期刊文献+
共找到19,349篇文章
< 1 2 250 >
每页显示 20 50 100
Electroencephalogram Signal Classification and Artifact Removal with Deep Networks and Adaptive Thresholding
1
作者 MATHE Mariyadasu MIDIDODDI Padmaja BATTULA TIRUMALA Krishna 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期693-701,共9页
Physiological signals such as electroencephalogram(EEG)signals are often corrupted by artifacts during the acquisition and processing.Some of these artifacts may deteriorate the essential properties of the signal that... Physiological signals such as electroencephalogram(EEG)signals are often corrupted by artifacts during the acquisition and processing.Some of these artifacts may deteriorate the essential properties of the signal that pertains to meaningful information.Most of these artifacts occur due to the involuntary movements or actions the human does during the acquisition process.So,it is recommended to eliminate these artifacts with signal processing approaches.This paper presents two mechanisms of classification and elimination of artifacts.In the first step,a customized deep network is employed to classify clean EEG signals and artifact-included signals.The classification is performed at the feature level,where common space pattern features are extracted with convolutional layers,and these features are later classified with a support vector machine classifier.In the second stage of the work,the artifact signals are decomposed with empirical mode decomposition,and they are then eliminated with the proposed adaptive thresholding mechanism where the threshold value changes for every intrinsic mode decomposition in the iterative mechanism. 展开更多
关键词 artifact elimination deep network electroencephalogram(EEG)signal classification empirical mode decomposition
原文传递
Disordered Multi-view Registration Method Based on the Soft Trimmed Deep Network 被引量:1
2
作者 Rui GUO Yuanlong SONG Zhengyao WANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期13-26,共14页
Compared with the pair-wise registration of point clouds,multi-view point cloud registration is much less studied.In this dissertation,a disordered multi-view point cloud registration method based on the soft trimmed ... Compared with the pair-wise registration of point clouds,multi-view point cloud registration is much less studied.In this dissertation,a disordered multi-view point cloud registration method based on the soft trimmed deep network is proposed.In this method,firstly,the expression ability of feature extraction module is improved and the registration accuracy is increased by enhancing feature extraction network with the point pair feature.Secondly,neighborhood and angle similarities are used to measure the consistency of candidate points to surrounding neighborhoods.By combining distance consistency and high dimensional feature consistency,our network introduces the confidence estimation module of registration,so the point cloud trimmed problem can be converted to candidate for the degree of confidence estimation problem,achieving the pair-wise registration of partially overlapping point clouds.Thirdly,the results from pair-wise registration are fed into the model fusion to achieve the rough registration of multi-view point clouds.Finally,the hierarchical clustering is used to iteratively optimize the clustering center model by gradually increasing the number of clustering categories and performing clustering and registration alternately.This method achieves rough point cloud registration quickly in the early stage,improves the accuracy of multi-view point cloud registration in the later stage,and makes full use of global information to achieve robust and accurate multi-view registration without initial value. 展开更多
关键词 soft trimmed deep network point cloud REGISTRATION hierarchical clustering
在线阅读 下载PDF
Face recognition using both visible light image and near-infrared image and a deep network 被引量:3
3
作者 Kai Guo Shuai Wu Yong Xu 《CAAI Transactions on Intelligence Technology》 2017年第1期39-47,共9页
In recent years, deep networks has achieved outstanding performance in computer vision, especially in the field of face recognition. In terms of the performance for a face recognition model based on deep network, ther... In recent years, deep networks has achieved outstanding performance in computer vision, especially in the field of face recognition. In terms of the performance for a face recognition model based on deep network, there are two main closely related factors: 1) the structure of the deep neural network, and 2) the number and quality of training data. In real applications, illumination change is one of the most important factors that significantly affect the performance of face recognition algorithms. As for deep network models, only if there is sufficient