Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional a...Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational efficiency. Key architectural components such as convolution operations, shallow and deep blocks, skip connections, and hybrid encoders are examined for their roles in enhancing spatial representation and semantic consistency. We further discuss the importance of hierarchical and instance-aware segmentation and annotation in interpreting complex biological scenes and multiplexed medical images. By bridging methodological developments with diverse application domains, this paper outlines current trends and future directions for semantic segmentation, emphasizing its critical role in facilitating annotation, diagnosis, and discovery in biomedical research.展开更多
Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational s...Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.展开更多
In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinfor...In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement.展开更多
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg...The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.展开更多
Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD)...Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks.展开更多
To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network mo...To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification.展开更多
The control of the condensed superstructure of light-emitting conjugated polymers(LCPs)is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an eff...The control of the condensed superstructure of light-emitting conjugated polymers(LCPs)is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an effective platform to tune inter chain aggregation and photophysical behaviour of LCPs.Herein,we systematically investigated the alkyl-chain branched effecton the conformational transition and photophysical behaviour of polydiarylfluorenes toward efficient blue optoelectronic devices.The branched side chain will improve materials solubility to inhibit interchain aggregation in solution according to DLS and optical analysis,which is useful to obtain high quality film.Therefore,our branched PEODPF,POYDPF pristine film present high luminance efficiency of 36.1%and 39.6%,enhanced about 20%relative to that of PODPF.Compared to the liner-type sides'chain,these branched chains also suppress chain planarization and improve film morphological stability effectively.Interestingly,the branched polymer also had excellent stable amplified spontaneous emission(ASE)behaviour with low threshold(4.72μJ/cm2)and a center peak of 465 nm,even thermal annealing at 220℃in the air atmosphere.Therefore,side-chain branched strategy for LCPs is an effective means to control interchain aggregation,film morphology and photophysical property of LCPs.展开更多
Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices ...Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade.展开更多
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ...Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.展开更多
To ascertain the effects of long-term conservation tillage and residue retention on soil organic carbon(SOC) content and aggregate distribution in a deep soil(>20-cm depth) in a dryland environment,this paper analy...To ascertain the effects of long-term conservation tillage and residue retention on soil organic carbon(SOC) content and aggregate distribution in a deep soil(>20-cm depth) in a dryland environment,this paper analyzed the SOC and aggregate distribution in soil, and the aggregate-associated organic carbon(OC) and SOC physical fractions. Conservation tillage(reduced tillage with residue incorporated(RT) and no-tillage with residue mulch(NT)) significantly increased SOC sequestration and soil aggregation in deep soil compared with conventional tillage with residue removal(CT). Compared with CT, RT significantly increased the proportion of small macroaggregates by 23%–81% in the 10–80 cm layer, and the OC content in small macroaggregates by 1%–58% in the 0–80 cm layer. RT significantly increased(by 24%–90%) the OC content in mineral-SOC within small macroaggregates in the 0–60 cm layer, while there was a 23%–80% increase in the 0–40 cm layer with NT. These results indicated that:(1) conservation tillage treatments are beneficial for soil aggregation and SOC sequestration in a deep soil in a dryland environment; and(2)the SOC in mineral-associated OC plays important roles in soil aggregation and SOC sequestration. In conclusion, RT with NT is recommended as an agricultural management tool in dryland soils because of its role in improving soil aggregation and SOC sequestration.展开更多
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin...Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness.展开更多
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec...To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices.展开更多
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often...Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.展开更多
