期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
SGG-DGCN:Wind Turbine Anomaly Identification by Using Deep Graph Convolutional Networks with Similarity Graph Generation Strategy
1
作者 Xiaomin Wang Di Zhou +2 位作者 Xiao Zhuang Jian Ge and Jiawei Xiang 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第4期258-267,共10页
In order to minimize wind turbine failures,fault diagnosis of wind turbines is becoming increasinglyimportant,deep learning methods excel at multivariate monitoring and data modeling,but they are often limited toEucli... In order to minimize wind turbine failures,fault diagnosis of wind turbines is becoming increasinglyimportant,deep learning methods excel at multivariate monitoring and data modeling,but they are often limited toEuclidean space and struggle to capture the complex coupling between wind turbine sensors.To addressthis problem,we convert SCADA data into graph data,where sensors act as nodes and their topologicalconnections act as edges,to represent these complex relationships more efficiently.Specifically,a wind turbineanomaly identification method based on deep graph convolutional neural network using similarity graphgeneration strategy(SGG-DGCN)is proposed.Firstly,a plurality of similarity graphs containing similarityinformation between nodes are generated by different distance metrics.Then,the generated similarity graphs arefused using the proposed similarity graph generation strategy.Finally,the fused similarity graphs are fed into theDGCN model for anomaly identification.To verify the effectiveness of the proposed SGG-DGCN model,we conducted a large number of experiments.The experimental results show that the proposed SGG-DGCNmodel has the highest accuracy compared with other models.In addition,the results of ablation experimentalso demonstrate that the proposed SGG strategy can effectively improve the accuracy of WT anomalyidentification. 展开更多
关键词 anomaly identification deep graph convolutional networks similarity graph generation wind turbine
在线阅读 下载PDF
An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework
2
作者 Yuchen Zhou Hongtao Huo +5 位作者 Zhiwen Hou Lingbin Bu Yifan Wang Jingyi Mao Xiaojun Lv Fanliang Bu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期537-563,共27页
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca... Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements. 展开更多
关键词 graph neural networks hyperbolic graph convolutional neural networks deep graph convolutional neural networks message passing framework
在线阅读 下载PDF
MDGCN-Lt: Fair Web API Classification with Sparse and Heterogeneous Data Based on Deep GCN
3
作者 Boyuan Yan Yankun Zhang +4 位作者 Wenwen Gong Haoyang Wan Wenwei Wang Weiyi Zhong Caixia Bu 《Tsinghua Science and Technology》 2025年第3期1294-1314,共21页
Developers integrate web Application Programming Interfaces(APIs)into edge applications,enabling data expansion to the edge computing area for comprehensive coverage of devices in that region.To develop edge applicati... Developers integrate web Application Programming Interfaces(APIs)into edge applications,enabling data expansion to the edge computing area for comprehensive coverage of devices in that region.To develop edge applications,developers search API categories to select APIs that meet specific functionalities.Therefore,the accurate classification of APIs becomes critically important.However,existing approaches,as evident on platforms like programableweb.com,face significant challenges.Firstly,sparsity in API data reduces classification accuracy in works focusing on single-dimensional API information.Secondly,the multidimensional and heterogeneous structure of web APIs adds complexity to data mining tasks,requiring sophisticated techniques for effective integration and analysis of diverse data aspects.Lastly,the long-tailed distribution of API data introduces biases,compromising the fairness of classification efforts.Addressing these challenges,we propose MDGCN-Lt,an API classification approach offering flexibility in using multi-dimensional heterogeneous data.It tackles data sparsity through deep graph convolutional networks,exploring high-order feature interactions among API nodes.MDGCN-Lt employs a loss function with logit adjustment,enhancing efficiency in handling long-tail data scenarios.Empirical results affirm our approach’s superiority over existing methods. 展开更多
关键词 bidirectional encoder representations from transformers deep graph convolutional networks logit adjustment web application programming interface classification application programming interface correlation graph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部