期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer
1
作者 Lingxiao Zhu Hongchun Sun +8 位作者 Liantao Liu Ke Zhang Yongjiang Zhang Anchang Li Zhiying Bai Guiyan Wang Xiaoqing Liu Hezhong Dong Cundong Li 《Journal of Integrative Agriculture》 2025年第1期36-60,共25页
Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency... Nitrogen(N)serves as an essential nutrient for yield formation across diverse crop types.However,agricultural production encounters numerous challenges,notably high N fertilizer rates coupled with low N use efficiency and serious environmental pollution.Deep placement of nitrogen fertilizer(DPNF)is an agronomic measure that shows promise in addressing these issues.This review aims to offer a comprehensive understanding of DPNF,beginning with a succinct overview of its development and methodologies for implementation.Subsequently,the optimal fertilization depth and influencing factors for different crops are analyzed and discussed.Additionally,it investigates the regulation and mechanism underlying the DPNF on crop development,yield,N use efficiency and greenhouse gas emissions.Finally,the review delineates the limitations and challenges of this technology and provides suggestions for its improvement and application.This review provides valuable insight and reference for the promotion and adoption of DPNF in agricultural practice. 展开更多
关键词 deep placement of N fertilizer optimal fertilization depth YIELD N use efficiency greenhouse gas emissions
在线阅读 下载PDF
Effects of mechanized deep placement of nitrogen fertilizer rate and type on rice yield and nitrogen use efficiency in Chuanxi Plain, China 被引量:5
2
作者 ZHU Cong-hua OUYANG Yu-yuan +4 位作者 DIAO You YU Jun-qi LUO Xi ZHENG Jia-guo LI Xu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期581-592,共12页
This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It ... This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It provides theoretical support for N-saving and improves quality and production efficiency of machine-transplanted rice.Using a single-factor complete randomized block design in field experiments in 2018 and 2019,seven N-fertilization treatments were applied,with the fertilizer being surface broadcast and/or mechanically placed beside the seedlings at (5.5±0.5) cm soil depth when transplanting.The treatments were:N0,no N fertilizer;U1,180 kg N ha^(–1) as urea,surface broadcast manually before transplanting;U2,108 kg N ha^(–1) as urea,surface broadcast manually before transplanting,and 72 kg N ha^(–1) as urea surface broadcast manually on the 10th d after transplanting,which is not only the local common fertilization method,but also the reference treatment;UD,180 kg N ha^(–1) as urea,mechanically deep-placed when transplanting;M1,81.6 kg N ha^(–1) as urea and 38.4 kg N ha^(–1) as controlled-release urea (CRU),mechanically deep-placed when transplanting;M2,102 kg N ha^(–1) as urea and48 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting;M3,122.4 kg N ha^(–1) as urea and 57.6 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting.The effects of the N fertilizer treatments on rice yield and NUE were consistent in the 2 yr.With a N application rate of 180 kg ha^(–1),compared with U2,the N recovery efficiency (NRE),N agronomic use efficiency (NAE) and yield under the UD treatment were 20.6,3.5 and 1.1% higher in 2018,and 4.6,1.7 and 1.2% higher in 2019,respectively.Compared with urea alone (U1,U2 or UD),the NRE,NAE and yield achieved by M3 (combined application of urea and controlled-release urea) were higher by 9.2–73.3%,18.6–61.5% and 6.5–16.5%(2018),and 22.2–65.2%,25.6–75.0% and 5.9–13.9%(2019),respectively.Compared with M3,the lower-N treatments M1 and M2 significantly increased NRE by 4.0–7.8% in 2018 and 3.1–4.3% in 2019,respectively.Compared with urea surface application (U1 or U2),the yield under the M2 treatment was higher by 4.3–12.9% in 2018 and 3.6–10.1% in 2019,respectively.Compared with U2,the NRE and NAE under the M2 treatment was higher by 36.9 and 36.3% in 2018,and 33.2 and 37.4% in 2019,mainly because of higher N uptake.There was no significant difference in the concentration of nitrate in the top 0–20 cm soil under U1,U2 and M2 treatments during the full heading and maturity stages.During the full heading stage,U2 produced the highest concentration of nitrite in 0–20 cm and 20–40 cm soil among the N fertilizer treatments.In conclusion,mechanized deep placement of mixed urea and controlled-release urea (M2) at transplanting is a highly-efficient cultivation technology that enables increased yield of machine-transplanted rice and improved NUE,while reducing the amount of N-fertilization applied. 展开更多
关键词 RICE N-fertilization rate controlled release urea side deep fertilization YIELD nitrogen use efficiency
在线阅读 下载PDF
Effects of deep placement of fertilizer on periphytic biofilm development and nitrogen cycling in paddy systems 被引量:4
3
作者 Yanhui ZHAO Xiong XIONG Chenxi WU 《Pedosphere》 SCIE CAS CSCD 2021年第1期125-133,共9页
