期刊文献+
共找到750篇文章
< 1 2 38 >
每页显示 20 50 100
Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models
1
作者 Vesal Khean Chomyong Kim +5 位作者 Sunjoo Ryu Awais Khan Min Kyung Hong Eun Young Kim Joungmin Kim Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2024年第10期773-787,共15页
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov... Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture. 展开更多
关键词 Convolutional neural network deep learning human interaction recognition ResNet skeleton joint key points human pose estimation hybrid deep learning and machine learning
在线阅读 下载PDF
Quantitative principles of dynamic interaction between rock support and surrounding rock in rockburst roadways 被引量:2
2
作者 Lianpeng Dai Dingjie Feng +4 位作者 Yishan Pan Aiwen Wang Ying Ma Yonghui Xiao Jianzhuo Zhang 《International Journal of Mining Science and Technology》 2025年第1期41-55,共15页
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe... Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices. 展开更多
关键词 deep roadway ROCKBURST Dynamic interaction Rock support Surrounding rock Rockburst control
在线阅读 下载PDF
Human Intelligent-Things Interaction Application Using 6G and Deep Edge Learning
3
作者 Ftoon H.Kedwan Mohammed Abdur Rahman 《Journal on Internet of Things》 2024年第1期43-73,共31页
Impressive advancements and novel techniques have been witnessed in AI-based Human Intelligent-Things Interaction(HITI)systems.Several technological breakthroughs have contributed to HITI,such as Internet of Things(Io... Impressive advancements and novel techniques have been witnessed in AI-based Human Intelligent-Things Interaction(HITI)systems.Several technological breakthroughs have contributed to HITI,such as Internet of Things(IoT),deep and edge learning for deducing intelligence,and 6G for ultra-fast and ultralow-latency communication between cyber-physical HITI systems.However,human-AI teaming presents several challenges that are yet to be addressed,despite the many advancements that have been made towards human-AI teaming.Allowing human stakeholders to understand AI’s decision-making process is a novel challenge.Artificial Intelligence(AI)needs to adopt diversified human understandable features,such as ethics,non-biases,trustworthiness,explainability,safety guarantee,data privacy,system security,and auditability.While adopting these features,high system performance should be maintained,and transparent processing involved in the‘human intelligent-things teaming’should be conveyed.To this end,we introduce the fusion of four key technologies,namely an ensemble of deep learning,6G,IoT,and corresponding security/privacy techniques to support HITI.This paper presents a framework that integrates the aforementioned four key technologies to support AI-based Human Intelligent-Things Interaction.Additionally,this paper demonstrates two security applications as proof of the concept,namely intelligent smart city surveillance and handling emergency services.The paper proposes to fuse four key technologies(deep learning,6G,IoT,and security and privacy techniques)to support Human Intelligent-Things interaction,applying the proposed framework to two security applications(surveillance and emergency handling).In this research paper,we will present a comprehensive review of the existing techniques of fusing security and privacy within future HITI applications.Moreover,we will showcase two security applications as proof of concept that use the fusion of the four key technologies to offer next-generation HITI services,namely intelligent smart city surveillance and handling emergency services.This proposed research outcome is envisioned to democratize the use of AI within smart city surveillance applications. 展开更多
