期刊文献+
共找到2,757篇文章
< 1 2 138 >
每页显示 20 50 100
Discovery and its significance of late Paleozoic radiolariansilicalite in ophiolitic melange of northeasternJiangxi deep fault belt 被引量:3
1
作者 赵崇贺 何科昭 +7 位作者 莫宣学 邰道乾 叶德隆 叶栴 林培英 毕先梅 郑伯让 冯庆来 《Chinese Science Bulletin》 SCIE EI CAS 1996年第8期667-670,共4页
Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especial... Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especially for study of deep fault belt 展开更多
关键词 NORTHEASTERN JIANGXI deep fault BELT ophiolitic MELANGE late PALEOZOIC radiolarian.
在线阅读 下载PDF
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing 被引量:19
2
作者 Si-Yu Shao Wen-Jun Sun +2 位作者 Ru-Qiang Yan Peng Wang Robert X Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1347-1356,共10页
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need exp... Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing work- ing status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by- layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierar- chical representations, which are suitable for fault classi- fication, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition. 展开更多
关键词 fault diagnosis deep learning deep beliefnetwork. RBM CLASSIFICATION
在线阅读 下载PDF
Analysis of microseismic activity in rock mass controlled by fault in deep metal mine 被引量:2
3
作者 Liu Jianpo Liu Zhaosheng +2 位作者 Wang Shaoquan Shi Changyan Li Yuanhui 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期235-239,共5页
Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS ac... Aiming at evaluating the stability of a rock mass near a fault,a microseismic(MS) monitoring system was established in Hongtoushan copper mine.The distribution of displacement and log(/),the relationship between MS activity and the exploitation process,and the stability of the rock mass controlled by a fault were studied.The results obtained from microseismic data showed that MS events were mainly concentrated al the footwall of the fault.When the distance to the fault exceeded 20 m,the rock mass reached a relatively stable state.MS activity is closely related to the mining process.Under the strong disturbance from blasting,the initiation and propagation of cracks is much faster.MS activity belongs in the category of aftershocks after large scale excavation.The displacement and log(C/) obtained from MS events can reflect the difference in physical and mechanical behavior of different areas within the rock mass,which is useful in judging the integrity and degradation of the rock mass. 展开更多
关键词 deep mining fault Microseism(MS) Stability
在线阅读 下载PDF
A DEEP SEISMIC REFLECTION PROFILE ACROSS ALTUN FAULT BELT 被引量:3
4
作者 Gao Rui 1, Liu Hongbin 2, Li Qiusheng 1,Li Pengwu 1, Yao Peiyi 1, Huang Dongding 3 (1 Lithosphere Research Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China,E\|mail: gaorui@cags.cn.net 2 Institute of Ge 《地学前缘》 EI CAS CSCD 2000年第S1期205-205,共1页
Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute... Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance. 展开更多
关键词 deep seismic reflection probing Altun fault BELT TARIM b lock deep CRUST structure MOHO
在线阅读 下载PDF
Fault Systems and their Control of Deep Gas Accumulations in Xujiaweizi Area 被引量:2
5
作者 SUN Yonghe KANG Lin +2 位作者 BAI Haifeng FU Xiaofei HU Ming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第6期1547-1558,共12页
A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the ... A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of muiti-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xndong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area. 展开更多
关键词 deep gas accumulation fault system gas source fault volcanic reservoir XUJIAWEIZI
在线阅读 下载PDF
Extensional Tectonic System of Erlian Fault Basin Groupand Its Deep Background
6
作者 Ren Jianye Li Sitian Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 Jiao Guihao Exploration and Development Research Institute, Huabei Oil Administration Bureau, Renqiu 062552 Chen Ping Faculty of Business Administratio 《Journal of Earth Science》 SCIE CAS CSCD 1998年第3期44-49,共6页
The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abund... The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abundant geological and petroleum information accumulated in process of industry oil and gas exploration and development of the Erlian basin group is comprehensively analyzed, the structures related to formation of basin are systematically studied, and the complete extensional tectonic system of this basin under conditions of wide rift setting and low extensional ratio is revealed by contrasting study with Basin and Range Province of the western America. Based on the above studies and achievements of the former workers, the deep background of the basin development is treated. 展开更多
关键词 Late Mesozoic rifting extensional tectonic system deep process Erlian fault basin group.
