期刊文献+
共找到2,623篇文章
< 1 2 132 >
每页显示 20 50 100
Deep Learning Mixed Hyper-Parameter Optimization Based on Improved Cuckoo Search Algorithm
1
作者 TONG Yu CHEN Rong HU Biling 《Wuhan University Journal of Natural Sciences》 2025年第2期195-204,共10页
Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,... Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method. 展开更多
关键词 improved Cuckoo Search algorithm mixed hyper-parameter OPTIMIZATION deep learning
原文传递
Rapid pathologic grading-based diagnosis of esophageal squamous cell carcinoma via Raman spectroscopy and a deep learning algorithm
2
作者 Xin-Ying Yu Jian Chen +2 位作者 Lian-Yu Li Feng-En Chen Qiang He 《World Journal of Gastroenterology》 2025年第14期32-46,共15页
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e... BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification. 展开更多
关键词 Raman spectroscopy Esophageal neoplasia Early diagnosis deep learning algorithm Rapid pathologic grading
暂未订购
Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning 被引量:4
3
作者 苗镇华 黄文焘 +1 位作者 张依恋 范勤勤 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期377-387,共11页
The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multi... The overall performance of multi-robot collaborative systems is significantly affected by the multi-robot task allocation.To improve the effectiveness,robustness,and safety of multi-robot collaborative systems,a multimodal multi-objective evolutionary algorithm based on deep reinforcement learning is proposed in this paper.The improved multimodal multi-objective evolutionary algorithm is used to solve multi-robot task allo-cation problems.Moreover,a deep reinforcement learning strategy is used in the last generation to provide a high-quality path for each assigned robot via an end-to-end manner.Comparisons with three popular multimodal multi-objective evolutionary algorithms on three different scenarios of multi-robot task allocation problems are carried out to verify the performance of the proposed algorithm.The experimental test results show that the proposed algorithm can generate sufficient equivalent schemes to improve the availability and robustness of multi-robot collaborative systems in uncertain environments,and also produce the best scheme to improve the overall task execution efficiency of multi-robot collaborative systems. 展开更多
关键词 multi-robot task allocation multi-robot cooperation path planning multimodal multi-objective evo-lutionary algorithm deep reinforcement learning
原文传递
vip Editorial Special Issue on the Next-Generation Deep Learning Approaches to Emerging Real-World Applications
4
作者 Yu Zhou Eneko Osaba Xiao Zhang 《Computers, Materials & Continua》 2025年第7期237-242,共6页
Introduction Deep learning(DL),as one of the most transformative technologies in artificial intelligence(AI),is undergoing a pivotal transition from laboratory research to industrial deployment.Advancing at an unprece... Introduction Deep learning(DL),as one of the most transformative technologies in artificial intelligence(AI),is undergoing a pivotal transition from laboratory research to industrial deployment.Advancing at an unprecedented pace,DL is transcending theoretical and application boundaries to penetrate emerging realworld scenarios such as industrial automation,urban management,and health monitoring,thereby driving a new wave of intelligent transformation.In August 2023,Goldman Sachs estimated that global AI investment will reach US$200 billion by 2025[1].However,the increasing complexity and dynamic nature of application scenarios expose critical challenges in traditional deep learning,including data heterogeneity,insufficient model generalization,computational resource constraints,and privacy-security trade-offs.The next generation of deep learning methodologies needs to achieve breakthroughs in multimodal fusion,lightweight design,interpretability enhancement,and cross-disciplinary collaborative optimization,in order to develop more efficient,robust,and practically valuable intelligent systems. 展开更多
关键词 health monitoringthereby deep learning industrial deployment intelligent transformationin deep learning dl artificial intelligence ai penetrate emerging realworld scenarios transformative technologies
在线阅读 下载PDF
A critical evaluation of deep-learning based phylogenetic inference programs using simulated datasets
5
