期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Switching from deep eutectic solvents to deep eutectic systems for natural product extraction
1
作者 Zhaoyang Wang Simin Wang +1 位作者 Yuan Zhang Wentao Bi 《Green Chemical Engineering》 2025年第1期36-53,共18页
This article presents a comprehensive overview of recent advancements in natural product extraction,focusing on the evolution from deep eutectic solvents(DESs)to deep eutectic systems(DESys)for extraction.DESs,known f... This article presents a comprehensive overview of recent advancements in natural product extraction,focusing on the evolution from deep eutectic solvents(DESs)to deep eutectic systems(DESys)for extraction.DESs,known for their environmentally friendly properties,have become crucial in extracting various natural products from plants,including micromolecules,lignin,and polysaccharides.Research into the extraction mechanism reveals that target compounds typically form hydrogen bonds with DESs,effectively becoming part of the solvent system.This insight has led to the development of the DESys extraction method,where hydrogen bond acceptors(HBAs)and hydrogen bond donors(HBDs)are directly mixed with the sample to form a DESys containing the target compounds.The shift from DES-based extraction to DESys-based extraction introduces innovative approaches where target compounds are integral to the solvent system,allowing for one-step dissolution and extraction.This methodology eliminates the need for pre-prepared DESs,simplifying processes and enhancing extraction efficiency.Additionally,strategies for DESs recycling and reuse contribute to sustainability efforts,offering cost-effective and environmentally friendly extraction solutions.The expanding applications of DES-based and DESys-based natural product extraction in cosmetics,food,industry,and environmental fields highlight their promising development potential.By delineating the transition from DES-based to DESys-based extraction of natural products,this review offers valuable insights for advancing the practice of green chemical engineering. 展开更多
关键词 deep eutectic solvents deep eutectic systems Biological micromolecules LIGNIN POLYSACCHARIDES
原文传递
Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers 被引量:1
2
作者 Yuntong Wang Shengchong Hui +6 位作者 Zhaoxiaohan Shi Zijing Li Geng Chen Tao Zhang Xinyue Xie Limin Zhang Hongjing Wu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期738-746,共9页
Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction... Gels and conductive polymer composites,including hydrogen bonds(HBs),have emerged as promising materials for electro-magnetic wave(EMW)absorption across various applications.However,the relationship between conduction loss in EMW-absorbing materials and charge transfer in HB remains to be fully understood.In this study,we developed a series of deep eutectic gels to fine-tune the quantity of HB by adjusting the molar ratio of choline chloride(ChCl)and ethylene glycol(EG).Owing to the unique properties of deep eutectic gels,the effects of magnetic loss and polarization loss on EMW attenuation can be disregarded.Our results indicate that the quantity of HB initially increases and then decreases with the introduction of EG,with HB-induced conductive loss following similar pat-terns.At a ChCl and EG molar ratio of 2.4,the gel labeled G22-CE2.4 exhibited the best EMW absorption performance,characterized by an effective absorption bandwidth of 8.50 GHz and a thickness of 2.54 mm.This superior performance is attributed to the synergistic ef-fects of excellent conductive loss and impedance matching generated by the optimal number of HB.This work elucidates the role of HB in dielectric loss for the first time and provides valuable insights into the optimal design of supramolecular polymer absorbers. 展开更多
关键词 ABSORBERS hydrogen bonds deep eutectic gels dielectric properties conduction loss
在线阅读 下载PDF
An overview of deep eutectic solvents:Alternative for organic electrolytes,aqueous systems&ionic liquids for electrochemical energy storage 被引量:4
3
作者 Akshay Sharma Renuka Sharma +1 位作者 Ramesh C.Thakur Lakhveer Singh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期592-626,I0013,共36页