关键词 deep edge learning human intelligent-things interaction Internet of Things
在线阅读 下载PDF
Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions
4
作者 Boyang Wang Tingyu Zhang +4 位作者 Qingyuan Liu Chayanis Sutcharitchan Ziyi Zhou Dingfan Zhang Shao Li 《Journal of Pharmaceutical Analysis》 2025年第3期489-500,共12页
Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug devel... Drug development remains a critical issue in the field of biomedicine.With the rapid advancement of information technologies such as artificial intelligence(AI)and the advent of the big data era,AI-assisted drug development has become a new trend,particularly in predicting drug-target associations.To address the challenge of drug-target prediction,AI-driven models have emerged as powerful tools,offering innovative solutions by effectively extracting features from complex biological data,accurately modeling molecular interactions,and precisely predicting potential drug-target outcomes.Traditional machine learning(ML),network-based,and advanced deep learning architectures such as convolutional neural networks(CNNs),graph convolutional networks(GCNs),and transformers play a pivotal role.This review systematically compiles and evaluates AI algorithms for drug-and drug combination-target predictions,highlighting their theoretical frameworks,strengths,and limitations.CNNs effectively identify spatial patterns and molecular features critical for drug-target interactions.GCNs provide deep insights into molecular interactions via relational data,whereas transformers increase prediction accuracy by capturing complex dependencies within biological sequences.Network-based models offer a systematic perspective by integrating diverse data sources,and traditional ML efficiently handles large datasets to improve overall predictive accuracy.Collectively,these AI-driven methods are transforming drug-target predictions and advancing the development of personalized therapy.This review summarizes the application of AI in drug development,particularly in drug-target prediction,and offers recommendations on models and algorithms for researchers engaged in biomedical research.It also provides typical cases to better illustrate how AI can further accelerate development in the fields of biomedicine and drug discovery. 展开更多
关键词 Artificial intelligence Drug-target interactions deep learning Machine learning Drug combination Network pharmacology
暂未订购
基于DeepLab v3+的涂鸦式图像分割算法
5
作者 俞颖晖 洪茂雄 《科学与信息化》 2025年第2期95-97,共3页
在现有的基于深度学习的交互式图像分割算法的研究中,主要以点击以及边界框的交互方式为主。本文在Deep GrabCut算法的基础上,选择DeepLab v3+作为模型的架构,并提出了“米”字形采样策略,经过大量的训练,最终生成的模型能够很好地适应... 在现有的基于深度学习的交互式图像分割算法的研究中,主要以点击以及边界框的交互方式为主。本文在Deep GrabCut算法的基础上,选择DeepLab v3+作为模型的架构,并提出了“米”字形采样策略,经过大量的训练,最终生成的模型能够很好地适应涂鸦的交互方式。在分割精度上比原方法提升了5%以上,并有效地简化了用户交互要求,拓展了基于深度学习的交互式图像分割技术在涂鸦交互方式上的研究。 展开更多
