期刊文献+
共找到50,169篇文章
< 1 2 250 >
每页显示 20 50 100
Ensemble Deep Learning Approaches in Health Care:A Review
1
作者 Aziz Alotaibi 《Computers, Materials & Continua》 2025年第3期3741-3771,共31页
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensem... Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed. 展开更多
关键词 deep learning ensemble learning deep ensemble learning deep learning approaches for health care health care
在线阅读 下载PDF
A Novel Approach Deep Learning Framework for Automatic Detection of Diseases in Retinal Fundus Images
2
作者 Kachi Anvesh Bharati M.Reshm +4 位作者 Shanmugasundaram Hariharan H.Venkateshwara Reddy Murugaperumal Krishnamoorthy Vinay Kukreja Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 2025年第5期1485-1517,共33页
Automated classification of retinal fundus images is essential for identifying eye diseases,though there is earlier research on applying deep learning models designed especially for detecting tessellation in retinal f... Automated classification of retinal fundus images is essential for identifying eye diseases,though there is earlier research on applying deep learning models designed especially for detecting tessellation in retinal fundus images.This study classifies 4 classes of retinal fundus images with 3 diseased fundus images and 1 normal fundus image,by creating a refined VGG16 model to categorize fundus pictures into tessellated,normal,myopia,and choroidal neovascularization groups.The approach utilizes a VGG16 architecture that has been altered with unique fully connected layers and regularization using dropouts,along with data augmentation techniques(rotation,flip,and rescale)on a dataset of 302 photos.Training involves class weighting and critical callbacks(early halting,learning rate reduction,checkpointing)to maximize performance.Gains in accuracy(93.42%training,77.5%validation)and improved class-specific F1 scores are attained.Grad-CAM’s Explainable AI(XAI)highlights areas of the images that are important for each categorization,making it interpretable for better understanding of medical experts.These results highlight the model’s potential as a helpful diagnostic tool in ophthalmology,providing a clear and practical method for the early identification and categorization of retinal disorders,especially in cases such as tessellated fundus images. 展开更多
关键词 deep learning choroidal neovascularization MYOPIA TESSELLATION deep learning OVERFITTING
在线阅读 下载PDF
Research on deep learning decoding method for polar codes in ACO-OFDM spatial optical communication system
3
作者 LIU Kangrui LI Ming +2 位作者 CHEN Sizhe QU Jiashun ZHOU Ming’ou 《Optoelectronics Letters》 2025年第7期427-433,共7页
Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbule... Aiming at the problem that the bit error rate(BER)of asymmetrically clipped optical orthogonal frequency division multiplexing(ACO-OFDM)space optical communication system is significantly affected by different turbulence intensities,the deep learning technique is proposed to the polarization code decoding in ACO-OFDM space optical communication system.Moreover,this system realizes the polarization code decoding and signal demodulation without frequency conduction with superior performance and robustness compared with the performance of traditional decoder.Simulations under different turbulence intensities as well as different mapping orders show that the convolutional neural network(CNN)decoder trained under weak-medium-strong turbulence atmospheric channels achieves a performance improvement of about 10^(2)compared to the conventional decoder at 4-quadrature amplitude modulation(4QAM),and the BERs for both 16QAM and 64QAM are in between those of the conventional decoder. 展开更多
关键词 frequency conduction polar codes deep learning signal demodulation deep learning technique DECODING ACO OFDM polarization code decoding
原文传递
Enhancing mineral processing with deep learning: Automated quartz identification using thin section images
4
作者 Gökhan Külekçi Kemal Hacıefendioğlu Hasan Basri Başağa 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期802-816,共15页
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor... The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis. 展开更多
关键词 quartz mineral identification deep learning hyperspectral imaging deep learning in geology
在线阅读 下载PDF
vip Editorial Special Issue on the Next-Generation Deep Learning Approaches to Emerging Real-World Applications
5
作者 Yu Zhou Eneko Osaba Xiao Zhang 《Computers, Materials & Continua》 2025年第7期237-242,共6页
Introduction Deep learning(DL),as one of the most transformative technologies in artificial intelligence(AI),is undergoing a pivotal transition from laboratory research to industrial deployment.Advancing at an unprece... Introduction Deep learning(DL),as one of the most transformative technologies in artificial intelligence(AI),is undergoing a pivotal transition from laboratory research to industrial deployment.Advancing at an unprecedented pace,DL is transcending theoretical and application boundaries to penetrate emerging realworld scenarios such as industrial automation,urban management,and health monitoring,thereby driving a new wave of intelligent transformation.In August 2023,Goldman Sachs estimated that global AI investment will reach US$200 billion by 2025[1].However,the increasing complexity and dynamic nature of application scenarios expose critical challenges in traditional deep learning,including data heterogeneity,insufficient model generalization,computational resource constraints,and privacy-security trade-offs.The next generation of deep learning methodologies needs to achieve breakthroughs in multimodal fusion,lightweight design,interpretability enhancement,and cross-disciplinary collaborative optimization,in order to develop more efficient,robust,and practically valuable intelligent systems. 展开更多