作者 Yixiao Zhu Yonglin Li +2 位作者 Chuhao Li Xing-Xing Shen Xiaofan Zhou 《Journal of Genetics and Genomics》 2025年第5期714-717,共4页
Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus o... Inferring phylogenetic trees from molecular sequences is a cornerstone of evolutionary biology.Many standard phylogenetic methods(such as maximum-likelihood[ML])rely on explicit models of sequence evolution and thus often suffer from model misspecification or inadequacy.The on-rising deep learning(DL)techniques offer a powerful alternative.Deep learning employs multi-layered artificial neural networks to progressively transform input data into more abstract and complex representations.DL methods can autonomously uncover meaningful patterns from data,thereby bypassing potential biases introduced by predefined features(Franklin,2005;Murphy,2012).Recent efforts have aimed to apply deep neural networks(DNNs)to phylogenetics,with a growing number of applications in tree reconstruction(Suvorov et al.,2020;Zou et al.,2020;Nesterenko et al.,2022;Smith and Hahn,2023;Wang et al.,2023),substitution model selection(Abadi et al.,2020;Burgstaller-Muehlbacher et al.,2023),and diversification rate inference(Voznica et al.,2022;Lajaaiti et al.,2023;Lambert et al.,2023).In phylogenetic tree reconstruction,PhyDL(Zou et al.,2020)and Tree_learning(Suvorov et al.,2020)are two notable DNN-based programs designed to infer unrooted quartet trees directly from alignments of four amino acid(AA)and DNA sequences,respectively. 展开更多
关键词 phylogenetic inference explicit models sequence evolution deep learning deep learning dl techniques molecular sequences simulated datasets phylogenetic methods such evolutionary biologymany
原文传递
Enhanced Multimodal Physiological Signal Analysis for Pain Assessment Using Optimized Ensemble Deep Learning
6
作者 Karim Gasmi Olfa Hrizi +8 位作者 Najib Ben Aoun Ibrahim Alrashdi Ali Alqazzaz Omer Hamid Mohamed O.Altaieb Alameen E.M.Abdalrahman Lassaad Ben Ammar Manel Mrabet Omrane Necibi 《Computer Modeling in Engineering & Sciences》 2025年第5期2459-2489,共31页
The potential applications of multimodal physiological signals in healthcare,pain monitoring,and clinical decision support systems have garnered significant attention in biomedical research.Subjective self-reporting i... The potential applications of multimodal physiological signals in healthcare,pain monitoring,and clinical decision support systems have garnered significant attention in biomedical research.Subjective self-reporting is the foundation of conventional pain assessment methods,which may be unreliable.Deep learning is a promising alternative to resolve this limitation through automated pain classification.This paper proposes an ensemble deep-learning framework for pain assessment.The framework makes use of features collected from electromyography(EMG),skin conductance level(SCL),and electrocardiography(ECG)signals.We integrate Convolutional Neural Networks(CNN),Long Short-Term Memory Networks(LSTM),Bidirectional Gated Recurrent Units(BiGRU),and Deep Neural Networks(DNN)models.We then aggregate their predictions using a weighted averaging ensemble technique to increase the classification’s robustness.To improve computing efficiency and remove redundant features,we use Particle Swarm Optimization(PSO)for feature selection.This enables us to reduce the features’dimensionality without sacrificing the classification’s accuracy.With improved accuracy,precision,recall,and F1-score across all pain levels,the experimental results show that the suggested ensemble model performs better than individual deep learning classifiers.In our experiments,the suggested model achieved over 98%accuracy,suggesting promising automated pain assessment performance.However,due to differences in validation protocols,comparisons with previous studies are still limited.Combining deep learning and feature selection techniques significantly improves model generalization,reducing overfitting and enhancing classification performance.The evaluation was conducted using the BioVid Heat Pain Dataset,confirming the model’s effectiveness in distinguishing between different pain intensity levels. 展开更多
关键词 Pain assessment ensemble learning deep learning optimal algorithm feature selection
在线阅读 下载PDF
Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
7