关键词 深度学习 交互式图像分割 deep GrabCut deepLab v3+
在线阅读 下载PDF
Deep Learning for EMG-based Human-Machine Interaction:A Review 被引量:23
6
作者 Dezhen Xiong Daohui Zhang +1 位作者 Xingang Zhao Yiwen Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期512-533,共22页
Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgen... Electromyography(EMG)has already been broadly used in human-machine interaction(HMI)applications.Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution.Recently,many EMG pattern recognition tasks have been addressed using deep learning methods.In this paper,we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI.An overview of typical network structures and processing schemes will be provided.Recent progress in typical tasks such as movement classification,joint angle prediction,and force/torque estimation will be introduced.New issues,including multimodal sensing,inter-subject/inter-session,and robustness toward disturbances will be discussed.We attempt to provide a comprehensive analysis of current research by discussing the advantages,challenges,and opportunities brought by deep learning.We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems.Furthermore,possible future directions will be presented to pave the way for future research. 展开更多
关键词 ACCURACY deep learning electromyography(EMG) human-machine interaction(HMI) ROBUSTNESS
在线阅读 下载PDF
Graph-enhanced neural interactive collaborative filtering 被引量:1
7
作者 Xie Chengyan Dong Lu 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期110-117,共8页
To improve the training efficiency and recommendation accuracy in cold-start interactive recommendation systems,a new graph structure called item similarity graph is proposed on the basis of real data from a public da... To improve the training efficiency and recommendation accuracy in cold-start interactive recommendation systems,a new graph structure called item similarity graph is proposed on the basis of real data from a public dataset.The proposed graph is built from collaborative interactions and a deep reinforcement learning-based graph-enhanced neural interactive collaborative filtering(GE-ICF)model.The GE-ICF framework is developed with a deep reinforcement learning framework and comprises an embedding propagation layer designed with graph neural networks.Extensive experiments are conducted to investigate the efficiency of the proposed graph structure and the superiority of the proposed GE-ICF framework.Results show that in cold-start interactive recommendation systems,the proposed item similarity graph performs well in data relationship modeling,with the training efficiency showing significant improvement.The proposed GE-ICF framework also demonstrates superiority in decision modeling,thereby increasing the recommendation accuracy remarkably. 展开更多
关键词 interactive recommendation systems COLD-START graph neural network deep reinforcement learning
在线阅读 下载PDF
Numerical modeling of deep-seated landslides interacting with man-made structures 被引量:4
8
作者 Giovanni Barla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1020-1036,共17页