training data that has various illumination intensity could they achieve expected performance. However, such kind of training data is hard to collect in the real world. In this paper, focusing on the illumination change challenge, we propose a deep network model which takes both visible light image and near-infrared image into account to perform face recognition. Near- infrared image, as we know, is much less sensitive to illuminations. Visible light face image contains abundant texture information which is very useful for face recognition. Thus, we design an adaptive score fusion strategy which hardly has information loss and the nearest neighbor algorithm to conduct the final classification. The experimental results demonstrate that the model is very effective in realworld scenarios and perform much better in terms of illumination change than other state-of-the-art models. 展开更多
关键词 deep network Face recognition Illumination change Insufficient training data
在线阅读 下载PDF
DNEF:A New Ensemble Framework Based on Deep Network Structure
4
作者 Siyu Yang Ge Song +2 位作者 Yuqiao Deng Changyu Liu Zhuoyu Ou 《Computers, Materials & Continua》 SCIE EI 2023年第12期4055-4072,共18页
Deep neural networks have achieved tremendous success in various fields,and the structure of these networks is a key factor in their success.In this paper,we focus on the research of ensemble learning based on deep ne... Deep neural networks have achieved tremendous success in various fields,and the structure of these networks is a key factor in their success.In this paper,we focus on the research of ensemble learning based on deep network structure and propose a new deep network ensemble framework(DNEF).Unlike other ensemble learning models,DNEF is an ensemble learning architecture of network structures,with serial iteration between the hidden layers,while base classifiers are trained in parallel within these hidden layers.Specifically,DNEF uses randomly sampled data as input and implements serial iteration based on the weighting strategy between hidden layers.In the hidden layers,each node represents a base classifier,and multiple nodes generate training data for the next hidden layer according to the transfer strategy.The DNEF operates based on two strategies:(1)The weighting strategy calculates the training instance weights of the nodes according to their weaknesses in the previous layer.(2)The transfer strategy adaptively selects each node’s instances with weights as transfer instances and transfer weights,which are combined with the training data of nodes as input for the next hidden layer.These two strategies improve the accuracy and generalization of DNEF.This research integrates the ensemble of all nodes as the final output of DNEF.The experimental results reveal that the DNEF framework surpasses the traditional ensemble models and functions with high accuracy and innovative deep ensemble methods. 展开更多
关键词 Machine learning ensemble learning deep ensemble deep network structure CLASSIFICATION
在线阅读 下载PDF
Action Recognition in Surveillance Videos with Combined Deep Network Models
5
作者 ZHANG Diankai ZHAO Rui-Wei +3 位作者 SHEN Lin CHEN Shaoxiang SUN Zhenfeng JIANG Yu-Gang 《ZTE Communications》 2016年第B12期54-60,共7页
Action recognition is an important topic in computer vision. Recently, deep learning technologies have been successfully used in lots of applications including video data for sloving recognition problems. However, mos... Action recognition is an important topic in computer vision. Recently, deep learning technologies have been successfully used in lots of applications including video data for sloving recognition problems. However, most existing deep learning based recognition frameworks are not optimized for action in the surveillance videos. In this paper, we propose a novel method to deal with the recognition of different types of actions in outdoor surveillance videos. The proposed method first introduces motion compensation to improve the detection of human target. Then, it uses three different types of deep models with single and sequenced images as inputs for the recognition of different types of actions. Finally, predictions from different models are fused with a linear model. Experimental results show that the proposed method works well on the real surveillance videos. 展开更多
关键词 action recognition deep network models model fusion surveillance video
在线阅读 下载PDF
Detecting and Classifying Darknet Traffic Using Deep Network Chains
6
作者 Amr Munshi Majid Alotaibi +2 位作者 Saud Alotaibi Wesam Al-Sabban Nasser Allheeib 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期891-902,共12页