作者 Iman S.Al-Mahdi Saad M.Darwish Magda M.Madbouly 《Computer Modeling in Engineering & Sciences》 2025年第4期875-909,共35页
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr... Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction. 展开更多
关键词 Heart disease prediction feature selection ensemble deep learning optimization genetic algorithm(GA) ensemble deep learning tunicate swarm algorithm(TSA) feature selection
在线阅读 下载PDF
Combining deep reinforcement learning with heuristics to solve the traveling salesman problem
8
作者 Li Hong Yu Liu +1 位作者 Mengqiao Xu Wenhui Deng 《Chinese Physics B》 2025年第1期96-106,共11页
Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs... Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%. 展开更多
关键词 traveling salesman problem deep reinforcement learning simulated annealing algorithm transformer model whale optimization algorithm
原文传递
The Blockchain Neural Network Superior to Deep Learning for Improving the Trust of Supply Chain
9
作者 Hsiao-Chun Han Der-Chen Huang 《Computer Modeling in Engineering & Sciences》 2025年第6期3921-3941,共21页
With the increasing importance of supply chain transparency,blockchain-based data has emerged as a valuable and verifiable source for analyzing procurement transaction risks.This study extends the mathematical model a... With the increasing importance of supply chain transparency,blockchain-based data has emerged as a valuable and verifiable source for analyzing procurement transaction risks.This study extends the mathematical model and proof of‘the Overall Performance Characteristics of the Supply Chain’to encompass multiple variables within blockchain data.Utilizing graph theory,the model is further developed into a single-layer neural network,which serves as the foundation for constructing two multi-layer deep learning neural network models,Feedforward Neural Network(abbreviated as FNN)and Deep Clustering Network(abbreviated as DCN).Furthermore,this study retrieves corporate data from the Chunghwa Yellow Pages online resource and Taiwan Economic Journal database(abbreviated as TEJ).These data are then virtualized using‘the Metaverse Algorithm’,and the selected virtualized blockchain variables are utilized to train a neural network model for classification.The results demonstrate that a single-layer neural network model,leveraging blockchain data and employing the Proof of Relation algorithm(abbreviated as PoR)as the activation function,effectively identifies anomalous enterprises,which constitute 7.2%of the total sample,aligning with expectations.In contrast,the multi-layer neural network models,DCN and FNN,classify an excessively large proportion of enterprises as anomalous(ranging from one-fourth to one-third),which deviates from expectations.This indicates that deep learning may still be inadequate in effectively capturing or identifying malicious corporate behaviors associated with distortions in procurement transaction data.In other words,procurement transaction blockchain data possesses intrinsic value that cannot be replaced by artificial intelligence(abbreviated as AI). 展开更多
关键词 Blockchain neural network deep learning consensus algorithm supply chain management information security management
在线阅读 下载PDF
Fire Hawk Optimization-Enabled Deep Learning Scheme Based Hybrid Cloud Container Architecture for Migrating Interoperability Based Application
10
作者 G Indumathi R Sarala 《China Communications》 2025年第5期285-304,共20页
Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositori... Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositories results in increased overload due to the adoption of cloud services.Moreover,the migration of applications on the cloud with optimized resource allocation is a herculean task even though it is employed for minimizing the dilemma of allocating resources.In this paper,a Fire Hawk Optimization enabled Deep Learning Scheme(FHOEDLS)is proposed for minimizing the overload and optimizing the resource allocation on the hybrid cloud container architecture for migrating interoperability based applications This FHOEDLS achieves the load prediction through the utilization of deep CNN-GRU-AM model for attaining resource allocation and better migration of applications.It specifically adopted the Fire Hawk Optimization Algorithm(FHOA)for optimizing the parameters that influence the factors that aid in better interoperable application migration with improved resource allocation and minimized overhead.It considered the factors of resource capacity,transmission cost,demand,and predicted load into account during the formulation of the objective function utilized for resource allocation and application migration.The cloud simulation of this FHOEDLS is achieved using a container,Virtual Machine(VM),and Physical Machine(PM).The results of this proposed FHOEDLS confirmed a better resource capability of 0.418 and a minimized load of 0.0061. 展开更多