This paper describes the interaction between deep-seated landslides and man-made structures such as dams, penstocks, viaducts, and tunnels. Selected case studies are reported first with the intent to gain insights int... This paper describes the interaction between deep-seated landslides and man-made structures such as dams, penstocks, viaducts, and tunnels. Selected case studies are reported first with the intent to gain insights into the complexities associated with the interaction of these structures with deep-seated landslides(generally referred to as deep-seated gravity slope deformations, DSGSDs). The main features, which characterize these landslides, are mentioned together with the interaction problems encountered in each case. Given the main objective of this paper, the numerical modeling methods adopted are outlined as means for increase in the understanding of the interaction problems being investigated. With the above in mind, the attention moves to an important and unique case history dealing with the interaction of a large-size twin-tunnel excavated with an earth pressure balance(EPB)tunnel boring machine(TBM) and a deep-seated landslide, which was reactivated due to the stress changes induced by tunnel excavation in landslide shear zone. The geological and geotechnical conditions are described together with the available monitoring data on the landslide movements, based on the advanced and conventional monitoring tools used. Numerical modeling is illustrated as an aid to back-analyze the monitored surface and subsurface deformations and to assist in finding the appropriate engineering solution for putting the tunnel into service and as a follow-up means for future understanding and control of the interaction problems. The simulation is based on a novel time-dependent model representing the landslide behavior. 展开更多
关键词 deep-seated landslides Man-made structures Landslide-structure interaction Monitoring of landslide movement Numerical modeling
在线阅读 下载PDF
Comparative simulation study of effects of eddy-topography interaction in the East/Japan Sea deep circulation
9
作者 CHOI Youngjin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第7期1-18,共18页
In this study the structure and seasonal variations of deep mean circulation in the East/lapan Sea (E/S) were numerically simulated using a mid-resolution ocean general circulation model with two different parameter... In this study the structure and seasonal variations of deep mean circulation in the East/lapan Sea (E/S) were numerically simulated using a mid-resolution ocean general circulation model with two different parameterizations for the eddy-topography interaction (ETI). The strong deep mean circulations observed in the EIS are well reproduced when using the ETI parameterizations. The seasonal variability in the EIS deep layer is shown by using ETI parameterization based on the potential vorticity approach, while it is not shown in the statistical dynamical parameterization. The driving mechanism of the strong deep mean currents in the E/S are discussed by investigating the effects of model grids and parameterizations. The deep mean circulation is more closely related to the baroclinic process and potential vorticity than it is to the wind driven circulation. 展开更多
关键词 East/Iapan Sea deep mean current seasonal variability ocean general circulation model eddy- topography interaction