The anonymity of the darknet makes it attractive to secure communication lines from censorship.The analysis,monitoring,and categorization of Internet network traffic are essential for detecting darknet traffic that ca... The anonymity of the darknet makes it attractive to secure communication lines from censorship.The analysis,monitoring,and categorization of Internet network traffic are essential for detecting darknet traffic that can generate a comprehensive characterization of dangerous users and assist in tracing malicious activities and reducing cybercrime.Furthermore,classifying darknet traffic is essential for real-time applications such as the timely monitoring of malware before attacks occur.This paper presents a two-stage deep network chain for detecting and classifying darknet traffic.In the first stage,anonymized darknet traffic,including VPN and Tor traffic related to hidden services provided by darknets,is detected.In the second stage,traffic related to VPNs and Tor services is classified based on their respective applications.The methodology of this paper was verified on a benchmark dataset containing VPN and Tor traffic.It achieved an accuracy of 96.8%and 94.4%in the detection and classification stages,respectively.Optimization and parameter tuning were performed in both stages to achieve more accurate results,enabling practitioners to combat alleged malicious activities and further detect such activities after outbreaks.In the classification stage,it was observed that the misclassifications were due to the audio and video streaming commonly used in shared real-time protocols.However,in cases where it is desired to distinguish between such activities accurately,the presented deep chain classifier can accommodate additional classifiers.Furthermore,additional classifiers could be added to the chain to categorize specific activities of interest further. 展开更多
关键词 DARKNET darknet traffic deep network chains Internet traffic
在线阅读 下载PDF
改进Deep Q Networks的交通信号均衡调度算法
7
作者 贺道坤 《机械设计与制造》 北大核心 2025年第4期135-140,共6页
为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向... 为进一步缓解城市道路高峰时段十字路口的交通拥堵现象,实现路口各道路车流均衡通过,基于改进Deep Q Networks提出了一种的交通信号均衡调度算法。提取十字路口与交通信号调度最相关的特征,分别建立单向十字路口交通信号模型和线性双向十字路口交通信号模型,并基于此构建交通信号调度优化模型;针对Deep Q Networks算法在交通信号调度问题应用中所存在的收敛性、过估计等不足,对Deep Q Networks进行竞争网络改进、双网络改进以及梯度更新策略改进,提出相适应的均衡调度算法。通过与经典Deep Q Networks仿真比对,验证论文算法对交通信号调度问题的适用性和优越性。基于城市道路数据,分别针对两种场景进行仿真计算,仿真结果表明该算法能够有效缩减十字路口车辆排队长度,均衡各路口车流通行量,缓解高峰出行方向的道路拥堵现象,有利于十字路口交通信号调度效益的提升。 展开更多
关键词 交通信号调度 十字路口 deep Q networks 深度强化学习 智能交通
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
8
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Integration of deep neural network modeling and LC-MS-based pseudo-targeted metabolomics to discriminate easily confused ginseng species 被引量:1
9
作者 Meiting Jiang Yuyang Sha +8 位作者 Yadan Zou Xiaoyan Xu Mengxiang Ding Xu Lian Hongda Wang Qilong Wang Kefeng Li De-an Guo Wenzhi Yang 《Journal of Pharmaceutical Analysis》 2025年第1期126-137,共12页
Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments invo... Metabolomics covers a wide range of applications in life sciences,biomedicine,and phytology.Data acquisition(to achieve high coverage and efficiency)and analysis(to pursue good classification)are two key segments involved in metabolomics workflows.Various chemometric approaches utilizing either pattern recognition or machine learning have been employed to separate different groups.However,insufficient feature extraction,inappropriate feature selection,overfitting,or underfitting lead to an insufficient capacity to discriminate plants that are often easily confused.Using two ginseng varieties,namely Panax japonicus(PJ)and Panax japonicus var.major(PJvm),containing the similar ginsenosides,we integrated pseudo-targeted metabolomics and deep neural network(DNN)modeling to achieve accurate species differentiation.A pseudo-targeted metabolomics approach was optimized through data acquisition mode,ion pairs generation,comparison between multiple reaction monitoring(MRM)and scheduled MRM(sMRM),and chromatographic elution gradient.In total,1980 ion pairs were monitored within 23 min,allowing for the most comprehensive ginseng metabolome analysis.The established DNN model demonstrated excellent classification performance(in terms of accuracy,precision,recall,F1 score,area under the curve,and receiver operating characteristic(ROC))using the entire metabolome data and feature-selection dataset,exhibiting superior advantages over random forest(RF),support vector machine(SVM),extreme gradient boosting(XGBoost),and multilayer perceptron(MLP).Moreover,DNNs were advantageous for automated feature learning,nonlinear modeling,adaptability,and generalization.This study confirmed practicality of the established strategy for efficient metabolomics data analysis and reliable classification performance even when using small-volume samples.This established approach holds promise for plant metabolomics and is not limited to ginseng. 展开更多
