hierarchical structure of an ABAC model given NLACPs;and,how can we extract and define the set of authorization attributes based on the resulting structure.To address these questions,we propose an approach built upon recent advancements in natural language processing and machine learning techniques.For such a solution,the lack of appropriate data often poses a bottleneck.Therefore,we decouple the primary contributions of this work into:(1)developing a practical framework to extract authorization attributes of hierarchical ABAC system from natural language artifacts,and(2)generating a set of realistic synthetic natural language access control policies(NLACPs)to evaluate the proposed framework.Our experimental results are promising as we achieved-in average-an F1-score of 0.96 when extracting attributes values of subjects,and 0.91 when extracting the values of objects’attributes from natural language access control policies. 展开更多
关键词 Attribute-based access control(ABAC)policy authoring natural language processing relation extraction clustering deep learning
原文传递
Automated extraction of attributes from natural language attribute-based access control(ABAC)Policies
5
作者 Manar Alohaly Hassan Takabi Eduardo Blanco 《Cybersecurity》 2018年第1期313-337,共25页
The National Institute of Standards and Technology(NIST)has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access... The National Institute of Standards and Technology(NIST)has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access control policy(NLACP)to a machine-readable form.To study the automation process,we consider the hierarchical ABAC model as our reference model since it better reflects the requirements of real-world organizations.Therefore,this paper focuses on the questions of:how can we automatically infer the hierarchical structure of an ABAC model given NLACPs;and,how can we extract and define the set of authorization attributes based on the resulting structure.To address these questions,we propose an approach built upon recent advancements in natural language processing and machine learning techniques.For such a solution,the lack of appropriate data often poses a bottleneck.Therefore,we decouple the primary contributions of this work into:(1)developing a practical framework to extract authorization attributes of hierarchical ABAC system from natural language artifacts,and(2)generating a set of realistic synthetic natural language access control policies(NLACPs)to evaluate the proposed framework.Our experimental results are promising as we achieved-in average-an F1-score of 0.96 when extracting attributes values of subjects,and 0.91 when extracting the values of objects’attributes from natural language access control policies. 展开更多
关键词 Attribute-based access control(ABAC)policy authoring natural language processing relation extraction clustering deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部