Periphytic biofilms are commonly presented at the water-soil interface in paddy fields. Different fertilization methods can affect the concentration and distribution of nutrients in paddy fields and thus affect the de... Periphytic biofilms are commonly presented at the water-soil interface in paddy fields. Different fertilization methods can affect the concentration and distribution of nutrients in paddy fields and thus affect the development of periphytic biofilms. In this study, the roles of periphytic biofilms in nitrogen(N) cycling in paddy systems and how they are affected by different fertilization methods were studied using microcosm experiments. Microcosms were prepared using soil samples from a paddy field and treated with surface and deep fertilization under light and dark conditions. Surface fertilization under light condition promoted the development of periphytic biofilms, while deep fertilization under dark condition inhibited their development. The development of periphytic biofilms increased the pH and dissolved oxygen levels in the overlying water. Surface fertilization resulted in high N concentrations in the overlying water and the topsoil layers, which enhanced NH3 volatilization and nitrification-denitrification but inhibited N fixation. The development of periphytic biofilms reduced NH3 volatilization loss but increased nitrification-denitrification loss and the overall N loss in the paddy system. The results from this work suggest that the presence of periphytic biofilms in paddy fields could increase N loss by 3.10%–7.11%. Deep fertilization is an effective method to retard the development of periphytic biofilms in the paddy system and can potentially increase the overall N use efficiency. 展开更多
关键词 deep fertilization denitrification potential N loss N use efficiency NH3 volatilization paddy field
原文传递
Structure optimization of cam executive component and analysis of precisely applying deep-fertilization liquid fertilizer 被引量:6
4
作者 Wenqi Zhou Jinwu Wang Han Tang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第4期104-109,共6页
Since there are some problems in the previous cam of deep-fertilization liquid fertilizer applicator,such as poor precision and low-fertilization performance,a method of the contour line of a cam was proposed based on... Since there are some problems in the previous cam of deep-fertilization liquid fertilizer applicator,such as poor precision and low-fertilization performance,a method of the contour line of a cam was proposed based on Matlab GUI development platform.Bernoulli’equation between the liquid fertilizer and the pressure valve of the fertilizer-spraying needle was founded.Moreover,the motion angles of a rise travel and return travel were corrected and the corresponding parameters of the contour line of the cam were obtained.Equations of cam moving from rise travel to return travel were derived according to the simple harmonic motion.In addition,3D model of cam was established by applying the Pro/E software and the rationality of the cam design was verified.The static analysis of the cam was carried out under working conditions and the corresponding dynamics analysis was performed based on D’Alembert’s principle.And then relationships between the binding force and the drag torque were obtained.A bench test indicates that when the pressure of a hydraulic pump is 0.5 MPa and the velocity of a output shaft is 50 r/min,the average consumption of the fertilizer is 19.7 mL for each measurement,which meets the corresponding agronomic requirement,i.e.20 mL.When the rotation angle of the cam is 8.6°and the rise displacement of a plunger is 0.84 mm,the mouth of the fertilizer-spraying needle sprayed liquid fertilizer as soon as it got into the soil and stopped spraying as soon as it got out of the soil.The results show that the designed contour line of the cam meets the requirement,that is,the mouth of the fertilizer-spraying needle should spray liquid fertilizer as soon as it gets into the soil and stop spraying as soon as it gets out of the soil,which meets the agronomic requirements,that is,fertilizer should be sprayed deeply and precisely.And this study lays a theoretical foundation for designing the cam of intermittent type distributor and provides relevant parameters. 展开更多
关键词 liquid fertilizer applicator CAM precision and deep fertilization Bernoulli’equation D’Alembert’s principle Matlab test optimization
原文传递
Design and performance evaluation of the six-row side deep fertilizer applicator for paddy fields 被引量:1
5
作者 Kemoh Bangura Shuanglong Wu +10 位作者 Zhenyu Tang Xiao Feng Renjun Hu Yinghu Cai Yuhao Zhou Zhanpeng Liang Zhiwei Zeng Abdulai Bangura Ernest Owusu-Sekyere Long Qi Hao Gong 《International Journal of Agricultural and Biological Engineering》 2024年第6期166-175,共10页
