期刊文献+
共找到2,700篇文章
< 1 2 135 >
每页显示 20 50 100
Characteristics of the Deep Crustal Structure of the Greenland–Iceland–Faroe Ridge in the North Atlantic
1
作者 ZHANG Chunguan LI Fengyuan +3 位作者 ZHANG Qiang ZHANG Guoli HU Hongchuan YIN Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期87-89,共3页
The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridg... The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridge,the Iceland is an alkaline basalt area,which belongs to the periodic submarine magmatism and submarine volcano eruption resulting from mantle plume upwelling(Jiang et al.,2020).For the oceanic plateaus,the characteristics of the Iceland are closest to the continental crust,so the Iceland is considered the most suitable for simulating the earliest continental crust on the Earth(Reimink et al.,2014). 展开更多
关键词 crustal thickness deep fault Moho surface gravity anomaly Greenland-Iceland-Faroe Ridge
在线阅读 下载PDF
基于AHRFaultSegNet深度学习网络的地震数据断层自动识别 被引量:1
2
作者 李克文 李文韬 +2 位作者 窦一民 朱信源 阳致煊 《石油地球物理勘探》 EI CSCD 北大核心 2024年第6期1225-1234,共10页
断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基... 断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基础上,构建了一种基于解耦自注意力机制的高分辨率断层识别网络模型AHRFaultSegNet。对于自注意力机制解耦,结合空间注意力和通道注意力,代替HRNet中并行传播的卷积层,在减少传统自注意力机制计算量的同时,模型可以在全局范围内计算输入特征的相关性,更准确地建模非局部特征;对解耦自注意力使用残差连接来保留原始特征,在加速模型训练的同时,使模型能够更好地保持细节信息。实验结果表明,所提出的网络模型在Dice、Fmeasure、IoU、Precision、Recall等性能评价指标上均优于其他常见的断层自动识别网络模型。通过对合成地震数据与实际地震数据等进行测试,证明了该方法对断层细微结构具有良好的识别效果并且具有良好的抗噪能力。 展开更多
关键词 断层检测识别 深度学习 解耦自注意力机制 残差连接
在线阅读 下载PDF
Discovery and its significance of late Paleozoic radiolariansilicalite in ophiolitic melange of northeasternJiangxi deep fault belt 被引量:3
3
作者 赵崇贺 何科昭 +7 位作者 莫宣学 邰道乾 叶德隆 叶栴 林培英 毕先梅 郑伯让 冯庆来 《Chinese Science Bulletin》 SCIE EI CAS 1996年第8期667-670,共4页
Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especial... Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especially for study of deep fault belt 展开更多
关键词 NORTHEASTERN JIANGXI deep fault BELT ophiolitic MELANGE late PALEOZOIC radiolarian.
在线阅读 下载PDF
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing 被引量:19
4
作者 Si-Yu Shao Wen-Jun Sun +2 位作者 Ru-Qiang Yan Peng Wang Robert X Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1347-1356,共10页
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need exp... Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. 展开更多
关键词 fault diagnosis deep learning deep beliefnetwork. RBM CLASSIFICATION
在线阅读 下载PDF
Analysis of microseismic activity in rock mass controlled by fault in deep metal mine 被引量:2
5
作者 Liu Jianpo Liu Zhaosheng +2 位作者 Wang Shaoquan Shi Changyan Li Yuanhui 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期235-239,共5页
Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac... Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass. 展开更多
关键词 deep mining fault Microseism(MS) Stability
在线阅读 下载PDF
A DEEP SEISMIC REFLECTION PROFILE ACROSS ALTUN FAULT BELT 被引量:3
6
作者 Gao Rui 1, Liu Hongbin 2, Li Qiusheng 1,Li Pengwu 1, Yao Peiyi 1, Huang Dongding 3 (1 Lithosphere Research Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China,E\|mail: gaorui@cags.cn.net 2 Institute of Ge 《地学前缘》 EI CAS CSCD 2000年第S1期205-205,共1页
Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute... Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance. 展开更多
关键词 deep seismic reflection probing Altun fault BELT TARIM b lock deep CRUST structure MOHO
在线阅读 下载PDF
Fault Systems and their Control of Deep Gas Accumulations in Xujiaweizi Area 被引量:2
7
作者 SUN Yonghe KANG Lin +2 位作者 BAI Haifeng FU Xiaofei HU Ming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第6期1547-1558,共12页
A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the ... A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of muiti-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xndong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area. 展开更多
关键词 deep gas accumulation fault system gas source fault volcanic reservoir XUJIAWEIZI
在线阅读 下载PDF
Extensional Tectonic System of Erlian Fault Basin Groupand Its Deep Background
8
作者 Ren Jianye Li Sitian Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 Jiao Guihao Exploration and Development Research Institute, Huabei Oil Administration Bureau, Renqiu 062552 Chen Ping Faculty of Business Administratio 《Journal of Earth Science》 SCIE CAS CSCD 1998年第3期44-49,共6页
The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abund... The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abundant geological and petroleum information accumulated in process of industry oil and gas exploration and development of the Erlian basin group is comprehensively analyzed, the structures related to formation of basin are systematically studied, and the complete extensional tectonic system of this basin under conditions of wide rift setting and low extensional ratio is revealed by contrasting study with Basin and Range Province of the western America. Based on the above studies and achievements of the former workers, the deep background of the basin development is treated. 展开更多
关键词 Late Mesozoic rifting extensional tectonic system deep process Erlian fault basin group.
在线阅读 下载PDF
Application of Improved Deep Auto-Encoder Network in Rolling Bearing Fault Diagnosis 被引量:1
9
作者 Jian Di Leilei Wang 《Journal of Computer and Communications》 2018年第7期41-53,共13页
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive... Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters. 展开更多