关键词 health monitoringthereby deep learning industrial deployment intelligent transformationin deep learning dl artificial intelligence ai penetrate emerging realworld scenarios transformative technologies
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
6
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
A Systematic Review of Deep Learning-Based Object Detection in Agriculture: Methods, Challenges, and Future Directions 被引量:1
7
作者 Mukesh Dalal Payal Mittal 《Computers, Materials & Continua》 2025年第7期57-91,共35页
Deep learning-based object detection has revolutionized various fields,including agriculture.This paper presents a systematic review based on the PRISMA 2020 approach for object detection techniques in agriculture by ... Deep learning-based object detection has revolutionized various fields,including agriculture.This paper presents a systematic review based on the PRISMA 2020 approach for object detection techniques in agriculture by exploring the evolution of different methods and applications over the past three years,highlighting the shift from conventional computer vision to deep learning-based methodologies owing to their enhanced efficacy in real time.The review emphasizes the integration of advanced models,such as You Only Look Once(YOLO)v9,v10,EfficientDet,Transformer-based models,and hybrid frameworks that improve the precision,accuracy,and scalability for crop monitoring and disease detection.The review also highlights benchmark datasets and evaluation metrics.It addresses limitations,like domain adaptation challenges,dataset heterogeneity,and occlusion,while offering insights into prospective research avenues,such as multimodal learning,explainable AI,and federated learning.Furthermore,the main aim of this paper is to serve as a thorough resource guide for scientists,researchers,and stakeholders for implementing deep learning-based object detection methods for the development of intelligent,robust,and sustainable agricultural systems. 展开更多
关键词 Artificial intelligence object detection computer vision AGRICULTURE deep learning
在线阅读 下载PDF
Research on Bearing Fault Diagnosis Method Based on Deep Learning 被引量:1
8
作者 Ting Zheng 《Journal of Electronic Research and Application》 2025年第1期1-6,共6页
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i... Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields. 展开更多
关键词 deep learning Bearing failure Diagnostic methods
在线阅读 下载PDF
Enrichment Analysis and Deep Learning in Biomedical Ontology:Applications and Advancements 被引量:1
9
作者 Hong-Yu Fu Yang-Yang Liu +1 位作者 Mei-Yi Zhang Hai-Xiu Yang 《Chinese Medical Sciences Journal》 2025年第1期45-56,I0006,共13页
Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in relat... Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in related research methodologies.Biomedical ontology,as a shared formal conceptual system,not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research.In this review,we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties,highlighting how technological advancements are enabling the more comprehensive use of ontology information.Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list.Deep learning,on the other hand,represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction.With the continuous evolution of big data technologies,the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research. 展开更多
关键词 biomedical ontology enrichment analysis deep learning ontology hierarchy ontology annotation
在线阅读 下载PDF
In silico prediction of pK_(a) values using explainable deep learning methods 被引量:1
10
作者 Chen Yang Changda Gong +4 位作者 Zhixing Zhang Jiaojiao Fang Weihua Li Guixia Liu Yun Tang 《Journal of Pharmaceutical Analysis》 2025年第6期1264-1276,共13页
Negative logarithm of the acid dissociation constant(pK_(a))significantly influences the absorption,dis-tribution,metabolism,excretion,and toxicity(ADMET)properties of molecules and is a crucial indicator in drug rese... Negative logarithm of the acid dissociation constant(pK_(a))significantly influences the absorption,dis-tribution,metabolism,excretion,and toxicity(ADMET)properties of molecules and is a crucial indicator in drug research.Given the rapid and accurate characteristics of computational methods,their role in predicting drug properties is increasingly important.Although many pK_(a) prediction models currently exist,they often focus on enhancing model precision while neglecting interpretability.In this study,we present GraFpKa,a pK_(a) prediction model using graph neural networks(GNNs)and molecular finger-prints.The results show that our acidic and basic models achieved mean absolute errors(MAEs)of 0.621 and 0.402,respectively,on the test set,demonstrating good predictive performance.Notably,to improve interpretability,GraFpKa also incorporates Integrated Gradients(IGs),providing a clearer visual description of the atoms significantly affecting the pK_(a) values.The high reliability and interpretability of GraFpKa ensure accurate pKa predictions while also facilitating a deeper understanding of the relation-ship between molecular structure and pK_(a) values,making it a valuable tool in the field of pK_(a) prediction. 展开更多