Deep application of chemical fertilizer is an alternative method to improve the fertilizer utilization efficiency of directly seeded and transplanted rice and minimize the adverse effects of fertilizer on the environm... Deep application of chemical fertilizer is an alternative method to improve the fertilizer utilization efficiency of directly seeded and transplanted rice and minimize the adverse effects of fertilizer on the environment.Different fertilization machines have been introduced for fertilizer deep placement.However,machines for this purpose have not been widely accepted due to the problem of inconsistent performance in applications.In response to this problem,this study developed a six-row deep fertilizer applicator with an improved discharge device.The structural design of the discharge device was optimized,and field performance experiments were conducted on the entire machine.First,a single row operation model of the fertilizer applicator was established based on the Discrete Element Method(DEM).Three spiral grooved wheel speeds were used to test the uniformity and accuracy of fertilization.The optimization test results showed that the spiral grooved wheel has good fertilizer discharge effect at a speed of 40 r/min,a groove radius of 6 mm,a grooved wheel working length of 50 mm,and a grooved wheel spiral angle of 45°.The coefficient of variation of fertilizer application uniformity under these parameter settings was 6.30%.Field experiments were conducted to test the machine’s performance under static and dynamic conditions.The static test results showed that the consistency and stability variations of fertilization in each row were less than 5%.When the expected fertilization rates were 150,225,300,and 375 kg/hm2,the fertilization accuracy of the six-row fertilization machine was 95.5%,and the overall deviation from the actual fertilization rates was less than 5%.The study provides a new tool for the advancement of rice fertilization technology and lays a research foundation for the development of efficient and precise rice fertilization machinery. 展开更多
关键词 deep fertilization device structural design DEM simulation field experiment
原文传递
Design and experiment of centralized pneumatic deep precision fertilization device for rice transplanter 被引量:5
6
作者 Xiantao Zha Guozhong Zhang +3 位作者 Shijie Zhang Qunxi Hou Yang Wang Yong Zhou 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期109-117,共9页
To improve the precision of deep fertilization of paddy fields,a six-row centralized pneumatic deep precision fertilization device for a rice transplanter was designed.This device included a spiral fertilizer distribu... To improve the precision of deep fertilization of paddy fields,a six-row centralized pneumatic deep precision fertilization device for a rice transplanter was designed.This device included a spiral fertilizer distribution system,centralized pneumatic fertilizer delivery system,an opener system,and a fertilization control system.The centralized airflow distribution method was used in the fertilizer delivery system to ensure that the airflow in each fertilizer pipe was evenly distributed.The rotational speeds of the power take-off(PTO)and fertilizer shaft were measured synchronously using photoelectric sensors and matched proportionately in real-time using PID closed-loop control algorithms to achieve precise fertilization rates at each working speed of the rice transplanter.There were two key considerations in the design of the control system to ensure precise fertilization.Firstly,a photoelectric sensor was used to measure the speed of the PTO;the high rotational speed of the PTO could provide a high signal frequency and improve the precision of the measurement of the transplanter’s working speed.Secondly,the fertilizer shaft speed measurement subprogram was set to sleep for a short period to reduce the vibration caused by the engine.During the tests of pneumatic fertilizer delivery system,single-factor tests on airflow distribution methods were conducted.The results showed that the coefficient of variation of the airflow speed for the centralized airflow distribution method was 1.67%,which was the least among the coefficients of the three distribution methods.In the bench tests,the rotational speeds of the fertilizer shaft were set at 10 r/min,20 r/min,30 r/min,and 40 r/min.The maximum coefficient of variation of the fertilization consistency in different rows was 1.49%at the rotational speed of 20 r/min.The maximum coefficient of variation of the fertilization stability was 2.86%at the rotational speed of 40 r/min,while the average fertilizer amount per lap for each distributor was 26.25 g/r.The results of the dynamic fertilization tests showed that the maximum relative error of the fertilizer distribution amount was 2.00%when the target fertilizer rates were 20,30,and 40 kg/667 m2.The results of the field tests showed that the average relative error of the fertilization amount was 3.53%,which satisfies the design standard.This research provides a reference for optimizing pneumatic fertilizer delivery systems and improving fertilization control systems and other pneumatic precision fertilizer application devices. 展开更多
关键词 agricultural machinery deep precision fertilization PNEUMATIC variable rate TRANSPLANTER vibration elimination
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部