关键词 fault Diagnosis ROLLING BEARING deep Auto-Encoder NETWORK CAPSO Algorithm Feature Extraction
暂未订购
Study on relationship between deep and shallow structures along north boundary fault of Yanqing-Fanshan basin
10
作者 YU Gui-hua XU Xi-wei +6 位作者 ZHU Ai-lan MA Wen-tao DIAO Gui-ling ZHANG Si-chang ZHANG Xian-kang LIU Bao-jin SUN Zhen-guo 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第1期70-79,共10页
Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface activ... Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface active faults and the deep-seated crustal structure are analyzed using the recordings from the high-resolution digital seismic network. The focal mechanism solutions of micro-earthquakes, whose locations are precisely determined by the seismic network, have confirmed the structural characteristics to be the rotational planar normal fault and demon-strated the surface traces of the north boundary fault of Yanqing-Fanshan sub-basin. By using the digital recordings of earthquakes with the high resolutions and analyzing the mechanism solutions, our study has revealed the rela-tionship between the geological phenomena in the shallow and deep structures in Yanqing-Huailai basin and the transition features from the brittle to ductile deformation with the crustal depth. 展开更多
关键词 shallow and deep structures rotational planar normal fault focal mechanism
在线阅读 下载PDF
超深层“断滩体”概念、地质模式及地震表征技术方法——以塔里木油田为例 被引量:2
11
作者 张银涛 常少英 +3 位作者 谢舟 罗枭 王孟修 杜一凡 《断块油气田》 北大核心 2025年第1期108-117,共10页
“断滩体”是塔里木盆地富满油田奥陶系超深层新型油藏类型,是超深层油气储量保持增长的有利接替勘探领域。以野外露头资料为基础,结合钻井、地震、生产动态等资料,建立了超深碳酸盐岩油气藏“断滩体”地质发育模式,并形成了超深碳酸盐... “断滩体”是塔里木盆地富满油田奥陶系超深层新型油藏类型,是超深层油气储量保持增长的有利接替勘探领域。以野外露头资料为基础,结合钻井、地震、生产动态等资料,建立了超深碳酸盐岩油气藏“断滩体”地质发育模式,并形成了超深碳酸盐岩“断滩体”地震刻画技术。研究结果表明:1)“断滩体”的形成机制为超深层灰岩台内滩体受主干断裂派生次序级网状断裂破碎作用改造形成。2)基于“断滩体”地质特征,采用波形指示反演识别滩体边界;利用地震子波分解、反射特征强化法识别低级序断裂;通过滩体与低级序断裂的融合,精细刻画出“断滩体”的边界及内部结构,是表征“断滩体”的有效手段。3)富满东部三维区鹰山组下段发育典型的“断滩体”,明确了“断滩体”圈闭范围,识别断滩体面积42.2 km^(2),勘探潜力较大。富东1井的成功突破,预示着富满油田新的控储模式的确立。超深层“断滩体”地震识别技术为其他地区类似储层的预测提供较好的借鉴意义。 展开更多
关键词 超深层 断滩体 台内滩 子波分解 低级序断裂
在线阅读 下载PDF
Deep- Seated Tectonic Activation of Tancheng-Lujiang Fault Zone and Its Control over Jiaodong Gold Concentrated Region, China
12
作者 Cai Xinping Zhang Baolin Institute of Geology, Chinese Academy of Sciences, Beijing 100029 《Journal of Earth Science》 SCIE CAS CSCD 1999年第1期55-57,共3页