在线阅读 下载PDF
基于Deep SVDD的核电站无监督微弱故障异常检测方法
7
作者 艾鑫 刘永阔 +1 位作者 单龙飞 高嘉嵘 《核动力工程》 北大核心 2025年第6期251-260,共10页
核电站运行数据呈现复杂的高维非线性特性,经典的主元分析(PCA)异常检测方法不具备非线性特征学习能力,检测准确率有待提高。本研究建立了基于深度支持向量数据描述(Deep SVDD)的核电站无监督微弱故障异常检测方法,使用PCTRAN仿真机对... 核电站运行数据呈现复杂的高维非线性特性,经典的主元分析(PCA)异常检测方法不具备非线性特征学习能力,检测准确率有待提高。本研究建立了基于深度支持向量数据描述(Deep SVDD)的核电站无监督微弱故障异常检测方法,使用PCTRAN仿真机对多种故障程度的典型故障以及电动阀门故障试验台内漏故障数据进行测试。测试结果表明,Deep SVDD异常检测方法相比于经典的PCA异常检测方法具有更高的微弱故障检测准确率。本研究为核电站微弱故障异常检测方法的研究提供了参考。 展开更多
关键词 核电站 异常检测 微弱故障 deep SVDD 堆叠自编码网络
原文传递
Application of Improved Deep Auto-Encoder Network in Rolling Bearing Fault Diagnosis 被引量:1
8
作者 Jian Di Leilei Wang 《Journal of Computer and Communications》 2018年第7期41-53,共13页
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive... Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters. 展开更多
关键词 fault Diagnosis ROLLING BEARING deep Auto-Encoder NETWORK CAPSO Algorithm Feature Extraction
暂未订购
Study on relationship between deep and shallow structures along north boundary fault of Yanqing-Fanshan basin
9
作者 YU Gui-hua XU Xi-wei +6 位作者 ZHU Ai-lan MA Wen-tao DIAO Gui-ling ZHANG Si-chang ZHANG Xian-kang LIU Bao-jin SUN Zhen-guo 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第1期70-79,共10页
Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface activ... Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface active faults and the deep-seated crustal structure are analyzed using the recordings from the high-resolution digital seismic network. The focal mechanism solutions of micro-earthquakes, whose locations are precisely determined by the seismic network, have confirmed the structural characteristics to be the rotational planar normal fault and demon-strated the surface traces of the north boundary fault of Yanqing-Fanshan sub-basin. By using the digital recordings of earthquakes with the high resolutions and analyzing the mechanism solutions, our study has revealed the rela-tionship between the geological phenomena in the shallow and deep structures in Yanqing-Huailai basin and the transition features from the brittle to ductile deformation with the crustal depth. 展开更多
关键词 shallow and deep structures rotational planar normal fault focal mechanism
在线阅读 下载PDF
Deep- Seated Tectonic Activation of Tancheng-Lujiang Fault Zone and Its Control over Jiaodong Gold Concentrated Region, China
10
作者 Cai Xinping Zhang Baolin Institute of Geology, Chinese Academy of Sciences, Beijing 100029 《Journal of Earth Science》 SCIE CAS CSCD 1999年第1期55-57,共3页
A comprehensive discussion on the deep seated genesis of gold metallogenic materials and the tectono magmatic controls over gold deposits is given in this paper, which is based on the crustal and upper mantle struct... A comprehensive discussion on the deep seated genesis of gold metallogenic materials and the tectono magmatic controls over gold deposits is given in this paper, which is based on the crustal and upper mantle structural characteristics of the Jiaodong massif, the property, activation history and styles of the Tancheng Lujiang fault zone, as well as a series of accompanying tectono magmatic events. Prediction for further prospecting gold deposits in the area is also made. 展开更多
关键词 deep seated tectonic activation Tancheng Lujiang fault zone Jiaodong gold concentrated region.