关键词 Liquid chromatography-mass spectrometry Pseudo-targeted metabolomics deep neural network Species differentiation GINSENG
在线阅读 下载PDF
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
10
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
A survey of backdoor attacks and defenses:From deep neural networks to large language models
11
作者 Ling-Xin Jin Wei Jiang +5 位作者 Xiang-Yu Wen Mei-Yu Lin Jin-Yu Zhan Xing-Zhi Zhou Maregu Assefa Habtie Naoufel Werghi 《Journal of Electronic Science and Technology》 2025年第3期13-35,共23页
Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susce... Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susceptibility to backdoors maliciously injected by adversaries.This vulnerability arises due to the intricate architecture and opacity of DNNs,resulting in numerous redundant neurons embedded within the models.Adversaries exploit these vulnerabilities to conceal malicious backdoor information within DNNs,thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications.This article presents a comprehensive survey of backdoor attacks against DNNs and the countermeasure methods employed to mitigate them.Initially,we trace the evolution of the concept from traditional backdoor attacks to backdoor attacks against DNNs,highlighting the feasibility and practicality of generating backdoor attacks against DNNs.Subsequently,we provide an overview of notable works encompassing various attack and defense strategies,facilitating a comparative analysis of their approaches.Through these discussions,we offer constructive insights aimed at refining these techniques.Finally,we extend our research perspective to the domain of large language models(LLMs)and synthesize the characteristics and developmental trends of backdoor attacks and defense methods targeting LLMs.Through a systematic review of existing studies on backdoor vulnerabilities in LLMs,we identify critical open challenges in this field and propose actionable directions for future research. 展开更多
关键词 Backdoor Attacks Backdoor defenses deep neural networks Large language model
在线阅读 下载PDF
Improving Fundus Detection Precision in Diabetic Retinopathy Using Derivative-Based Deep Neural Networks
12
作者 Asma Aldrees Hong Min +2 位作者 Ashit Kumar Dutta Yousef Ibrahim Daradkeh Mohd Anjum 《Computer Modeling in Engineering & Sciences》 2025年第3期2487-2511,共25页
Fundoscopic diagnosis involves assessing the proper functioning of the eye’s nerves,blood vessels,retinal health,and the impact of diabetes on the optic nerves.Fundus disorders are a major global health concern,affec... Fundoscopic diagnosis involves assessing the proper functioning of the eye’s nerves,blood vessels,retinal health,and the impact of diabetes on the optic nerves.Fundus disorders are a major global health concern,affecting millions of people worldwide due to their widespread occurrence.Fundus photography generates machine-based eye images that assist in diagnosing and treating ocular diseases such as diabetic retinopathy.As a result,accurate fundus detection is essential for early diagnosis and effective treatment,helping to prevent severe complications and improve patient outcomes.To address this need,this article introduces a Derivative Model for Fundus Detection using Deep NeuralNetworks(DMFD-DNN)to enhance diagnostic precision.Thismethod selects key features for fundus detection using the least derivative,which identifies features correlating with stored fundus images.Feature filtering relies on the minimum derivative,determined by extracting both similar and varying textures.In this research,the DNN model was integrated with the derivative model.Fundus images were segmented,features were extracted,and the DNN was iteratively trained to identify fundus regions reliably.The goal was to improve the precision of fundoscopic diagnosis by training the DNN incrementally,taking into account the least possible derivative across iterations,and using outputs from previous cycles.The hidden layer of the neural network operates on the most significant derivative,which may reduce precision across iterations.These derivatives are treated as inaccurate,and the model is subsequently trained using selective features and their corresponding extractions.The proposed model outperforms previous techniques in detecting fundus regions,achieving 94.98%accuracy and 91.57%sensitivity,with a minimal error rate of 5.43%.It significantly reduces feature extraction time to 1.462 s and minimizes computational overhead,thereby improving operational efficiency and scalability.Ultimately,the proposed model enhances diagnostic precision and reduces errors,leading to more effective fundus dysfunction diagnosis and treatment. 展开更多