A comprehensive discussion on the deep seated genesis of gold metallogenic materials and the tectono magmatic controls over gold deposits is given in this paper, which is based on the crustal and upper mantle struct... A comprehensive discussion on the deep seated genesis of gold metallogenic materials and the tectono magmatic controls over gold deposits is given in this paper, which is based on the crustal and upper mantle structural characteristics of the Jiaodong massif, the property, activation history and styles of the Tancheng Lujiang fault zone, as well as a series of accompanying tectono magmatic events. Prediction for further prospecting gold deposits in the area is also made. 展开更多
关键词 deep seated tectonic activation Tancheng Lujiang fault zone Jiaodong gold concentrated region.
在线阅读 下载PDF
基于多智能体深度强化学习的随机事件驱动故障恢复策略 被引量:3
13
作者 王冲 石大夯 +3 位作者 万灿 陈霞 吴峰 鞠平 《电力自动化设备》 北大核心 2025年第3期186-193,共8页
为了减少配电网故障引起的失负荷,提升配电网弹性,提出一种基于多智能体深度强化学习的随机事件驱动故障恢复策略:提出了在电力交通耦合网故障恢复中的随机事件驱动问题,将该问题描述为半马尔可夫随机决策过程问题;综合考虑系统故障恢... 为了减少配电网故障引起的失负荷,提升配电网弹性,提出一种基于多智能体深度强化学习的随机事件驱动故障恢复策略:提出了在电力交通耦合网故障恢复中的随机事件驱动问题,将该问题描述为半马尔可夫随机决策过程问题;综合考虑系统故障恢复优化目标,构建基于半马尔可夫的随机事件驱动故障恢复模型;利用多智能体深度强化学习算法对所构建的随机事件驱动模型进行求解。在IEEE 33节点配电网与Sioux Falls市交通网形成的电力交通耦合系统中进行算例验证,结果表明所提模型和方法在电力交通耦合网故障恢复中有着较好的应用效果,可实时调控由随机事件(故障维修和交通行驶)导致的故障恢复变化。 展开更多
关键词 随机事件驱动 故障恢复 深度强化学习 电力交通耦合网 多智能体
在线阅读 下载PDF
GAF结合卷积神经网络的滚动轴承故障诊断研究 被引量:1
14
作者 张文兴 陈豪 +1 位作者 刘文婧 王建国 《机械设计与制造》 北大核心 2025年第5期12-17,共6页
为了充分发挥深度卷积神经网络识别二维图片在轴承故障诊断过程中的优势,这里提出了一种改进的格拉姆角场,改进后的算法在生成图片后具有更多的特征,经验证其在神经网络训练中收敛速度更快。其次结合改进的CNN模型,改进后的模型引进深... 为了充分发挥深度卷积神经网络识别二维图片在轴承故障诊断过程中的优势,这里提出了一种改进的格拉姆角场,改进后的算法在生成图片后具有更多的特征,经验证其在神经网络训练中收敛速度更快。其次结合改进的CNN模型,改进后的模型引进深度卷积结合注意力机制,保证模型在实现更少模型参数和更快的推理速度同时,在验证集能够取得更高的准确率。试验和研究结果表明,该图片编码方式结合改进的神经网络,在模型收敛上更迅速,并且在验证集上具有更好的准确率和鲁棒性。 展开更多
关键词 格拉姆角场 故障诊断 深度学习 神经网络
在线阅读 下载PDF
A Cloud Computing Fault Detection Method Based on Deep Learning 被引量:1
15
作者 Weipeng Gao Youchan Zhu 《Journal of Computer and Communications》 2017年第12期24-34,共11页
In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition ... In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition is difficult and the amount of data is too small, with large data training methods to solve a certain degree of difficulty. Therefore, a fault detection method based on depth learning is proposed. An auto-encoder with sparse denoising is used to construct a parallel structure network. It can automatically learn and extract the fault data characteristics and realize fault detection through deep learning. The experiment shows that this method can detect the cloud computing abnormality and determine the fault more effectively and accurately than the traditional method in the case of the small amount of cloud fault feature data. 展开更多
关键词 fault Detection Cloud Computing Auto-Encoder SPARSE DENOISING deep Learning
在线阅读 下载PDF
一种面向旋转机械多传感器故障诊断的模态融合深度聚类方法 被引量:3
16
作者 伍章俊 许仁礼 +1 位作者 方刚 邵海东 《电子与信息学报》 北大核心 2025年第1期244-259,共16页