Objective Venous thromboembolism is a highly prevalent condition after polytrauma,and recognized as an important factor contributing to poor prognosis.The aim of this study was to investigate the risk factors for lowe...Objective Venous thromboembolism is a highly prevalent condition after polytrauma,and recognized as an important factor contributing to poor prognosis.The aim of this study was to investigate the risk factors for lower extremity deep venous thrombosis(LEDVT)in a severely traumatized population and to evaluate their predictive value for LEDVT.Methods This was a retrospective,single-center observational study.All subjects were severely traumatized patients who were admitted to the Traumatic Intensive Care Unit from January 2021 to May 2024.Based on Doppler ultrasound findings of both lower extremities from the time of injury to 30 days post-injury,patients who developed LEDVT were enrolled in the LEDVT group,and those who did not develop LEDVT were enrolled in the NLEDVT group.Demographic,clinical,and laboratory data were collected upon admission.Multivariable logistic regression analysis was performed to identify risk factors for LEDVT.Receiver operating characteristic(ROC)curve was used to evaluate the overall fit of the final model.Results There were 56 patients enrolled in the LEDVT group and 81 patients in the NLEDVT group.Age,Aggregate Index of Systemic Inflammation(AISI),Systemic Inflammation Response Index(SIRI),ICU length of stay,and albumin were identified as independent risk factors for LEDVT(all P<0.05).The area under their ROC curves were 0.604,0.657,0.694,0.668,and 0.405,respectively.Combined model for early clinical prediction of LEDVT in severely traumatized patients by age,SIRI,AISI,and albumin resulted in an area under the ROC curve of 0.805(95%CI:0.73-0.88,SE=0.037).Conclusion The combination of age,SIRI,AISI,and albumin has a predictive value for LEDVT in severely traumatized patients.展开更多
Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting fo...Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting for underground mines where the microseismic stations often lack azimuthal coverage.Thus,there is a need for a method to invert fracture mechanisms using waveforms acquired by a sparse microseismic network.Here,we present a novel,multi-scale framework to classify whether a rock crack contracts or dilates based on a single waveform.The framework consists of a deep learning model that is initially trained on 2400000+manually labelled field-scale seismic and microseismic waveforms acquired across 692 stations.Transfer learning is then applied to fine-tune the model on 300000+MT-labelled labscale acoustic emission waveforms from 39 individual experiments instrumented with different sensor layouts,loading,and rock types in training.The optimal model achieves over 86%F-score on unseen waveforms at both the lab-and field-scale.This model outperforms existing empirical methods in classification of rock fracture mechanisms monitored by a sparse microseismic network.This facilitates rapid assessment of,and early warning against,various rock engineering hazard such as induced earthquakes and rock bursts.展开更多
<div style="text-align:justify;"> In the frequency division duplex (FDD) mode of the massive MIMO system, the system needs to perform coding through channel state information (CSI) to obtain performanc...<div style="text-align:justify;"> In the frequency division duplex (FDD) mode of the massive MIMO system, the system needs to perform coding through channel state information (CSI) to obtain performance gains. However, the number of antennas of the base station has been greatly increased, resulting in a rapid increase in the overhead for the user terminal to feedback CSI to the base station. In this article, we propose a method based on multi-task CNN to achieve compression and reconstruction of channel state information through a multi-scale and multi-channel convolutional neural network. We also introduce a dynamic learning rate model to improve the accuracy of channel state information reconstruction. The simulation results show that compared with the original CsiNet and other work, the proposed CSI feedback network has better reconstruction performance. </div>展开更多
Rain streaks in an image appear in different sizes and orientations,resulting in severe blurring and visual quality degradation.Previous CNNbased algorithms have achieved encouraging deraining results although there a...Rain streaks in an image appear in different sizes and orientations,resulting in severe blurring and visual quality degradation.Previous CNNbased algorithms have achieved encouraging deraining results although there are certain limitations in the description of rain streaks and the restoration of scene structures in different environments.In this paper,we propose an efficient multi-scale enhancement and aggregation network(MEAN)to solve the single-image deraining problem.Considering the importance of large receptive fields and multi-scale features,we introduce a multi-scale enhanced unit(MEU)to capture longrange dependencies and exploit features at different scales to depict rain.Simultaneously,an attentive aggregation unit(AAU)is designed to utilize the informative features in spatial and channel dimensions,thereby aggregating effective information to eliminate redundant features for rich scenario details.To improve the deraining performance of the encoder–decoder network,we utilized an AAU to filter the information in the encoder network and concatenated the useful features to the decoder network,which is conducive to predicting high-quality clean images.Experimental results on synthetic datasets and real-world samples show that the proposed method achieves a significant deraining performance compared to state-of-the-art approaches.展开更多