关键词 deep neural network feature extraction fundus detection medical image processing
在线阅读 下载PDF
Clustering-based temporal deep neural network denoising method for event-based sensors
13
作者 LI Jianing XU Jiangtao GAO Jiandong 《Optoelectronics Letters》 2025年第7期441-448,共8页
To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective clu... To enhance the denoising performance of event-based sensors,we introduce a clustering-based temporal deep neural network denoising method(CBTDNN).Firstly,to cluster the sensor output data and obtain the respective cluster centers,a combination of density-based spatial clustering of applications with noise(DBSCAN)and Kmeans++is utilized.Subsequently,long short-term memory(LSTM)is employed to fit and yield optimized cluster centers with temporal information.Lastly,based on the new cluster centers and denoising ratio,a radius threshold is set,and noise points beyond this threshold are removed.The comprehensive denoising metrics F1_score of CBTDNN have achieved 0.8931,0.7735,and 0.9215 on the traffic sequences dataset,pedestrian detection dataset,and turntable dataset,respectively.And these metrics demonstrate improvements of 49.90%,33.07%,19.31%,and 22.97%compared to four contrastive algorithms,namely nearest neighbor(NNb),nearest neighbor with polarity(NNp),Autoencoder,and multilayer perceptron denoising filter(MLPF).These results demonstrate that the proposed method enhances the denoising performance of event-based sensors. 展开更多
关键词 cluster centers denoising kmeans cluster centersa temporal deep neural network CLUSTERING event based sensors dbscan
原文传递
Cuckoo Search-Deep Neural Network Hybrid Model for Uncertainty Quantification and Optimization of Dielectric Energy Storage in Na_(1/2)Bi_(1/2)TiO_(3)-Based Ceramic Capacitors
14
作者 Shige Wang Yalong Liang +1 位作者 Lian Huang Pei Li 《Computers, Materials & Continua》 2025年第11期2729-2748,共20页
This study introduces a hybrid Cuckoo Search-Deep Neural Network(CS-DNN)model for uncertainty quantification and composition optimization of Na_(1/2)Bi_(1/2)TiO_(3)(NBT)-based dielectric energy storage ceramics.Addres... This study introduces a hybrid Cuckoo Search-Deep Neural Network(CS-DNN)model for uncertainty quantification and composition optimization of Na_(1/2)Bi_(1/2)TiO_(3)(NBT)-based dielectric energy storage ceramics.Addressing the limitations of traditional ferroelectric materials—such as hysteresis loss and low breakdown strength under high electric fields—we fabricate(1−x)NBBT8-xBMT solid solutions via chemical modification and systematically investigate their temperature stability and composition-dependent energy storage performance through XRD,SEM,and electrical characterization.The key innovation lies in integrating the CS metaheuristic algorithm with a DNN,overcoming localminima in training and establishing a robust composition-property prediction framework.Our model accurately predicts room-temperature dielectric constant(ε_(r)),maximum dielectric constant(ε_(max)),dielectric loss(tanδ),discharge energy density(W_(rec)),and charge-discharge efficiency(η)from compositional inputs.A Monte Carlo-based uncertainty quantification framework,combined with the 3σ statistical criterion,demonstrates that CSDNN outperforms conventional DNN models in three critical aspects:Higher prediction accuracy(R^(2)=0.9717 vs.0.9382 for ε_(max));Tighter error distribution,satisfying the 99.7% confidence interval under the 3σprinciple;Enhanced robustness,maintaining stable predictions across a 25% composition span in generalization tests.While the model’s generalization is constrained by both the limited experimental dataset(n=45)and the underlying assumptions of MC-based data augmentation,the CS-DNN framework establishes a machine learning-guided paradigm for accelerated discovery of high-temperature dielectric capacitors through its unique capability in quantifying composition-level energy storage uncertainties. 展开更多
关键词 Cuckoo search deep neural network ferroelectric ceramics dielectric energy storage uncertainty analysis monte Carlo simulation
在线阅读 下载PDF
Big Texture Dataset Synthesized Based on Gradient and Convolution Kernels Using Pre-Trained Deep Neural Networks
15
作者 Farhan A.Alenizi Faten Khalid Karim +1 位作者 Alaa R.Al-Shamasneh Mohammad Hossein Shakoor 《Computer Modeling in Engineering & Sciences》 2025年第8期1793-1829,共37页