针对单传感器和单模态信号特征信息不足的问题,该文提出一种基于多模态融合的端到端深度聚类旋转机械多传感器故障诊断方法(EDCM-MFF)。首先,利用门控递归单元自编码模块提取多传感器故障信号的深度时序特征。然后,应用短时傅里叶变换(S... 针对单传感器和单模态信号特征信息不足的问题,该文提出一种基于多模态融合的端到端深度聚类旋转机械多传感器故障诊断方法(EDCM-MFF)。首先,利用门控递归单元自编码模块提取多传感器故障信号的深度时序特征。然后,应用短时傅里叶变换(STFT)将故障信号转换为时频图像,并通过卷积自编码器提取这些图像的深度空间特征。接着,设计了一种模态融合注意力机制,通过计算不同模态深度特征之间的亲和矩阵,实现模态特征的融合。最后,采用Kullback-Leibler(KL)散度聚类,以端到端方式实现故障类型的识别。实验结果显示,该方法在东南大学齿轮箱和轴承数据集上的识别准确率分别为99.16%和98.63%。与现有的无监督学习方法相比,所提方法能够更有效地实现多传感器和多模态的旋转机械故障诊断。 展开更多
关键词 旋转机械 故障诊断 多模态融合 深度聚类
在线阅读 下载PDF
多变量时序标记Transformer及其在电潜泵故障诊断中的应用 被引量:3
17
作者 李康 李爽 +2 位作者 高小永 李强 张来斌 《控制与决策》 北大核心 2025年第4期1145-1153,共9页
电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断... 电潜泵故障诊断对于确保安全可靠采油至关重要,但是,电潜泵数据呈现出的多变量、非线性和动态变化等复杂特性为该任务带来了严峻挑战.近年来,深度学习在复杂数据特征提取方面表现出的强大能力催生了一系列基于神经网络的电潜泵故障诊断方法.然而,多数方法忽略了电潜泵数据的动态特性以及长时依赖特征提取困难的问题.针对上述问题,提出一种多变量时序标记Transformer神经网络来实现电潜泵故障诊断.该模型设计新的多变量时间序列标记策略,继承引入多头注意力机制和残差连接的传统Transformer神经网络编码器在长时依赖特征提取方面的优势,用前向神经网络替代传统Transformer神经网络解码器来简化模型复杂度.通过对油田现场故障数据分析,验证所提出方法的有效性.实验结果表明,所提出方法实现了10类电潜泵故障的精确诊断,相比于流行的深度学习方法诊断性能更优. 展开更多
关键词 电潜泵 Transformer神经网络 深度学习 特征提取 故障诊断 多变量时序标记
原文传递
顺北超深断控凝析气藏流体非平衡相变对开采效果影响
18
作者 张宁 曹飞 +4 位作者 李宗宇 张云 孙扬 潘毅 孙雷 《油气藏评价与开发》 北大核心 2025年第3期471-478,共8页
受超深超高温超高压成藏控藏机制影响,顺北超深层断控体凝析气藏地层流体呈现出超临界凝析气复杂相态特征,而其复杂相态演化行为对开发动态会产生怎样的影响,是顺北超深层断控体凝析气藏开发过程亟待探索和解决的问题。以顺北4号断裂带... 受超深超高温超高压成藏控藏机制影响,顺北超深层断控体凝析气藏地层流体呈现出超临界凝析气复杂相态特征,而其复杂相态演化行为对开发动态会产生怎样的影响,是顺北超深层断控体凝析气藏开发过程亟待探索和解决的问题。以顺北4号断裂带高含凝析油超临界凝析气为研究对象,首先运用高温高压可视化实验观测方法开展顺北凝析气藏近临界凝析油气流体临界乳光现象、非平衡相变现象、雾状反凝析沉降临界慢化现象,以及反凝析过程流体分层等特殊相态演化实验观测研究,而后分析高温超高压条件下近临界凝析气流体所产生的非平衡相态演化特征,初步揭示了非平衡相变及渗流对气井衰竭开采过程反凝析早期雾状反凝析沉降弛豫慢化现象等对凝析油采出程度的影响,得到在PVT(压力-容积-温度)釜中一定气柱高度中从露点压力开始降压至最大反凝析压力的雾状凝析油重力沉降弛豫时间累计可达1193 s,转换到顺北凝析气藏大纵深缝洞体流动空间可达7026 s,通过合理控制采速则可提高雾状反凝析油采出程度为4.99%;基于长岩心非平衡渗流实验测试得到合理控制采速可使反凝析油的采出程度提高了7.14%。结合顺北4号带典型气井生产曲线的变化规律,探讨了非平衡相变和雾状反凝析沉降弛豫效应对凝析气井反凝析阶段凝析油采出程度的影响。实际开采动态显示,目前凝析油采出程度较天然气高出5%以上,研发的高温高压原位相态观测系统已成功应用于塔里木、四川盆地等超深层气藏,可为顺北超深层凝析气藏开发动态特征分析及开发对策调整提供一定的参考。 展开更多
关键词 超深断控体凝析气藏 超临界凝析气 非平衡相变 反凝析沉降 弛豫慢化现象 非平衡渗流
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
19
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
利用深地震反射剖面研究太行山南端的地壳精细结构和构造
20
作者 酆少英 刘保金 +4 位作者 左莹 姬计法 谭雅丽 丁奎 武泉 《地震地质》 北大核心 2025年第1期267-283,共17页
为研究太行山南端地壳精细结构,在太行山南端的辉县—长垣之间布设了一条长约120km的深地震反射剖面。结果显示,该区地壳结构分层特征性明显,总地壳厚33.5~42.7km。上地壳厚13.3~20.1km,东薄西厚;下地壳有良好的反射性质,由一系列反射... 为研究太行山南端地壳精细结构,在太行山南端的辉县—长垣之间布设了一条长约120km的深地震反射剖面。结果显示,该区地壳结构分层特征性明显,总地壳厚33.5~42.7km。上地壳厚13.3~20.1km,东薄西厚;下地壳有良好的反射性质,由一系列反射能量较强的弧状或倾斜强反射构成。壳幔分界面反射能量较强,横向连续性较好,自东向西呈逐渐加深的形态。剖面沿线的断裂构造较为发育,共解释了11条断层,其中10条为上地壳内发育的断层。汤东断裂为汤阴断陷的主控边界断裂,向下以铲形正断层方式切割了沉积地层和基底,约在15~16km深度处归并到上、下地壳分界面上。在汤阴断陷的南东侧,剖面上存在一个近垂直的条带状反射能量减弱带或壳内界面的不连续带,自上而下切割了上、下地壳分界面、下地壳及壳幔分界面,属于地壳尺度的深大断裂。该断裂带记录了与剖面下方软流圈上升流相关的岩浆底侵作用,为深部热物质的上涌提供了通道,而深部物质的上涌、岩浆底侵或热侵蚀作用导致地壳出现拉张伸展。 展开更多
关键词 深地震反射剖面 太行山南端 汤阴断陷 华北盆地 地壳深断裂
在线阅读 下载PDF
上一页 1 2 135 下一页 到第
使用帮助 返回顶部