As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovativ... As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovative solutions must be explored.This review examines the deep eutectic solvents(DESs)as a green,safe,and affordable solution for the electrochemical energy storage and conversion field,offering tremendous opportunities and a promising future.DESs are a class of environment-friendly solvents known for their low toxicity and unique properties,such as their good conductivity,high thermal stability,and nonflammability.This review explores the fundamentals,preparations,and various interactions that often predominate in the formation of DESs,the properties of DESs,and how DESs are better than traditional solvents involving cost-ineffective and unsafe organic electrolytes and ionic liquids as well as inefficient aqueous systems due to low energy density for electrochemical energy storage applications.Then,a particular focus is placed on the various electrochemical applications of DESs,including their role in the electrolytes in batteries/supercapacitors,electropolishing and electrodeposition of metals,synthesis of electrode materials,recycling of electrodes,and their potential for use in CO_(2)capture.The review concludes by exploring the challenges,research gaps,and future potential of DESs in electrochemical applications,providing a comprehensive overview,and highlighting key considerations for their design and use. 展开更多
关键词 deep eutectic solvent Green solventHole theory Energy storage devices Aqueous electrolyte
在线阅读 下载PDF
Deep eutectic solvents for separation and purification applications in critical metal metallurgy:Recent advances and perspectives
4
作者 Shuo Chen Shengpeng Su +4 位作者 Yanfang Huang Bingbing Liu Hu Sun Shuzhen Yang Guihong Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期1-19,共19页
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ... Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy. 展开更多
关键词 deep eutectic solvents preparations PROPERTIES separation and purification critical metal metallurgy
在线阅读 下载PDF
Reaction crystallization method based on deep eutectic solvents:A novel,green and efficient cocrystal synthesis approach
5
作者 Xia-Lin Dai Yu-Hang Yao +3 位作者 Jian-Feng Zhen Wei Gao Jia-Mei Chen Tong-Bu Lu 《Chinese Chemical Letters》 2025年第11期518-521,共4页
Reaction crystallization method is a common cocrystal synthesis approach attributed to the advantage of avoiding individual crystallization of insoluble components,but faces the defects of soluble components precipita... Reaction crystallization method is a common cocrystal synthesis approach attributed to the advantage of avoiding individual crystallization of insoluble components,but faces the defects of soluble components precipitated due to organic solvent volatilization and the formation of unwanted solvates.Our group recently proposed a slurry method based on deep eutectic solvents(DESs)for cocrystal synthesis,which is green,safe and can avoid solvate formation.However,some reactions only produce insoluble raw materials rather than cocrystals due to insufficient activity of the soluble cocrystal co-formers in DESs.Herein,combining the dual benefits of the two methods,a novel reaction crystallization method based on DESs was proposed and employed for cocrystal synthesis of nicotinamide,carbamazepine and theophylline,which can prevent individual crystallization,unwanted solvate formation,and soluble component precipitation,providing a promising alternative for green and efficient synthesis of cocrystals. 展开更多
关键词 COCRYSTAL deep eutectic solvent Green synthesis CHOLINE Reaction crystallization
原文传递
Electrolysis of Cu_(2) Sinto copper nanosheets and sulfur particles in ChCl-thiourea deep eutectic solvent
6
作者 Ji-hua LI Jin-feng ZHOU +4 位作者 Wei-jia CHEN Shi-wei HE Zhong-sheng HUA Shi-liang CHEN Hui KONG 《Transactions of Nonferrous Metals Society of China》 2025年第7期2386-2398,共13页
Copper nanosheets and sulfur particles were synthesized synchronously by electrolysis,after dissolving Cu_(2)S in ChCl-thiourea(TU)deep eutectic solvent(DES)system.The optimized electrolysis conditions of 0.9 V,80℃,a... Copper nanosheets and sulfur particles were synthesized synchronously by electrolysis,after dissolving Cu_(2)S in ChCl-thiourea(TU)deep eutectic solvent(DES)system.The optimized electrolysis conditions of 0.9 V,80℃,and 2 h resulted in the deposition of pure nano-sized copper sheets with a length of approximately 500 nm and a thickness of approximately 30 nm,and the production of sulfur particles with an average size of approximately 10μm.The morphology of the cathodic products was significantly influenced by the electrolysis voltage.When Cu_(2)S was introduced into ChCl-TU,it dissolved[CuCl_(2)]^(-)without disrupting the structure of the choline ion(Ch^(+)).As the electrolysis time increased,the copper deposition changed from wire to sheet growth,with the growth direction from radial to epitaxial along the substrate and back to radial. 展开更多
关键词 cuprous sulfide deep eutectic solvent separation cooper nanosheet electro-recovery
在线阅读 下载PDF
Development of switchable deep eutectic solvents:Applications in extraction of natural products