关键词 CONTAINER deep learning fire hawk optimization algorithm hybrid cloud interoperable application migration
在线阅读 下载PDF
A review of deep learning-based analyses of impact crater detection on different celestial bodies
11
作者 Xu Zhang Jialong Lai +2 位作者 Feifei Cui Chunyu Ding Zhicheng Zhong 《Astronomical Techniques and Instruments》 2025年第3期127-147,共21页
Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying thes... Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying these craters is essential for planetary science and is currently mainly achieved with deep learning-driven detection algorithms.However,because impact crater characteristics are substantially affected by the geologic environment,surface materials,and atmospheric conditions,the performance of deep learning models can be inconsistent between celestial bodies.In this paper,we first examine how the surface characteristics of the Moon,Mars,and Earth,along with the differences in their impact crater features,affect model performance.Then,we compare crater detection across celestial bodies by analyzing enhanced convolutional neural networks and U-shaped Convolutional Neural Network-based models to highlight how geology,data,and model design affect accuracy and generalization.Finally,we address current deep learning challenges,suggest directions for model improvement,such as multimodal data fusion and cross-planet learning and list available impact crater databases.This review can provide necessary technical support for deep space exploration and planetary science,as well as new ideas and directions for future research on automatic detection of impact craters on celestial body surfaces and on planetary geology. 展开更多
关键词 Crater detection algorithms deep learning Different celestial bodies Impact crater databases
在线阅读 下载PDF
A deep learning model for ocean surface latent heat flux based on transformer and data assimilation
12
作者 Yahui Liu Hengxiao Li Jichao Wang 《Acta Oceanologica Sinica》 2025年第5期115-130,共16页
Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer ... Efficient and accurate prediction of ocean surface latent heat fluxes is essential for understanding and modeling climate dynamics.Conventional estimation methods have low resolution and lack accuracy.The transformer model,with its self-attention mechanism,effectively captures long-range dependencies,leading to a degradation of accuracy over time.Due to the non-linearity and uncertainty of physical processes,the transformer model encounters the problem of error accumulation,leading to a degradation of accuracy over time.To solve this problem,we combine the Data Assimilation(DA)technique with the transformer model and continuously modify the model state to make it closer to the actual observations.In this paper,we propose a deep learning model called TransNetDA,which integrates transformer,convolutional neural network and DA methods.By combining data-driven and DA methods for spatiotemporal prediction,TransNetDA effectively extracts multi-scale spatial features and significantly improves prediction accuracy.The experimental results indicate that the TransNetDA method surpasses traditional techniques in terms of root mean square error and R2 metrics,showcasing its superior performance in predicting latent heat fluxes at the ocean surface. 展开更多
关键词 climate dynamics deep learning(dl) Data Assimilation(DA) TRANSFORMER ensemble Kalman filter ocean surface latent heat flux
在线阅读 下载PDF
Deep Learning Models for Detecting Cheating in Online Exams
13
作者 Siham Essahraui Ismail Lamaakal +6 位作者 Yassine Maleh Khalid El Makkaoui Mouncef Filali Bouami Ibrahim Ouahbi May Almousa Ali Abdullah S.Al Qahtani Ahmed A.Abd El-Latif 《Computers, Materials & Continua》 2025年第11期3151-3183,共33页