在线阅读 下载PDF
Axisymmetric alternating direction explicit scheme for efficient coupled simulation of hydro-mechanical interaction in geotechnical engineering-Application to circular footing and deep tunnel in saturated ground
10
作者 Simon Heru Prassetyo Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期259-279,共21页
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat... Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%. 展开更多
关键词 Hydro-mechanical(H-M) interaction Explicit coupling technique Alternating direction explicit(ADE) scheme High-order finite difference(FD) Non-uniform grid Axisymmetric consolidation Circular footing deep tunnel in saturated ground
在线阅读 下载PDF
Spotted Hyena Optimizer Driven Deep Learning-Based Drug-Drug Interaction Prediction in Big Data Environment
11
作者 Mohammed Jasim Mohammed Jasim Shakir Fattah Kak +1 位作者 Zainab Salih Ageed Subhi R.M.Zeebaree 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3831-3845,共15页
Nowadays,smart healthcare and biomedical research have marked a substantial growth rate in terms of their presence in the literature,computational approaches,and discoveries,owing to which a massive quantity of experi... Nowadays,smart healthcare and biomedical research have marked a substantial growth rate in terms of their presence in the literature,computational approaches,and discoveries,owing to which a massive quantity of experimental datasets was published and generated(Big Data)for describing and validating such novelties.Drug-drug interaction(DDI)significantly contributed to drug administration and development.It continues as the main obstacle in offering inexpensive and safe healthcare.It normally happens for patients with extensive medication,leading them to take many drugs simultaneously.DDI may cause side effects,either mild or severe health problems.This reduced victims’quality of life and increased hospital healthcare expenses by increasing their recovery time.Several efforts were made to formulate new methods for DDI prediction to overcome this issue.In this aspect,this study designs a new Spotted Hyena Optimizer Driven Deep Learning based Drug-Drug Interaction Prediction(SHODL-DDIP)model in a big data environment.In the presented SHODL-DDIP technique,the relativity and characteristics of the drugs can be identified from different sources for prediction.The input data is preprocessed at the primary level to improve its quality.Next,the salp swarm optimization algorithm(SSO)is used to select features.In this study,the deep belief network(DBN)model is exploited to predict the DDI accurately.The SHO algorithm is involved in improvising the DBN model’s predictive outcomes,showing the novelty of the work.The experimental result analysis of the SHODL-DDIP technique is tested using drug databases,and the results signified the improvements of the SHODLDDIP technique over other recent models in terms of different performance measures. 展开更多
关键词 Drug-drug interaction deep learning spotted hyena optimization feature selection CLASSIFICATION
在线阅读 下载PDF
Intermolecular interactions induced property improvement for clean fracturing fluid by deep eutectic solvents
12