The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instabili...The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instability mechanisms.Focusing on the Level VI stope sublayers in the Jinchuan#2 mining area,this study constructs a 24-parameter index system encompassing time-domain features,frequency-domain features,and multifractal characteristics.Through manifold learning,clustering analysis,and hybrid feature selection,15 key indicators were extracted to construct a classification framework for failure responses.Integrated with focal mechanism inversion and numerical simulation,the failure patterns and corresponding instability mechanisms across different structural zones were further identified.The results reveal that multiscale microseismic characteristics exhibit clear regional similarities.Based on the morphological features of radar plots derived from the 15 indicators,acoustic responses were classified into four typical types,each reflecting distinct local failure mechanisms,stress conditions,and plastic zone evolution.Moreover,considering dominant instability factors and rupture modes,four representative rock mass instability models were proposed for typical failure zones within the stope.These findings provide theoretical guidance and methodological support for hazard prediction,structural optimization,and disturbance control in deep metal mining areas.展开更多
基金Open Access funding provided by the National Institutes of Health(NIH)The funding for this project was provided by NCATS Intramural Fund.
文摘Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational efficiency. Key architectural components such as convolution operations, shallow and deep blocks, skip connections, and hybrid encoders are examined for their roles in enhancing spatial representation and semantic consistency. We further discuss the importance of hierarchical and instance-aware segmentation and annotation in interpreting complex biological scenes and multiplexed medical images. By bridging methodological developments with diverse application domains, this paper outlines current trends and future directions for semantic segmentation, emphasizing its critical role in facilitating annotation, diagnosis, and discovery in biomedical research.
基金The Key R&D Project of Jilin Province,Grant/Award Number:20230201067GX。
文摘Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.
文摘In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural networkbased reinforcement learning, thereby potentially leading to more effective policy improvement.
基金supported by Jiangsu Provincial Science and Technology Project,grant number J2023124.Jing Guo received this grant,the URLs of sponsors’website is https://kxjst.jiangsu.gov.cn/(accessed on 06 June 2024).
文摘The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.
基金This work was supported by the National Natural Science Foundation of China(No.61906006).
文摘Whole brain functional connectivity(FC)patterns obtained from resting-state functional magnetic resonance imaging(rs-fMRI)have been widely used in the diagnosis of brain disorders such as autism spectrum disorder(ASD).Recently,an increasing number of studies have focused on employing deep learning techniques to analyze FC patterns for brain disease classification.However,the high dimensionality of the FC features and the interpretation of deep learning results are issues that need to be addressed in the FC-based brain disease classification.In this paper,we proposed a multi-scale attention-based deep neural network(MSA-DNN)model to classify FC patterns for the ASD diagnosis.The model was implemented by adding a flexible multi-scale attention(MSA)module to the auto-encoder based backbone DNN,which can extract multi-scale features of the FC patterns and change the level of attention for different FCs by continuous learning.Our model will reinforce the weights of important FC features while suppress the unimportant FCs to ensure the sparsity of the model weights and enhance the model interpretability.We performed systematic experiments on the large multi-sites ASD dataset with both ten-fold and leaveone-site-out cross-validations.Results showed that our model outperformed classical methods in brain disease classification and revealed robust intersite prediction performance.We also localized important FC features and brain regions associated with ASD classification.Overall,our study further promotes the biomarker detection and computer-aided classification for ASD diagnosis,and the proposed MSA module is flexible and easy to implement in other classification networks.