The rapid shift to online education has introduced significant challenges to maintaining academic integrity in remote assessments,as traditional proctoring methods fall short in preventing cheating.The increase in che... The rapid shift to online education has introduced significant challenges to maintaining academic integrity in remote assessments,as traditional proctoring methods fall short in preventing cheating.The increase in cheating during online exams highlights the need for efficient,adaptable detection models to uphold academic credibility.This paper presents a comprehensive analysis of various deep learning models for cheating detection in online proctoring systems,evaluating their accuracy,efficiency,and adaptability.We benchmark several advanced architectures,including EfficientNet,MobileNetV2,ResNet variants and more,using two specialized datasets(OEP and OP)tailored for online proctoring contexts.Our findings reveal that EfficientNetB1 and YOLOv5 achieve top performance on the OP dataset,with EfficientNetB1 attaining a peak accuracy of 94.59% and YOLOv5 reaching a mean average precision(mAP@0.5)of 98.3%.For the OEP dataset,ResNet50-CBAM,YOLOv5 and EfficientNetB0 stand out,with ResNet50-CBAMachieving an accuracy of 93.61% and EfficientNetB0 showing robust detection performance with balanced accuracy and computational efficiency.These results underscore the importance of selectingmodels that balance accuracy and efficiency,supporting scalable,effective cheating detection in online assessments. 展开更多
关键词 Anti-cheating model computer vision(CV) deep learning(dl) online exam proctoring neural networks facial recognition biometric authentication security of distance education
在线阅读 下载PDF
Enhancing User Experience in AI-Powered Human-Computer Communication with Vocal Emotions Identification Using a Novel Deep Learning Method
14
作者 Ahmed Alhussen Arshiya Sajid Ansari Mohammad Sajid Mohammadi 《Computers, Materials & Continua》 2025年第2期2909-2929,共21页
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de... Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition. 展开更多
关键词 Human-computer communication(HCC) vocal emotions live vocal artificial intelligence(AI) deep learning(dl) selfish herd optimization-tuned long/short K term memory(SHO-LSTM)
在线阅读 下载PDF
Advanced ECG Signal Analysis for Cardiovascular Disease Diagnosis Using AVOA Optimized Ensembled Deep Transfer Learning Approaches
15
作者 Amrutanshu Panigrahi Abhilash Pati +5 位作者 Bibhuprasad Sahu Ashis Kumar Pati Subrata Chowdhury Khursheed Aurangzeb Nadeem Javaid Sheraz Aslam 《Computers, Materials & Continua》 2025年第7期1633-1657,共25页
The integration of IoT and Deep Learning(DL)has significantly advanced real-time health monitoring and predictive maintenance in prognostic and health management(PHM).Electrocardiograms(ECGs)are widely used for cardio... The integration of IoT and Deep Learning(DL)has significantly advanced real-time health monitoring and predictive maintenance in prognostic and health management(PHM).Electrocardiograms(ECGs)are widely used for cardiovascular disease(CVD)diagnosis,but fluctuating signal patterns make classification challenging.Computer-assisted automated diagnostic tools that enhance ECG signal categorization using sophisticated algorithms and machine learning are helping healthcare practitioners manage greater patient populations.With this motivation,the study proposes a DL framework leveraging the PTB-XL ECG dataset to improve CVD diagnosis.Deep Transfer Learning(DTL)techniques extract features,followed by feature fusion to eliminate redundancy and retain the most informative features.Utilizing the African Vulture Optimization Algorithm(AVOA)for feature selection is more effective than the standard methods,as it offers an ideal balance between exploration and exploitation that results in an optimal set of features,improving classification performance while reducing redundancy.Various machine learning classifiers,including Support Vector Machine(SVM),eXtreme Gradient Boosting(XGBoost),Adaptive Boosting(AdaBoost),and Extreme Learning Machine(ELM),are used for further classification.Additionally,an ensemble model is developed to further improve accuracy.Experimental results demonstrate that the proposed model achieves the highest accuracy of 96.31%,highlighting its effectiveness in enhancing CVD diagnosis. 展开更多