作者 Xiang-Yu Wang Ming-Wei Zhao +6 位作者 Xu-Hao Wang Peng Liu Meng-Yao Fan Teng Li Zhen-Feng Ma Ying-Jie Dai Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3540-3552,共13页
Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-p... Fracturing fluid property play a critical role in developing unconventional reservoirs.Deep eutectic solvents(DESs)show fascinating potential for property improvement of clean fracturing fluids(CFFs)due to their low-price,low-toxicity,chemical stability and flexible designability.In this work,DESs were synthesized by mixing hydrogen bond acceptors(HBAs)and a given hydrogen bond donor(HBD)to explore their underlying influence on CFF properties based on the intermolecular interactions.The hydrogen-bonding,van der Waals and electrostatic interactions between DES components and surfactants improved the CFF properties by promoting the arrangement of surfactants at interface and enhancing the micelle network strength.The HBD enhanced the resistance of CFF for Ca^(2+) due to coordination-bonding interaction.The DESs composed of choline chloride(ChCl)and malonic acid show great enhancement for surface,rheology,temperature resistance,salt tolerance,drag reduction,and gel-breaking performance of CFFs.The DESs also improved the gel-breaking CFF-oil interactions,increasing the imbibition efficiencies to 44.2%in 74 h.Adjusting HBAs can effectively strengthen the intermolecular interactions(e.g.,HBA-surfactant and HBD-surfactant interactions)to improve CFF properties.The DESs developed in this study provide a novel strategy to intensify CFF properties. 展开更多
关键词 deep eutectic solvents(DESs) Clean fracturing fluids(CFFs) Intermolecular interactions Property improvement
原文传递
遥感影像智能解译系统EasyFeature的关键技术及应用 被引量:2
13
作者 胡翔云 张觅 +9 位作者 张祖勋 李小凯 邓凯 姜慧伟 庞世燕 饶友琢 宫金杞 冯存均 詹远增 王兴坤 《武汉大学学报(信息科学版)》 北大核心 2025年第3期554-561,共8页
随着大数据和人工智能技术的迅猛发展,遥感影像自动解译技术取得了显著进步,但现有遥感影像自动解译方法在鲁棒性、可靠性以及精度等方面仍难以与人相媲美。面向实际生产应用需求,创建了场景-目标-像素层次关系的多要素提取模型,形成了... 随着大数据和人工智能技术的迅猛发展,遥感影像自动解译技术取得了显著进步,但现有遥感影像自动解译方法在鲁棒性、可靠性以及精度等方面仍难以与人相媲美。面向实际生产应用需求,创建了场景-目标-像素层次关系的多要素提取模型,形成了遥感影像分类和要素提取成套技术;提出了语义信息增强与虚警再抑制机制、融合先验形状、特征匹配优化、二维-三维联合处理等变化检测新方法,以及人机智能协同的交互式地物采编思路,构建了高性能遥感影像智能解译技术体系,研发了自主知识产权软件系统EasyFeature,并在全球测图、自然资源常态化监测等国家重大工程中取得了广泛应用,降低了中国对国外同类软件的依赖。 展开更多
关键词 深度学习 自动解译 影像分类 变化检测 交互提取
原文传递
行星探测用柔性降落伞跨/超声速气动特性及耦合机理
14
作者 贾贺 蒋伟 +3 位作者 包文龙 徐欣 荣伟 余莉 《航空学报》 北大核心 2025年第1期32-54,共23页
中国针对金星、木星等行星的星际探测新征程已经开启,且正在论证之中。然而,这些行星均具有稠密的大气和更高的大气压力,这与地球、火星的大气环境有较大区别。在以往成功的行星探测中发现,此类复杂的行星大气环境中的气动减速过程需要... 中国针对金星、木星等行星的星际探测新征程已经开启,且正在论证之中。然而,这些行星均具有稠密的大气和更高的大气压力,这与地球、火星的大气环境有较大区别。在以往成功的行星探测中发现,此类复杂的行星大气环境中的气动减速过程需要多级降落伞来完成,且需在跨/超声速条件下开伞和工作,同时第一级引导伞的名义直径会明显小于主伞,也小于前体直径,不同尺寸的两级伞与前体之间的流固耦合机理及其气动特性至今尚不明确,同时相关研究报道亦极少。本文基于稠密大气行星探测任务中适用的锥形带条伞和盘缝带伞,采用浸入边界方法研究不同行星大气环境中柔性降落伞工作过程的流固耦合机理,深入考察不同来流马赫数、伞型、大气成分及参数与直径比影响下的流固耦合特性。研究结果发现:土卫六大气环境中,盘缝带伞(直径比0.3)在跨声速时进行稳降,随着时间变化,伞衣的投影面积逐渐增大,阻力系数在马赫数1.5时达到最大,但其波动变化随着马赫数的增大而单调增大。另外,在马赫数为0.95、直径比0和1时伞衣均出现了极为剧烈的摆动现象。相比之下,木星大气环境中,跨声速条件下锥形带条伞伞衣随着时间推进,投影面积变化越来越小。阻力系数及其波动会随着马赫数增大而单调增大,横向力系数及其波动程度在马赫数1.5时出现最大。最后比较土卫六、金星和木星大气环境中的降落伞气动表现,发现木星大气环境中锥形带条伞性能最佳,阻力系数较大,且稳定性较好。 展开更多
关键词 深空探测 跨/超声速降落伞系统 气动特性 流固耦合机理 气动减速技术
原文传递
基于特征交互的红外与可见光图像融合
15
作者 戴蓉 黄志勇 +2 位作者 王瑞 谢卫鑫 李建明 《激光与红外》 北大核心 2025年第9期1484-1491,共8页