Deep neural networks provide accurate results for most applications.However,they need a big dataset to train properly.Providing a big dataset is a significant challenge in most applications.Image augmentation refers t... Deep neural networks provide accurate results for most applications.However,they need a big dataset to train properly.Providing a big dataset is a significant challenge in most applications.Image augmentation refers to techniques that increase the amount of image data.Common operations for image augmentation include changes in illumination,rotation,contrast,size,viewing angle,and others.Recently,Generative Adversarial Networks(GANs)have been employed for image generation.However,like image augmentation methods,GAN approaches can only generate images that are similar to the original images.Therefore,they also cannot generate new classes of data.Texture images presentmore challenges than general images,and generating textures is more complex than creating other types of images.This study proposes a gradient-based deep neural network method that generates a new class of texture.It is possible to rapidly generate new classes of textures using different kernels from pre-trained deep networks.After generating new textures for each class,the number of textures increases through image augmentation.During this process,several techniques are proposed to automatically remove incomplete and similar textures that are created.The proposed method is faster than some well-known generative networks by around 4 to 10 times.In addition,the quality of the generated textures surpasses that of these networks.The proposed method can generate textures that surpass those of someGANs and parametric models in certain image qualitymetrics.It can provide a big texture dataset to train deep networks.A new big texture dataset is created artificially using the proposed method.This dataset is approximately 2 GB in size and comprises 30,000 textures,each 150×150 pixels in size,organized into 600 classes.It is uploaded to the Kaggle site and Google Drive.This dataset is called BigTex.Compared to other texture datasets,the proposed dataset is the largest and can serve as a comprehensive texture dataset for training more powerful deep neural networks and mitigating overfitting. 展开更多
关键词 Big texture dataset data generation pre-trained deep neural network
在线阅读 下载PDF
System Modeling and Deep Learning-Based Security Analysis of Uplink NOMA Relay Networks with IRS and Fountain Codes
16
作者 Phu Tran Tin Minh-Sang Van Nguyen +2 位作者 Quy-Anh Bui Agbotiname Lucky Imoize Byung-Seo Kim 《Computer Modeling in Engineering & Sciences》 2025年第8期2521-2543,共23页
Digital content such as games,extended reality(XR),and movies has been widely and easily distributed over wireless networks.As a result,unauthorized access,copyright infringement by third parties or eavesdroppers,and ... Digital content such as games,extended reality(XR),and movies has been widely and easily distributed over wireless networks.As a result,unauthorized access,copyright infringement by third parties or eavesdroppers,and cyberattacks over these networks have become pressing concerns.Therefore,protecting copyrighted content and preventing illegal distribution in wireless communications has garnered significant attention.The Intelligent Reflecting Surface(IRS)is regarded as a promising technology for future wireless and mobile networks due to its ability to reconfigure the radio propagation environment.This study investigates the security performance of an uplink Non-Orthogonal Multiple Access(NOMA)system integrated with an IRS and employing Fountain Codes(FCs).Specifically,two users send signals to the base station at separate distances.A relay receives the signal from the nearby user first and then relays it to the base station.The IRS receives the signal from the distant user and reflects it to the relay,which then sends the reflected signal to the base station.Furthermore,a malevolent eavesdropper intercepts both user and relay communications.We construct mathematical equations for Outage Probability(OP),throughput,diversity evaluation,and Interception Probability(IP),offering quantitative insights to assess system security and performance.Additionally,OP and IP are analyzed using a Deep Neural Network(DNN)model.A deeper comprehension of the security performance of the IRS-assisted NOMA systemin signal transmission is provided by Monte Carlo simulations,which are also carried out to confirm the theoretical conclusions. 展开更多
关键词 Copyright management deep neural network fountain codes intelligent reflecting surface non-orthogonal multiple access physical layer security UPLINK
在线阅读 下载PDF
Deep residual systolic network for massive MIMO channel estimation by joint training strategies of mixed-SNR and mixed-scenarios
17
作者 SUN Meng JING Qingfeng ZHONG Weizhi 《Journal of Systems Engineering and Electronics》 2025年第4期903-913,共11页
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch... The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments. 展开更多
关键词 massive multiple-input multiple-output(MIMO) channel estimation deep residual shrinkage network(DRSN) deep convolutional neural network(CNN).