关键词 Prognostics and health management(PHM) cardiovascular disease(CVD) electrocardiograms(ECGs) deep transfer learning(DTL) African vulture optimization algorithm(AVOA)
在线阅读 下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
16
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 Computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
在线阅读 下载PDF
A Deep-Learning and Transfer-Learning Hybrid Aerosol Retrieval Algorithm for FY4-AGRI:Development and Verification over Asia
17
作者 Disong Fu Hongrong Shi +9 位作者 Christian AGueymard Dazhi Yang Yu Zheng Huizheng Che Xuehua Fan Xinlei Han Lin Gao Jianchun Bian Minzheng Duan Xiangao Xia 《Engineering》 SCIE EI CAS CSCD 2024年第7期164-174,共11页
The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b... The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events. 展开更多
关键词 Aerosol optical depth Retrieval algorithm deep learning Transfer learning Advanced Geosynchronous Radiation IMAGER
在线阅读 下载PDF
Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images
18
作者 Sonali Das Saroja Kumar Rout +5 位作者 Sujit Kumar Panda Pradyumna Kumar Mohapatra Abdulaziz S.Almazyad Muhammed Basheer Jasser Guojiang Xiong Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期893-916,共24页
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia... In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches. 展开更多
关键词 Leukemia cancer medical imaging image classification deep learning marine predators algorithm
在线阅读 下载PDF
Gradient Optimizer Algorithm with Hybrid Deep Learning Based Failure Detection and Classification in the Industrial Environment
19
作者 Mohamed Zarouan Ibrahim M.Mehedi +1 位作者 Shaikh Abdul Latif Md.Masud Rana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1341-1364,共24页
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu... Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects. 展开更多
关键词 Fault detection Industry 4.0 gradient optimizer algorithm deep learning rotating machineries artificial intelligence
在线阅读 下载PDF
Internet of Things Enabled DDoS Attack Detection Using Pigeon Inspired Optimization Algorithm with Deep Learning Approach
20
作者 Turki Ali Alghamdi Saud S.Alotaibi 《Computers, Materials & Continua》 SCIE EI 2024年第9期4047-4064,共18页
Internet of Things(IoTs)provides better solutions in various fields,namely healthcare,smart transportation,home,etc.Recognizing Denial of Service(DoS)outbreaks in IoT platforms is significant in certifying the accessi... Internet of Things(IoTs)provides better solutions in various fields,namely healthcare,smart transportation,home,etc.Recognizing Denial of Service(DoS)outbreaks in IoT platforms is significant in certifying the accessibility and integrity of IoT systems.Deep learning(DL)models outperform in detecting complex,non-linear relationships,allowing them to effectually severe slight deviations fromnormal IoT activities that may designate a DoS outbreak.The uninterrupted observation and real-time detection actions of DL participate in accurate and rapid detection,permitting proactive reduction events to be executed,hence securing the IoT network’s safety and functionality.Subsequently,this study presents pigeon-inspired optimization with a DL-based attack detection and classification(PIODL-ADC)approach in an IoT environment.The PIODL-ADC approach implements a hyperparameter-tuned DL method for Distributed Denial-of-Service(DDoS)attack detection in an IoT platform.Initially,the PIODL-ADC model utilizes Z-score normalization to scale input data into a uniformformat.For handling the convolutional and adaptive behaviors of IoT,the PIODL-ADCmodel employs the pigeon-inspired optimization(PIO)method for feature selection to detect the related features,considerably enhancing the recognition’s accuracy.Also,the Elman Recurrent Neural Network(ERNN)model is utilized to recognize and classify DDoS attacks.Moreover,reptile search algorithm(RSA)based hyperparameter tuning is employed to improve the precision and robustness of the ERNN method.A series of investigational validations is made to ensure the accomplishment of the PIODL-ADC method.The experimental outcome exhibited that the PIODL-ADC method shows greater accomplishment when related to existing models,with a maximum accuracy of 99.81%. 展开更多
关键词 Internet of things denial of service deep learning reptile search algorithm feature selection
在线阅读 下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部