红外和可见光图像融合旨在结合红外热辐射信息和可见光纹理,生成新图像。传统和深度学习方法通常将两种模态分开处理,限制了模态间的信息交互,难以有效区分互补与冗余信息,导致融合图像容易出现模糊、伪影和细节不清晰等问题。为了解决... 红外和可见光图像融合旨在结合红外热辐射信息和可见光纹理,生成新图像。传统和深度学习方法通常将两种模态分开处理,限制了模态间的信息交互,难以有效区分互补与冗余信息,导致融合图像容易出现模糊、伪影和细节不清晰等问题。为了解决此问题,本文设计了一个基于特征交互的融合网络模型,该模型利用特征交互模块FIM使模态间的特征信息能够进行交互。同时,为了使交互后的互补信息得到充分地利用,设计了交叉注意力融合模块CAFM。为验证所提方法性能,分别在3个数据集中与其他6种方法进行对比实验,实验结果表明,所提方法在视觉效果上纹理清晰,没有出现明显伪影,在定量评估中各指标排名都位于前列。 展开更多
关键词 图像融合 深度学习 特征交互 交叉注意力
在线阅读 下载PDF
人工智能深度学习与信息数字化模型
16
作者 张永林 姜恒 《北京师范大学学报(自然科学版)》 北大核心 2025年第4期591-597,共7页
通过研究人工智能(artificial intelligence,AI)深度学习功能及信息数字化转换过程,揭示了二者内在的信息变换与优化机制,系统阐释了AI自我认知学习、动态学习,以及信息交互变换机制,并构建了信息数字化模型.结果表明:AI深度学习借助符... 通过研究人工智能(artificial intelligence,AI)深度学习功能及信息数字化转换过程,揭示了二者内在的信息变换与优化机制,系统阐释了AI自我认知学习、动态学习,以及信息交互变换机制,并构建了信息数字化模型.结果表明:AI深度学习借助符号处理与概率映射,实现了信息变换与优化;数字化技术将物理世界的活动信息转化为可计算的数字符号,AI的运行逻辑是以信息动态组织为核心,使得数据信息与资源配置、经济决策动态对应.通过创新信息知识作用于未来行为,获得AI数字化创造生产力的深层原理,以期为理解智能经济中的新生产力提供理论参考,为智能数字经济提供理论支撑,并对中国智能经济发展提出建议. 展开更多
关键词 人工智能 深度学习 信息交互变换 数字化模型
在线阅读 下载PDF
基于结构化道路的车辆多模态轨迹预测方法
17
作者 胡杰 吴作伟 +2 位作者 张志凌 赵文龙 代怡鹏 《中国公路学报》 北大核心 2025年第2期286-295,共10页
车辆轨迹预测是自动驾驶系统的核心功能之一,是下游决策规划模块做出安全有效的驾驶行为的重要基础。为实现结构化道路场景下自动驾驶汽车对周围车辆长时域准确轨迹预测,在轨迹预测经典模型VectorNet的基础上,提出了一种分层交互的车辆... 车辆轨迹预测是自动驾驶系统的核心功能之一,是下游决策规划模块做出安全有效的驾驶行为的重要基础。为实现结构化道路场景下自动驾驶汽车对周围车辆长时域准确轨迹预测,在轨迹预测经典模型VectorNet的基础上,提出了一种分层交互的车辆多模态轨迹预测方法S-VectorNet。首先,引入门控循环单元(Gated Recurrent Unit,GRU)编码历史轨迹信息和地图信息,提升了编码特征的时间表征能力;其次,构建了一种基于注意力块和图神经网络(Graph Neural Networks,GNN)的双层交互模型对交通主体(包括目标车辆和周围交通主体)与地图间、交通主体相互间的交互作用建模,实现了更好的长程动态交互建模能力;然后,提出了一种随时间动态更新的场景表示模块,通过多头注意力机制和时间序列模型捕捉个体运动状态和交互的时间相关性,使模型学习到丰富的场景记忆信息;最后,在多模态轨迹生成方面使用两阶段轨迹生成方法,提高了模型对预测端点的捕捉能力。在公开数据集Argoverse上进行的试验表明:S-VectorNet在验证集上较基准模型最小平均位移误差降低12%,最小最终位移误差降低22%;在测试集上最小平均位移误差为0.83 m,最小最终位移误差为1.23 m,与现有其他轨迹预测模型相比综合性能优势明显。 展开更多
关键词 汽车工程 轨迹预测 深度学习 自动驾驶汽车 交互建模
原文传递
融合深度学习与多模型滤波的无人车协同导航方法
18
作者 肖烜 段宇轩 +2 位作者 唐嘉乔 涂青蓝 沈凯 《中国惯性技术学报》 北大核心 2025年第5期479-486,共8页
为了提升复杂环境下的协同导航精度与鲁棒性,提出了融合深度学习与多模型滤波的无人车协同导航方法。将深度学习网络与交互式多模型预测算法(IMM)深度融合,并融入协同导航系统的设计中,实现了数据层面的高效融合与互补,显著增强了导航... 为了提升复杂环境下的协同导航精度与鲁棒性,提出了融合深度学习与多模型滤波的无人车协同导航方法。将深度学习网络与交互式多模型预测算法(IMM)深度融合,并融入协同导航系统的设计中,实现了数据层面的高效融合与互补,显著增强了导航系统在复杂、高动态环境中的适应性与精确性。复杂环境下实车实验结果表明,在200 m的测试路径上,所提方法协同导航系统最大误差为0.3 m,较最初的激光/惯性协同导航方法提升了27.9%,验证了所提方法在卫星拒止环境下协同导航系统的显著优势与工程实用价值,为未来智能无人系统在拒止条件下的自主导航提供了有力的技术支撑。 展开更多
关键词 协同导航 拒止环境 点云检测 深度学习 交互式多模型
在线阅读 下载PDF
空间-光谱联合解卷的全色锐化网络
19
作者 郑建炜 夏弘毅 徐宏辉 《光子学报》 北大核心 2025年第1期176-188,共13页
以深度解卷网络为核心的全色锐化方法虽兼具可解释理论框架和自学习能力,然而往往采用简单网络各自逼近空间、光谱退化矩阵,缺乏协作的先验学习策略。为此,提出空间-光谱联合解卷网络,在迭代优化的理论指导下分别通过多尺度级联策略和... 以深度解卷网络为核心的全色锐化方法虽兼具可解释理论框架和自学习能力,然而往往采用简单网络各自逼近空间、光谱退化矩阵,缺乏协作的先验学习策略。为此,提出空间-光谱联合解卷网络,在迭代优化的理论指导下分别通过多尺度级联策略和点卷积操作实现自适应空间、光谱响应矩阵估计,并构建以注意力为基础的空间-光谱先验算子。在先验算子求解中,提出由多头光谱注意力和多头空间注意力组成的联合注意机制,分别在局部窗口中沿光谱和空间维度计算自注意力值,以捕获长程频谱依赖性,并建模全局空间交互作用。进一步构建了联合网络架构用于空间和光谱注意力间的精确信息融合。此外,设计了一种尺度感知协作模块,以捕获图像的多尺度局部特征。三个遥感数据集的实验结果证明了所提方案在数值和可视化结果层面均优于其他对比方法,其中在GF-2数据集上实现了0.798 dB的峰值信噪比增益。 展开更多
关键词 遥感图像 全色锐化 深度学习 网络解卷 TRANSFORMER 多尺度卷积 特征交互
在线阅读 下载PDF
基于AI技术的交互式课堂构建及实证研究——以应用文写作课程为例
20
作者 金玲 《科教文汇》 2025年第21期95-98,共4页
交互活动是学生知识建构、能力培养的重要方式。本研究基于生成式人工智能,从人与学习环境交互、人与技术交互、人与人交互三个维度出发,构建交互式课堂,并验证交互式课堂对学生深度学习能力的促进作用。研究结果表示,交互式课堂能有效... 交互活动是学生知识建构、能力培养的重要方式。本研究基于生成式人工智能,从人与学习环境交互、人与技术交互、人与人交互三个维度出发,构建交互式课堂,并验证交互式课堂对学生深度学习能力的促进作用。研究结果表示,交互式课堂能有效促进学生深度学习能力的提升。但在生成式人工智能赋能交互式课堂构建时,教师要重视技术依赖风险,防止人工智能工具影响学生的独立思考能力。 展开更多
关键词 交互式课堂 深度学习 生成式人工智能 教学交互
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部