基金supported by National Natural Science Foundation of China(No.61862037)Lanzhou Jiaotong University Tianyou Innovation Team Project(No.TY202002)。
文摘To solve the problems of redundant feature information,the insignificant difference in feature representation,and low recognition accuracy of the fine-grained image,based on the ResNeXt50 model,an MSFResNet network model is proposed by fusing multi-scale feature information.Firstly,a multi-scale feature extraction module is designed to obtain multi-scale information on feature images by using different scales of convolution kernels.Meanwhile,the channel attention mechanism is used to increase the global information acquisition of the network.Secondly,the feature images processed by the multi-scale feature extraction module are fused with the deep feature images through short links to guide the full learning of the network,thus reducing the loss of texture details of the deep network feature images,and improving network generalization ability and recognition accuracy.Finally,the validity of the MSFResNet model is verified using public datasets and applied to wild mushroom identification.Experimental results show that compared with ResNeXt50 network model,the accuracy of the MSFResNet model is improved by 6.01%on the FGVC-Aircraft common dataset.It achieves 99.13%classification accuracy on the wild mushroom dataset,which is 0.47%higher than ResNeXt50.Furthermore,the experimental results of the thermal map show that the MSFResNet model significantly reduces the interference of background information,making the network focus on the location of the main body of wild mushroom,which can effectively improve the accuracy of wild mushroom identification.
基金supported by the National Natural Science Foundation of China(Nos.61874053,21774061,91833306)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,PAPD(No.YX03002)+10 种基金the Six Peak Talents Foundation of Jiangsu Province(No.XCL-CXTD-009)Natural Science Funds of the Education Committee of Jiangsu Province(No.18KJA430009)"High-Level Talents in Six Industries"of Jiangsu Province(No.XYDXX-019)Program for Postgraduates Research Innovation in University of Jiangsu Province(No.KYCX17_0752)the open research fund from Key Laboratory for Organic Electronics and Information Display&and State Key Laboratory of Supramolecular Structure and Materials(No.sklssm2019017)Overseas Merit Foundation of Science and Technology of Nanjingfinancial support from the Regional Government of Madrid through NMAT2D-CM Project(No.S2018/NMT-4511)the Spanish Ministry of Economy and Competitiveness through project RTI2018-097508-B-I00through the Severo Ochoa Program for Centers of Excellence(No.SEV-2016-0686)the Campus of International Excellence(CEI)UAM+CSICthe China Scholarship Council(No.201608390023)for a PhD sponsorship
文摘The control of the condensed superstructure of light-emitting conjugated polymers(LCPs)is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an effective platform to tune inter chain aggregation and photophysical behaviour of LCPs.Herein,we systematically investigated the alkyl-chain branched effecton the conformational transition and photophysical behaviour of polydiarylfluorenes toward efficient blue optoelectronic devices.The branched side chain will improve materials solubility to inhibit interchain aggregation in solution according to DLS and optical analysis,which is useful to obtain high quality film.Therefore,our branched PEODPF,POYDPF pristine film present high luminance efficiency of 36.1%and 39.6%,enhanced about 20%relative to that of PODPF.Compared to the liner-type sides'chain,these branched chains also suppress chain planarization and improve film morphological stability effectively.Interestingly,the branched polymer also had excellent stable amplified spontaneous emission(ASE)behaviour with low threshold(4.72μJ/cm2)and a center peak of 465 nm,even thermal annealing at 220℃in the air atmosphere.Therefore,side-chain branched strategy for LCPs is an effective means to control interchain aggregation,film morphology and photophysical property of LCPs.
基金funded by State Key Laboratory for GeoMechanics and Deep Underground Engineering&Institute for Deep Underground Science and Engineering,Grant Number XD2021021BUCEA Post Graduate Innovation Project under Grant,Grant Number PG2023092.
文摘Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade.
基金The National Natural Science Foundation of China(No.51675098)
文摘Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.