关键词 pK_(a) deep learning Graph neural networks AttentiveFP Integrated gradients In silico prediction
在线阅读 下载PDF
Geometric parameter identification of bridge precast box girder sections based on deep learning and computer vision 被引量:1
11
作者 JIA Jingwei NI Youhao +2 位作者 MAO Jianxiao XU Yinfei WANG Hao 《Journal of Southeast University(English Edition)》 2025年第3期278-285,共8页
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve... To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%. 展开更多
关键词 bridge precast components section geometry parameters size identification computer vision deep learning
在线阅读 下载PDF
A Comprehensive Review of Multimodal Deep Learning for Enhanced Medical Diagnostics 被引量:1
12
作者 Aya M.Al-Zoghby Ahmed Ismail Ebada +2 位作者 Aya S.Saleh Mohammed Abdelhay Wael A.Awad 《Computers, Materials & Continua》 2025年第9期4155-4193,共39页
Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dim... Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dimensional healthcare data,encompassing genomic,transcriptomic,and other omics profiles,as well as radiological imaging and histopathological slides,makes this approach increasingly important because,when examined separately,these data sources only offer a fragmented picture of intricate disease processes.Multimodal deep learning leverages the complementary properties of multiple data modalities to enable more accurate prognostic modeling,more robust disease characterization,and improved treatment decision-making.This review provides a comprehensive overview of the current state of multimodal deep learning approaches in medical diagnosis.We classify and examine important application domains,such as(1)radiology,where automated report generation and lesion detection are facilitated by image-text integration;(2)histopathology,where fusion models improve tumor classification and grading;and(3)multi-omics,where molecular subtypes and latent biomarkers are revealed through cross-modal learning.We provide an overview of representative research,methodological advancements,and clinical consequences for each domain.Additionally,we critically analyzed the fundamental issues preventing wider adoption,including computational complexity(particularly in training scalable,multi-branch networks),data heterogeneity(resulting from modality-specific noise,resolution variations,and inconsistent annotations),and the challenge of maintaining significant cross-modal correlations during fusion.These problems impede interpretability,which is crucial for clinical trust and use,in addition to performance and generalizability.Lastly,we outline important areas for future research,including the development of standardized protocols for harmonizing data,the creation of lightweight and interpretable fusion architectures,the integration of real-time clinical decision support systems,and the promotion of cooperation for federated multimodal learning.Our goal is to provide researchers and clinicians with a concise overview of the field’s present state,enduring constraints,and exciting directions for further research through this review. 展开更多
关键词 Multimodal deep learning medical diagnostics multimodal healthcare fusion healthcare data integration
暂未订购
Advancements in Liver Tumor Detection:A Comprehensive Review of Various Deep Learning Models
13
作者 Shanmugasundaram Hariharan D.Anandan +3 位作者 Murugaperumal Krishnamoorthy Vinay Kukreja Nitin Goyal Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期91-122,共32页
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi... Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges. 展开更多
关键词 Liver tumor detection liver tumor segmentation image processing liver tumor diagnosis feature extraction tumor classification deep learning machine learning
暂未订购
Hybrid Deep Learning Approach for Automating App Review Classification:Advancing Usability Metrics Classification with an Aspect-Based Sentiment Analysis Framework
14
作者 Nahed Alsaleh Reem Alnanih Nahed Alowidi 《Computers, Materials & Continua》 SCIE EI 2025年第1期949-976,共28页
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While t... App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior performance.This research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and satisfaction.We propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification accuracy.Comparative analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,respectively.Thesignificant contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews dataset.These advancements provide valuable insights for software developers to enhance usability and drive user-centric application development. 展开更多
关键词 Requirements Engineering(RE) app review analysis usabilitymetrics hybrid deep learning BERT-BiLSTM-CNN
在线阅读 下载PDF
Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
15
作者 Shijie Tang Yong Ding Huiyong Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1129-1150,共22页
As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and... As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and fast and accurate attack detection techniques are crucial.The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series.To address this issue,we propose an anomaly detection method based on distributed deep learning.Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the time series,which can maintain the edge of discrete features.We use a distributed linear deep learning model to establish a sequential prediction model and adjust the threshold for anomaly detection based on the prediction error of the validation set.Our method can not only detect abnormal attacks but also locate the sensors that cause anomalies.We conducted experiments on the Secure Water Treatment(SWAT)and Water Distribution(WADI)public datasets.The experimental results show that our method is superior to the baseline method in identifying the types of attacks and detecting efficiency. 展开更多