在线阅读 下载PDF
A Cloud Computing Fault Detection Method Based on Deep Learning 被引量:1
11
作者 Weipeng Gao Youchan Zhu 《Journal of Computer and Communications》 2017年第12期24-34,共11页
In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition ... In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition is difficult and the amount of data is too small, with large data training methods to solve a certain degree of difficulty. Therefore, a fault detection method based on depth learning is proposed. An auto-encoder with sparse denoising is used to construct a parallel structure network. It can automatically learn and extract the fault data characteristics and realize fault detection through deep learning. The experiment shows that this method can detect the cloud computing abnormality and determine the fault more effectively and accurately than the traditional method in the case of the small amount of cloud fault feature data. 展开更多
关键词 fault Detection Cloud Computing Auto-Encoder SPARSE DENOISING deep Learning
在线阅读 下载PDF
基于深度多源域适应的滚动轴承跨工况故障诊断方法研究
12
作者 贾然 李睿 +3 位作者 陈涛 张树纯 熊涔博 郝乃芃 《北京理工大学学报》 北大核心 2026年第2期141-150,共10页
针对现有故障诊断模型在滚动轴承跨工况场景下存在特征分布偏移抑制不足与负迁移风险显著的问题,提出一种基于深度多源域适应的故障诊断方法.首先,设计动态权重分配模块,通过Wasserstein距离量化源域与目标域分布差异,结合Softmax函数... 针对现有故障诊断模型在滚动轴承跨工况场景下存在特征分布偏移抑制不足与负迁移风险显著的问题,提出一种基于深度多源域适应的故障诊断方法.首先,设计动态权重分配模块,通过Wasserstein距离量化源域与目标域分布差异,结合Softmax函数自适应融合多源知识,抑制噪声干扰与负迁移;其次,构建多尺度特征提取网络,采用并行时域膨胀卷积分支与频域短时傅里叶变换分支捕捉振动信号的局部瞬态特征与全局频域模式,并通过跨尺度注意力机制实现时频特征交互强化;最后,引入多判别器对抗训练与最大分类器差异准则,联合优化域不变特征对齐与分类判别性.通过多源域适应任务进行实验验证,结果表明,所提方法较其他传统多源域适应方法具有更高的诊断精度与泛化能力,平均诊断精度最高提升了3.43%,且任务间性能波动最高降低了40%,为复杂工业场景下的滚动轴承跨工况故障诊断提供了新思路. 展开更多
关键词 深度学习 多源域 滚动轴承 故障诊断
在线阅读 下载PDF
滚动轴承故障诊断方法综述
13
作者 丁汕汕 吴卫兵 +1 位作者 刘飞 陈仁文 《机床与液压》 北大核心 2026年第1期1-20,共20页
滚动轴承故障诊断是机械设备健康监测与预维护的重要技术,对提高设备运行可靠性和降低维护成本具有重要意义。针对此,对滚动轴承故障诊断方法的研究进展进行综述,重点分析传统数据驱动方法、深度学习方法、图嵌入方法和Transformer方法... 滚动轴承故障诊断是机械设备健康监测与预维护的重要技术,对提高设备运行可靠性和降低维护成本具有重要意义。针对此,对滚动轴承故障诊断方法的研究进展进行综述,重点分析传统数据驱动方法、深度学习方法、图嵌入方法和Transformer方法在该领域的应用及其优缺点。传统方法在特征提取上存在局限性,深度学习方法虽然表现良好,但计算复杂度较高;图嵌入方法虽可有效处理非欧几里得数据,但仍面临非线性关系建模的挑战;Transformer方法在时序建模中具有优势,但其计算效率和参数量需进一步优化。其次,进一步分析当前研究的主要问题,包括网络结构复杂、信息关注不足、图数据处理困难以及长期依赖建模困难等。针对这些挑战,未来研究应致力于设计更加轻量化和高效的模型,提升模型的计算效率、鲁棒性及泛化能力,并加强对故障特征的关注和深度挖掘。 展开更多
关键词 滚动轴承 故障诊断 深度学习 图嵌入方法
在线阅读 下载PDF