在线阅读 下载PDF
Comment on“Integration of deep neural network modeling and LC-MS-based pseudo-targeted metabolomics as a practical strategy to differentiate ginseng species”
18
作者 Li Ping 《Journal of Pharmaceutical Analysis》 2025年第2期289-290,共2页
Traditional Chinese medicine(TCM),especially the plant-based,represents complex chemical system containing various primary and secondary metabolites.These botanical metabolites are structurally diversified and exhibit... Traditional Chinese medicine(TCM),especially the plant-based,represents complex chemical system containing various primary and secondary metabolites.These botanical metabolites are structurally diversified and exhibit significant difference in the acidity,alkalinity,molecular weight,polarity,and content,etc,which thus poses great challenges in assessing the quality of TCM[1]. 展开更多
关键词 chemical system pseudo targeted metabolomics assessing quality LC MS traditional chinese medicine tcm especially primary secondary metabolitesthese ginseng species differentiation deep neural network
暂未订购
Demand Forecasting of a Microgrid-Powered Electric Vehicle Charging Station Enabled by Emerging Technologies and Deep Recurrent Neural Networks
19
作者 Sahbi Boubaker Adel Mellit +3 位作者 Nejib Ghazouani Walid Meskine Mohamed Benghanem Habib Kraiem 《Computer Modeling in Engineering & Sciences》 2025年第5期2237-2259,共23页
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d... Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations. 展开更多
关键词 MICROGRID electric vehicles charging station forecasting deep recurrent neural networks energy management system
在线阅读 下载PDF
A Modified Deep Residual-Convolutional Neural Network for Accurate Imputation of Missing Data
20
作者 Firdaus Firdaus Siti Nurmaini +8 位作者 Anggun Islami Annisa Darmawahyuni Ade Iriani Sapitri Muhammad Naufal Rachmatullah Bambang Tutuko Akhiar Wista Arum Muhammad Irfan Karim Yultrien Yultrien Ramadhana Noor Salassa Wandya 《Computers, Materials & Continua》 2025年第2期3419-3441,共23页
Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attentio... Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated the model on publicly available datasets, including Medical Information Mart for Intensive Care (MIMIC-III and MIMIC-IV), which contain critical care patient data, and the Beijing Multi-Site Air Quality dataset, which measures environmental air quality. The proposed DRes-CNN method achieved a root mean square error (RMSE) of 0.00006, highlighting its high accuracy and robustness. We also compared with Low Light-Convolutional Neural Network (LL-CNN) and U-Net methods, which had RMSE values of 0.00075 and 0.00073, respectively. This represented an improvement of approximately 92% over LL-CNN and 91% over U-Net. The results showed that this DRes-CNN-based imputation method outperforms current state-of-the-art models. These results established DRes-CNN as a reliable solution for addressing missing data. 展开更多
关键词 Data imputation missing data deep learning deep residual convolutional neural network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部