基金supported jointly by the National Key Research and Development Program of China (2018YFD0200408, 2016YFD0300804)the Science and Technology Project (2015BAD22B03)the Basic Scientific Research Business Expenses of the Chinese Academy of Agricultural Sciences (1610132018024)
文摘To ascertain the effects of long-term conservation tillage and residue retention on soil organic carbon(SOC) content and aggregate distribution in a deep soil(>20-cm depth) in a dryland environment,this paper analyzed the SOC and aggregate distribution in soil, and the aggregate-associated organic carbon(OC) and SOC physical fractions. Conservation tillage(reduced tillage with residue incorporated(RT) and no-tillage with residue mulch(NT)) significantly increased SOC sequestration and soil aggregation in deep soil compared with conventional tillage with residue removal(CT). Compared with CT, RT significantly increased the proportion of small macroaggregates by 23%–81% in the 10–80 cm layer, and the OC content in small macroaggregates by 1%–58% in the 0–80 cm layer. RT significantly increased(by 24%–90%) the OC content in mineral-SOC within small macroaggregates in the 0–60 cm layer, while there was a 23%–80% increase in the 0–40 cm layer with NT. These results indicated that:(1) conservation tillage treatments are beneficial for soil aggregation and SOC sequestration in a deep soil in a dryland environment; and(2)the SOC in mineral-associated OC plays important roles in soil aggregation and SOC sequestration. In conclusion, RT with NT is recommended as an agricultural management tool in dryland soils because of its role in improving soil aggregation and SOC sequestration.
基金supported by the National Natural Science Foundation of China(62020106003,61873122,62303217)Aero Engine Corporation of China Industry-university-research Cooperation Project(HFZL2020CXY011)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(MCMS-I-0121G03).
文摘Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness.
基金funded by the Science and Technology Development Program of Jilin Province(20190301024NY)the Precision Agriculture and Big Data Engineering Research Center of Jilin Province(2020C005).
文摘To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices.
基金This research was supported by the National Natural Science Foundation of China No.62276086the National Key R&D Program of China No.2022YFD2000100Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGN23D010002.
文摘Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.
基金Basic Research Spe-cial Project of Suzhou Science and Technology Bureau(SSD2024050).
文摘Objective Venous thromboembolism is a highly prevalent condition after polytrauma,and recognized as an important factor contributing to poor prognosis.The aim of this study was to investigate the risk factors for lower extremity deep venous thrombosis(LEDVT)in a severely traumatized population and to evaluate their predictive value for LEDVT.Methods This was a retrospective,single-center observational study.All subjects were severely traumatized patients who were admitted to the Traumatic Intensive Care Unit from January 2021 to May 2024.Based on Doppler ultrasound findings of both lower extremities from the time of injury to 30 days post-injury,patients who developed LEDVT were enrolled in the LEDVT group,and those who did not develop LEDVT were enrolled in the NLEDVT group.Demographic,clinical,and laboratory data were collected upon admission.Multivariable logistic regression analysis was performed to identify risk factors for LEDVT.Receiver operating characteristic(ROC)curve was used to evaluate the overall fit of the final model.Results There were 56 patients enrolled in the LEDVT group and 81 patients in the NLEDVT group.Age,Aggregate Index of Systemic Inflammation(AISI),Systemic Inflammation Response Index(SIRI),ICU length of stay,and albumin were identified as independent risk factors for LEDVT(all P<0.05).The area under their ROC curves were 0.604,0.657,0.694,0.668,and 0.405,respectively.Combined model for early clinical prediction of LEDVT in severely traumatized patients by age,SIRI,AISI,and albumin resulted in an area under the ROC curve of 0.805(95%CI:0.73-0.88,SE=0.037).Conclusion The combination of age,SIRI,AISI,and albumin has a predictive value for LEDVT in severely traumatized patients.
基金supported by Western Research Interdisciplinary Initiative R6259A03.