7
作者 Yuan Yan Lingqi Shen +3 位作者 Yu Wang Bincheng Gong Zuguang Li Hongdeng Qiu 《Chinese Chemical Letters》 2025年第11期36-48,共13页
Green extraction of bioactive components from natural sources has been a hot topic in the field of chemistry and biology.As a kind of green solvents,deep eutectic solvents(DESs)have unique advantages in the extraction... Green extraction of bioactive components from natural sources has been a hot topic in the field of chemistry and biology.As a kind of green solvents,deep eutectic solvents(DESs)have unique advantages in the extraction of bioactive substances.In recent years,as a new subgroup of DESs,the switchable deep eutectic solvents(SDESs)can realize reversible phase switching between hydrophobic and hydrophilic by external driving forces(CO_(2)/p H/temperature),allowing for the extraction of different polar components while avoiding the problem of difficult recovery of DESs.The application of SDESs reduces the consumption of large amounts of organic solvents during the extraction process,thereby promoting sustainability.In the meanwhile,it presents an advantage over traditional extraction methods in preserving product activity.Based on the recent researches on SDESs,this work summarized the composition,driving factors,and conversion mechanism of SDESs.The applications of SDESs in the extraction of natural products were primarily highlighted to provide a reference for future research. 展开更多
关键词 Switchable deep eutectic solvents Natural products Activity retention EXTRACTION REVIEW
原文传递
3D Printing of Biocompatible Nanocellulose-reinforced Hydrogels via Polymerizable Ternary Deep Eutectic Solvent Assistance
8
作者 Vitaly K.Vorobiov Maria P.Sokolova +6 位作者 Yuliya A.Nashchekina Veronika S.Andreeva Ivan S.Kuryndin Yulia E.Gorshkova Ruslan Y.Smyslov Eugene V.Sivtsov Michael A.Smirnov 《Chinese Journal of Polymer Science》 2025年第12期2285-2298,I0011,共15页
Two-and three-component deep eutectic solvents(DES)based on acrylic acid(AA),acrylamide(AAm),and choline chloride(ChCl)were used to disintegrate bacterial cellulose into cellulose nanofibers(CNF).As a result,polymeriz... Two-and three-component deep eutectic solvents(DES)based on acrylic acid(AA),acrylamide(AAm),and choline chloride(ChCl)were used to disintegrate bacterial cellulose into cellulose nanofibers(CNF).As a result,polymerizable precursors suitable for 3D printing with CNF as a rheology modifier and reinforcer with formation of interpenetrating double polymer network were obtained after UV curing.Composite hydrogels were formed by replacing ChCl with water.It was found that the introduction of amide groups into the acrylate polymer matrix resulted in an increase in compressive strength.The layered architecture of the 3D printed products provides greater mechanical strength compared to molded products.The structure of the composites was investigated using wide-angle X-ray scattering(WAXS),small-angle X-ray scattering(SAXS),atomic force microscopy(AFM)and polarized light microscopy.These studies suggest that the enhanced mechanical properties of the 3D printed hydrogels are associated with swelling and branching of CNF in the DES,as well as alignment of the filler during extrusion.For comparative analysis,composite hydrogels were also prepared using aqueous solutions of AA and AA/AAm with dispersed CNF.However,the 3D printing process was hampered in this case due to cellulose agglomeration.Mechanical testing revealed the formation of premature microcracks in these samples,which were not observed in composites produced using DES.Cytotoxicity of the composite hydrogels was also tested.The results provide valuable insights into the production of strong(up to 3.4 MPa)homogeneous composite hydrogels using 3D printing with nanocellulose filler. 展开更多
关键词 Cellulose Hydrogel nanocomposite 3D printing deep eutectic solvent PHOTOPOLYMERIZATION
原文传递
Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy
9
作者 Bing Xie Qi Jiang +4 位作者 Fang Zhu Yaoyao Lai Yueming Zhao Wei He Pei Yang 《Chinese Chemical Letters》 2025年第5期475-478,共4页