关键词 Anomaly detection CPS deep learning MLP(multi-layer perceptron)
在线阅读 下载PDF
An Enhanced Lung Cancer Detection Approach Using Dual-Model Deep Learning Technique
16
作者 Sumaia Mohamed Elhassan Saad Mohamed Darwish Saleh Mesbah Elkaffas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期835-867,共33页
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc... Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance. 展开更多
关键词 Lung cancer detection dual-model deep learning technique data augmentation CNN YOLOv8
在线阅读 下载PDF
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
17
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
在线阅读 下载PDF
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
18
作者 Ravi Teja Potla 《Journal of Computer and Communications》 2025年第2期155-171,共17页
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr... The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation. 展开更多
关键词 Multi-Model AI deep learning Natural Language Processing (NLP) Explainable AI (XI) Federated learning Cyber Threat Detection LSTM CNNS
在线阅读 下载PDF
Numerical Study of Dynamical System Using Deep Learning Approach
19
作者 Manana Chumburidze Miranda Mnatsakaniani +1 位作者 David Lekveishvili Nana Julakidze 《Open Journal of Applied Sciences》 2025年第2期425-432,共8页
This article is devoted to developing a deep learning method for the numerical solution of the partial differential equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computation... This article is devoted to developing a deep learning method for the numerical solution of the partial differential equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computationally numerical format has been used. In particular, for investigation mathematical models of the dynamical system of cancer cell invasion in inhomogeneous areas of human tissues have been considered. Neural operators were initially proposed to model the differential operator of PDEs. The GKNN mapping features between input data to the PDEs and their solutions have been constructed. The boundary integral method in combination with Green’s functions for a large number of boundary conditions is used. The tools applied in this development are based on the Fourier neural operators (FNOs), graph theory, theory elasticity, and singular integral equations. 展开更多
关键词 deep learning Graph Kernel Network Green’s Tensor
在线阅读 下载PDF
Automated classification of profusion in chest radiographs of pneumoconioses through deep learning and transfer learning
20
作者 Arkaprabha Sau Santanu Phadikar +4 位作者 Sumit Chakraborty Ishita Bhakta Arnab Karmakar Sourav Kundu Subhajit Sarkar 《Medical Data Mining》 2025年第4期53-65,共13页
Background:Pneumoconioses,a group of occupational lung diseases caused by inhalation of mineral dust,pose significant health risks to affected individuals.Accurate assessment of profusion(extent of lung involvement)in... Background:Pneumoconioses,a group of occupational lung diseases caused by inhalation of mineral dust,pose significant health risks to affected individuals.Accurate assessment of profusion(extent of lung involvement)in chest radiographs is essential for screening,diagnosis and monitoring of the diseases along with epidemiological classification.This study explores an automated classification system combining U-Net-based segmentation for lung field delineation and DenseNet121 with ImageNet-based transfer learning for profusion classification.Methods:Lung field segmentation using U-Net achieved precise delineation,ensuring accurate region-of-interest definition.Transfer learning with DenseNet121 leveraged pre-trained knowledge from ImageNet,minimizing the need for extensive training.The model was fine-tuned with International Labour Organization(ILO)-2022 version standard chest radiographs and evaluated on a diverse dataset of ILO-2000 version standardized radiographs.Results:The U-Net-based segmentation demonstrated robust performance(Accuracy 94%and Dice Coefficient 90%),facilitating subsequent profusion classification.The DenseNet121-based transfer learning model exhibited high accuracy(95%),precision(92%),and recall(94%)for classifying four profusion levels on test ILO 2000/2011D dataset.The final Evaluation on ILO-2000 radiographs highlighted its generalization capability.Conclusion:The proposed system offers clinical promise,aiding radiologists,pulmonologists,general physicians,and occupational health specialists in pneumoconioses screening,diagnosis,monitoring and epidemiological classification.Best of our knowledge,this is the first work in the field of automated Classification of Profusion in Chest Radiographs of Pneumoconioses based on recently published latest ILO-2022 standard.Future research should focus on further refinement and real-world validation.This approach exemplifies the potential of deep learning for enhancing the accuracy and efficiency of pneumoconioses assessment,benefiting industrial workers,patients,and healthcare providers. 展开更多
关键词 deep learning pneumoconioses PROFUSION transfer learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部