文摘Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting for underground mines where the microseismic stations often lack azimuthal coverage.Thus,there is a need for a method to invert fracture mechanisms using waveforms acquired by a sparse microseismic network.Here,we present a novel,multi-scale framework to classify whether a rock crack contracts or dilates based on a single waveform.The framework consists of a deep learning model that is initially trained on 2400000+manually labelled field-scale seismic and microseismic waveforms acquired across 692 stations.Transfer learning is then applied to fine-tune the model on 300000+MT-labelled labscale acoustic emission waveforms from 39 individual experiments instrumented with different sensor layouts,loading,and rock types in training.The optimal model achieves over 86%F-score on unseen waveforms at both the lab-and field-scale.This model outperforms existing empirical methods in classification of rock fracture mechanisms monitored by a sparse microseismic network.This facilitates rapid assessment of,and early warning against,various rock engineering hazard such as induced earthquakes and rock bursts.
文摘<div style="text-align:justify;"> In the frequency division duplex (FDD) mode of the massive MIMO system, the system needs to perform coding through channel state information (CSI) to obtain performance gains. However, the number of antennas of the base station has been greatly increased, resulting in a rapid increase in the overhead for the user terminal to feedback CSI to the base station. In this article, we propose a method based on multi-task CNN to achieve compression and reconstruction of channel state information through a multi-scale and multi-channel convolutional neural network. We also introduce a dynamic learning rate model to improve the accuracy of channel state information reconstruction. The simulation results show that compared with the original CsiNet and other work, the proposed CSI feedback network has better reconstruction performance. </div>
基金supported by the National Natural Science Foundation of China(No.61972227)the Natural Science Foundation of Shandong Province(No.ZR201808160102)+4 种基金Shandong Provincial Natural Science Foundation Key Project(No.ZR2020KF015)the Key Research and Development Project of Shandong Province(No.2019GSF109112)the Science and Technology Plan for Young Talents in Colleges and Universities of Shandong Province(No.2020KJN007)the Scientific Research Studio in Colleges and Universities of Ji’nan City(No.2021GXRC092)the Science and Technology Research Program for Colleges and Universities in Shandong Province(No.KJ2018BZN029).
文摘Rain streaks in an image appear in different sizes and orientations,resulting in severe blurring and visual quality degradation.Previous CNNbased algorithms have achieved encouraging deraining results although there are certain limitations in the description of rain streaks and the restoration of scene structures in different environments.In this paper,we propose an efficient multi-scale enhancement and aggregation network(MEAN)to solve the single-image deraining problem.Considering the importance of large receptive fields and multi-scale features,we introduce a multi-scale enhanced unit(MEU)to capture longrange dependencies and exploit features at different scales to depict rain.Simultaneously,an attentive aggregation unit(AAU)is designed to utilize the informative features in spatial and channel dimensions,thereby aggregating effective information to eliminate redundant features for rich scenario details.To improve the deraining performance of the encoder–decoder network,we utilized an AAU to filter the information in the encoder network and concatenated the useful features to the decoder network,which is conducive to predicting high-quality clean images.Experimental results on synthetic datasets and real-world samples show that the proposed method achieves a significant deraining performance compared to state-of-the-art approaches.
基金financial support from the Distinguished Youth Funds of the National Natural Science Foundation of China(No.52425403)the Hunan Province Graduate Research Innovation Project of China(No.CX20230168)。
文摘The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instability mechanisms.Focusing on the Level VI stope sublayers in the Jinchuan#2 mining area,this study constructs a 24-parameter index system encompassing time-domain features,frequency-domain features,and multifractal characteristics.Through manifold learning,clustering analysis,and hybrid feature selection,15 key indicators were extracted to construct a classification framework for failure responses.Integrated with focal mechanism inversion and numerical simulation,the failure patterns and corresponding instability mechanisms across different structural zones were further identified.The results reveal that multiscale microseismic characteristics exhibit clear regional similarities.Based on the morphological features of radar plots derived from the 15 indicators,acoustic responses were classified into four typical types,each reflecting distinct local failure mechanisms,stress conditions,and plastic zone evolution.Moreover,considering dominant instability factors and rupture modes,four representative rock mass instability models were proposed for typical failure zones within the stope.These findings provide theoretical guidance and methodological support for hazard prediction,structural optimization,and disturbance control in deep metal mining areas.