Candida albicans is one of the most common pathogens causing invasive fungal infections,with a mortality rate of up to 20%-50%.Amphotericin B(AmB),a biopharmaceutics classification system(BCS)IV drug,significantly inh... Candida albicans is one of the most common pathogens causing invasive fungal infections,with a mortality rate of up to 20%-50%.Amphotericin B(AmB),a biopharmaceutics classification system(BCS)IV drug,significantly inhibits Candida albicans.AmB is primarily administered via oral and intravenous infusion,but severe infusion adverse effects,nephrotoxicity,and potential hepatotoxicity limit its clinical application.Deep eutectic solvents(DESs),with excellent solubilization ability and skin permeability,are attractive for transdermal delivery.Herein,we used DESs to deliver AmB for antifungal therapy transdermally.We first prepared and characterized DESs with different stoichiometric ratios of choline(Ch)and geranate(Ge).DESs increased the solubility of AmB by a thousand-fold.In vitro and in vivo,skin permeation studies indicated that DES_(1:2)(Ch and Ge in 1:2 ratio)had the most outstanding penetration and delivered fluorescence dye to the dermis layer.Then,DES_(1:2)-AmB was prepared and in vitro antifungal tests demonstrated that DES_(1:2)-AmB had superior antifungal effects compared to AmB and DES_(1:2).Furthermore,DES_(1:2)-AmB was skin-irritating and biocompatible.In conclusion,DES-AmB provides a new and effective therapeutic solution for fungal infections. 展开更多
关键词 Amphotericin B deep eutectic solvents Transdermal delivery Candida albicans Fungal infections
原文传递
Recent progress on electrodeposition of metal/alloy films or coatings in deep eutectic solvents
10
作者 Man-peng LIN Han-dong JIAO +5 位作者 Rui YUAN Le-yang LI Lin-lin WANG Rui-yang SUN Dong-hua TIAN Shu-qiang JIAO 《Transactions of Nonferrous Metals Society of China》 2025年第9期2803-2821,共19页
The development of low-energy consumption and environmentally friendly electrodeposition of metal/alloy films or coatings is presently one of the primary topics for the research community.For this purpose,deep eutecti... The development of low-energy consumption and environmentally friendly electrodeposition of metal/alloy films or coatings is presently one of the primary topics for the research community.For this purpose,deep eutectic solvents(DESs)are valued as electrolytes for their advantages of low operating temperature and wide electrochemical windows.At present,there is large amount of literature on this emerging field,but there are no specialized reviews of these studies.Here,after a brief introduction of DESs’concept and history,we comprehensively reviewed the lastest progress on the metal/alloy electrodeposition in DESs.Additionally,we discussed the key influence factors of the electrodeposition process and analyzed the corresponding mechanisms.Based on these,we emphasized the importance of the establishment of predictive models for dealing with the challenges in large-scale applications. 展开更多
关键词 recent progress ELECTRODEPOSITION metal/alloy films deep eutectic solvents electrode process
在线阅读 下载PDF
Polymerizable Deep Eutectic Solvent-derived Ionic Conductive Elastomers for Strain and Temperature Sensing
11
作者 Chen-Lin Pan Zheng-Yang Qian +2 位作者 Hao Chen Jin-Lin He Pei-Hong Ni 《Chinese Journal of Polymer Science》 2025年第12期2373-2385,I0014,共14页
In recent years,flexible ionic conductors have made remarkable progress in the fields of energy storage devices and flexible sensors.However,most of these materials still face challenges such as the difficult trade-of... In recent years,flexible ionic conductors have made remarkable progress in the fields of energy storage devices and flexible sensors.However,most of these materials still face challenges such as the difficult trade-off between stretchability and high mechanical strength,as well as insufficient ionic conductivity.Among them,polymerizable deep eutectic solvents(PDES),which possess both hydrogen bond network construction capabilities and ionic conduction properties,have demonstrated great advantages in the synthesis of flexible ionic conductors.Herein,we report an ionic conductive elastomer(ICE)named PCHS-X based on PDES composed of 2-(methacryloyloxy)-N,N,N-trimethylammonium methyl sulfate(MA-MS),choline chloride(ChCl),and 2-hydroxyethyl acrylate(HEA).The introduction of MA-MS enabled the polymer network to form abundant hydrogen bonds,endowing PCHS-X with excellent mechanical strength,high transparency,favorable ionic conductivity,self-adhesiveness,and self-healing efficiency.When used as a strain sensor,the PCHS-X exhibits highly sensitive strain response,along with good stability and durability,allowing it to accurately monitor the movement of human body parts such as fingers,wrists,elbows,and knees.Additionally,owing to the enhanced ionic mobility at higher temperatures,this material also possesses excellent temperature sensing performance,enabling the fabrication of simple temperature sensors that can sensitively respond to temperature changes.This research provides new strategies for the practical applications of flexible electronic devices in fields such as wearable health monitoring and intelligent human-machine interaction. 展开更多
关键词 Polymerizable deep eutectic solvents Ionic conductive elastomer Flexible electronic Strain sensing Temperature sensing