深度学习在磨矿分级给矿系统的应用综述
14
作者 何济帆 黄宋魏 +1 位作者 程贯瑞 吴丽萍 《煤炭技术》 2026年第1期191-195,共5页
深度学习在磨矿分级给矿系统中的应用日益广泛,对于提高选矿厂生产效率、降低能耗、提升智能化水平具有重要的作用。磨矿分级给矿系统是选矿过程的重要环节,其安全性、精确性和合理性关系到整个选矿过程的运行效果,也是选矿过程智能化... 深度学习在磨矿分级给矿系统中的应用日益广泛,对于提高选矿厂生产效率、降低能耗、提升智能化水平具有重要的作用。磨矿分级给矿系统是选矿过程的重要环节,其安全性、精确性和合理性关系到整个选矿过程的运行效果,也是选矿过程智能化应用的重要环节。近年来,深度学习在给矿系统的设备运行状态检测、给矿流量检测与控制、给矿流量动态误差补偿、给矿矿石粒度检测等方面得到了应用,应用的深度学习技术包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等,显著提高了设备故障诊断的准确性和响应速度,以及矿石流量的检测精度,呈现出向多模态数据融合、模型轻量化、边缘计算与分布式协同优化等发展趋势。 展开更多
关键词 给矿系统 深度学习 故障诊断 给矿流量 矿石粒度
原文传递
Characteristics of the Deep Crustal Structure of the Greenland–Iceland–Faroe Ridge in the North Atlantic
15
作者 ZHANG Chunguan LI Fengyuan +3 位作者 ZHANG Qiang ZHANG Guoli HU Hongchuan YIN Rui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期87-89,共3页
The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridg... The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridge,the Iceland is an alkaline basalt area,which belongs to the periodic submarine magmatism and submarine volcano eruption resulting from mantle plume upwelling(Jiang et al.,2020).For the oceanic plateaus,the characteristics of the Iceland are closest to the continental crust,so the Iceland is considered the most suitable for simulating the earliest continental crust on the Earth(Reimink et al.,2014). 展开更多
关键词 crustal thickness deep fault Moho surface gravity anomaly Greenland-Iceland-Faroe Ridge
在线阅读 下载PDF
基于周期相关性的多工况下轴向柱塞泵故障诊断
16
作者 谭浩洋 张建敏 +3 位作者 宋豫 张帅印 周东波 陶建峰 《机床与液压》 北大核心 2026年第1期141-148,共8页
针对多工况下轴向柱塞泵故障诊断中存在的故障信号微弱、特征提取困难且易受噪声干扰的问题,提出一种基于周期相关性的弱故障诊断方法。考虑到出口压力信号易于获取,且能有效反映轴向柱塞泵的动态性能,通过分析柱塞泵出口压力脉动的周... 针对多工况下轴向柱塞泵故障诊断中存在的故障信号微弱、特征提取困难且易受噪声干扰的问题,提出一种基于周期相关性的弱故障诊断方法。考虑到出口压力信号易于获取,且能有效反映轴向柱塞泵的动态性能,通过分析柱塞泵出口压力脉动的周期性特征,结合傅里叶变换与显著性指标法,准确划分单个柱塞的运动周期,并采用互相关特征提取策略,增强故障信号中的周期性特征,抑制正常信号对深度学习模型分类过程的干扰。基于提取的周期相关特征,进一步引入自注意力机制的Transformer模型,以提高模型对高频时序信号的处理能力及其泛化性能。实验结果表明:与仅使用Transformer的故障诊断方法相比,所提出的方法在多工况物理实验数据集上的故障诊断准确率提高约10%,且在噪声干扰条件下仍能维持90%以上的诊断精度,充分验证了该方法的准确性与鲁棒性。 展开更多
关键词 柱塞泵 故障诊断 周期相关性 深度学习
在线阅读 下载PDF
SC-EfficientNetV2的感应电机故障诊断方法
17
作者 石颉 葛俊杰 崔宪 《机床与液压》 北大核心 2026年第1期27-34,共8页
针对传统感应电机故障诊断方法消耗算力大、训练速度慢的问题,提出一种基于深度学习的轻量化故障诊断模型——SC-EfficientNetV2。以EfficientNetV2-b0为主干网络,将网络的SE注意力模块替换为ECA注意力模块,通过1×1卷积替代SENET... 针对传统感应电机故障诊断方法消耗算力大、训练速度慢的问题,提出一种基于深度学习的轻量化故障诊断模型——SC-EfficientNetV2。以EfficientNetV2-b0为主干网络,将网络的SE注意力模块替换为ECA注意力模块,通过1×1卷积替代SENET的全连接层以减少网络参数并提高对特征的提取能力;引入SCConv卷积,依赖其优化图像特征表达的特性来降低特征冗余;通过减少网络模块的重复次数以减少网络参数量,得到SC-EfficientNetV2网络。为验证模型性能,以太原理工大学公开感应电机数据集为实验对象,采用格拉姆角场对数据进行升维,使网络更容易学习数据中的特征。结果表明:与原网络相比,改进后模型体积减少12.49 MB,准确率达到99.03%,提升了1.97%;同时在另一公开永磁同步电机数据集中,网络精度达到99.95%,证明了所提改进措施的有效性。 展开更多
关键词 故障诊断 深度学习 轻量化 EfficientNetV2
在线阅读 下载PDF
基于DCAE-AM的轴承健康指标构建
18
作者 李名洪 张林鍹 +2 位作者 邱朝洁 郑兴 张盼盼 《轴承》 北大核心 2026年第1期111-119,共9页
在基于数据驱动和深度学习的轴承剩余使用寿命(RUL)预测流程中,构建能准确描述轴承退化状态的健康指标(HI)是至关重要的步骤。针对基于传统特征和无监督学习方法构建的健康指标性能较差,无法合理反映轴承退化状态的问题,使用深度卷积自... 在基于数据驱动和深度学习的轴承剩余使用寿命(RUL)预测流程中,构建能准确描述轴承退化状态的健康指标(HI)是至关重要的步骤。针对基于传统特征和无监督学习方法构建的健康指标性能较差,无法合理反映轴承退化状态的问题,使用深度卷积自编码器(DCAE)从原始振动信号中提取故障特征,考虑到每组特征都具有时间序列的性质,在编码器中引入自注意力机制(AM)自动学习序列内部元素相互关系并赋予不同权重,提出了构建健康指标的DCAE-AM模型。为合理反映轴承的退化过程并避免引入大量的先验知识,使用基于二次函数的标签训练模型。在PHM2012轴承数据集上进行模型验证并设定了失效阈值,相比于PCA,SOM,WGAN,CNN以及DCAE等方法,DCAE-AM模型所构建健康指标的融合性能评分最少提升了7.3%,最多提升了89.7%。 展开更多
关键词 滚动轴承 深度学习 剩余寿命 编码器 监督学习 故障特征
在线阅读 下载PDF
基于Spark的煤矿设备密封组件老化故障智能检测模型
19
作者 徐华 邵华 +2 位作者 宿国瑞 王泽 高文忠 《粘接》 2026年第1期61-64,共4页
煤矿设备的安全、高效运行对确保能源供应至关重要。鉴于煤矿设备的恶劣服役环境,尤其是含有有机材料组件易于老化失效的问题,构建基于Spark计算框架的XGBoost深度学习故障智能化诊断模型。所构建的模型采用Spark来处理煤矿设备的海量... 煤矿设备的安全、高效运行对确保能源供应至关重要。鉴于煤矿设备的恶劣服役环境,尤其是含有有机材料组件易于老化失效的问题,构建基于Spark计算框架的XGBoost深度学习故障智能化诊断模型。所构建的模型采用Spark来处理煤矿设备的海量运行数据,同时将数据作为XGBoost模型的训练和测试数据来深度学习,实现设备故障的智能化诊断。将提出的Spark计算框架的XGBoost深度学习故障智能化诊断模型与随机森林模型、Hadoop计算框架进行对比,结果表明所提出的设备故障智能化诊断模型对设备故障类型的识别准确率高,运行时间不足Hadoop计算框架的1/40。这对煤矿设备故障智能诊断,确保设备的安全、稳定运行具有一定的参考价值。 展开更多
关键词 Sprak计算框架 XGBoost深度学习算法 煤矿设备 故障诊断
在线阅读 下载PDF
基于AHRFaultSegNet深度学习网络的地震数据断层自动识别 被引量:1
20
作者 李克文 李文韬 +2 位作者 窦一民 朱信源 阳致煊 《石油地球物理勘探》 EI CSCD 北大核心 2024年第6期1225-1234,共10页
断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基... 断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基础上,构建了一种基于解耦自注意力机制的高分辨率断层识别网络模型AHRFaultSegNet。对于自注意力机制解耦,结合空间注意力和通道注意力,代替HRNet中并行传播的卷积层,在减少传统自注意力机制计算量的同时,模型可以在全局范围内计算输入特征的相关性,更准确地建模非局部特征;对解耦自注意力使用残差连接来保留原始特征,在加速模型训练的同时,使模型能够更好地保持细节信息。实验结果表明,所提出的网络模型在Dice、Fmeasure、IoU、Precision、Recall等性能评价指标上均优于其他常见的断层自动识别网络模型。通过对合成地震数据与实际地震数据等进行测试,证明了该方法对断层细微结构具有良好的识别效果并且具有良好的抗噪能力。 展开更多
关键词 断层检测识别 深度学习 解耦自注意力机制 残差连接
在线阅读 下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部