原文传递
Unraveling the exceptional kinetics of Zn‖organic batteries in hydrated deep eutectic solution
12
作者 Duo Chen Yuanhang Wang +2 位作者 Tengyu Yao Hang Yang Laifa Shen 《Journal of Energy Chemistry》 2025年第2期570-577,I0012,共9页
Intuitively,the solvation structure featuring stronger interacted sheath in deep eutectic solution(DES)electrolyte would result in sluggish interfacial charge transfer and intense polarization,which obstructs its prac... Intuitively,the solvation structure featuring stronger interacted sheath in deep eutectic solution(DES)electrolyte would result in sluggish interfacial charge transfer and intense polarization,which obstructs its practical application in emerging Zn based batteries.Unexpectedly,here we discover a Zn‖organic battery with exceptional kinetics properties enabled by a hydrated DES electrolyte,which can render higher discharge capacity,smaller voltage polarization,and faster kinetics of charge transfer in comparison with conventional aqueous 3 M ZnCl_(2)electrolyte,though its viscosity is two orders of magnitude higher than the latter.The improved kinetics of charge transfer and ion diffusion is demonstrated to originate from the local electron structure regulation of cathode in hydrated DES electrolyte.Furthermore,the DES electrolyte has also been shown to restrict parasitic reaction associated with active water by preferential urea-molecular adsorption on Zn surface and stronger water trapping in solvation structure,giving rise to long-term stable dendrite-free Zn plating/stripping.This work provides a new rationale for understanding electrochemical behaviors of organic cathodes in DES electrolyte,which is conducive to the development of high-performance Zn‖organic batteries. 展开更多
关键词 Zn-based battery deep eutectic KINETICS Dendrite-free
在线阅读 下载PDF
Rational design of deep eutectic solvents with low viscosities and multiple active sites for efficient recognition and selective capture of NH_(3)
13
作者 Lu Zheng Saisai Ju +4 位作者 Siqi Fang Hongwei Zhang Zhenping Cai Kuan Huang Lilong Jiang 《Smart Molecules》 2025年第1期78-91,共14页
Efficient recognition and selective capture of NH_(3)is not only beneficial for increasing the productivity of the synthetic NH_(3)industry but also for reducing air pollution.For this purpose,a group of deep eutectic... Efficient recognition and selective capture of NH_(3)is not only beneficial for increasing the productivity of the synthetic NH_(3)industry but also for reducing air pollution.For this purpose,a group of deep eutectic solvents(DESs)consisting of glycolic acid(GA)and phenol(PhOH)with low viscosities and multiple active sites was rationally designed in this work.Experimental results show that the GA^(+)PhOH DESs display extremely fast NH_(3)absorption rates(within 51 s for equilibrium)and high NH_(3)solubility.At 313.2 K,the NH_(3)absorption capacities of GA^(+)PhOH(1:1)reach 6.75 mol/kg(at 10.7 kPa)and 14.72 mol/kg(at 201.0 kPa).The NH_(3)solubility of GA^(+)PhOH DESs at low pressures were minimally changed after more than 100 days of air exposure.In addition,the NH_(3)solubility of GA^(+)PhOH DESs remain highly stable in 10 consecutive absorption-desorption cycles.More importantly,NH_(3)can be selectively captured by GA^(+)PhOH DESs from NH_(3)/CO_(2)/N_(2)and NH_(3)/N_(2)/H_(2)mixtures.1H-NMR,Fourier transform infrared and theoretical calculations were performed to reveal the intrinsic mechanism for the efficient recognition of NH_(3)by GA^(+)PhOH DESs. 展开更多
关键词 deep eutectic solvent low viscosity multiple active site NH_(3)recognition selective capture
在线阅读 下载PDF
Experimental investigation on the effects of deep eutectic solvents (DES) on the wettability of sandstone samples
14
作者 Jun-Hui Guo Yun-Fei Bai +8 位作者 Lin Du Li-Ying Wei Yu Zhao Xian-Bao Zheng Er-Long Yang Zhi-Guo Wang Hai Huang Wen-Tong Zhang Hua-Zhou Li 《Petroleum Science》 2025年第3期1380-1390,共11页
Recently, deep eutectic solvents (DES) have received great attention in assisting water flooding and surfactant flooding to improve oil recovery because they can reduce the interfacial tension (IFT) between oil and wa... Recently, deep eutectic solvents (DES) have received great attention in assisting water flooding and surfactant flooding to improve oil recovery because they can reduce the interfacial tension (IFT) between oil and water, inhibit surfactant adsorption, and change the wettability of rock. However, the effects of DES on the wettability of rock surface have not been thoroughly investigated in the reported studies. In this study, the effects of various DES samples on the wettability of sandstone samples are investigated using the Amott wettability measurement method. Three DES samples and several DES solutions and DES-surfactant solutions are firstly synthesized. Then, the wettability of the sandstone samples is measured using pure saline water, DES solutions, and DES-surfactant solutions, respectively. The effects of the DES samples on the wettability of the sandstone samples are investigated by comparing the measured wettability parameters, including oil displacement ratio (I_(o)), water displacement ratio (I_(w)), and wettability index (I_(A)). The Berea rock sample used in this study is weakly hydrophilic with I_(o), I_(w), and I_(A) of 0.318, 0.032, and 0.286, respectively. Being processed by the prepared DES samples, the wettability of the Berea sandstone samples is altered to hydrophilic (0.7 > I_(A) > 0.3) by increasing I_(w) but lowering Io. Similarly, DES-surfactant solutions can also modify the wettability of the Berea sandstone samples from weakly hydrophilic to hydrophilic. However, some DES-surfactant solutions can not only increase I_(w) but also increase I_(o), suggesting that the lipophilicity of those sandstone samples will be improved by the DES-surfactant solutions. In addition, micromodel flooding tests confirm the promising performance of a DES-surfactant solution in improving oil recovery and altering wettability. Moreover, the possible mechanisms of DES and DES-surfactant solutions in altering the wettability of the Berea sandstone samples are proposed. DES samples may improve the hydrophilicity by forming hydrogen bonds between rock surface and water molecules. For DES-surfactant solutions, surfactant micelles can capture oil molecules to improve the lipophilicity of those sandstone samples. 展开更多
关键词 deep eutectic solvents SURFACTANT Wettability alteration Sandstone rock
原文传递
Intelligent prediction of ionic liquids and deep eutectic solvents by machine learning
15
作者 Yuan Tian Honghua Zhang +3 位作者 Yueyang Qiao Han Yang Yanrong Liu Xiaoyan Ji 《Chinese Journal of Chemical Engineering》 2025年第8期227-243,共17页
Ionic liquids (ILs) and deep eutectic solvents (DESs) as green solvents have attracted dramatic attention recently due to their highly tunable properties. However, traditional experimental screening methods are ineffi... Ionic liquids (ILs) and deep eutectic solvents (DESs) as green solvents have attracted dramatic attention recently due to their highly tunable properties. However, traditional experimental screening methods are inefficient and resource-intensive. The article provides a comprehensive overview of various ML algorithms, including artificial neural network (ANN), support vector machine (SVM), random forest (RF), and gradient boosting trees (GBT), etc., which have demonstrated exceptional performance in handling complex and high-dimensional data. Furthermore, the integration of ML with quantum chemical calculations and conductor-like screening model-real solvent (COSMO-RS) has significantly enhanced predictive accuracy, enabling the rapid screening and design of novel solvents. Besides, recent ML applications in the prediction and design of ILs and DESs focused on solubility, melting point, electrical conductivity, and other physicochemical properties become more and more. This paper emphasizes the potential of ML in solvent design, overviewing an efficient approach to accelerate the development of sustainable and high-performance materials, providing guidance for their widespread application in a variety of industrial processes. 展开更多
关键词 Intelligent prediction lonic liquids deep eutectic solvents Machine learning
在线阅读 下载PDF
Advances on research of H_(2)S removal by deep eutectic solvents as green solvent
16
作者 Feng Gao Jinjin Li +4 位作者 Chaoyue Yang Wu Zhang Hongfa Huang Zicheng Peng Teng Gong 《Natural Gas Industry B》 2025年第1期26-36,共11页
H_(2)S in natural gas and other industrial gas is seriously harmful to human health,environmental protection and the downstream industries.Efficient purification of H_(2)S containing gas is the basic process in the ch... H_(2)S in natural gas and other industrial gas is seriously harmful to human health,environmental protection and the downstream industries.Efficient purification of H_(2)S containing gas is the basic process in the chemical industry.Benefiting from multiple advantages,deep eutectic solvents(DES)can be used as tailor-made green solvents,and have been booming in the fields of harmful gas removal and fuel oil desulfurization.Furthermore,significant scientific research of DES in desulfurization and purification of natural gas has accelerated the process of its practical application.This paper systematically summarizes and analyzes the removal mechanism,impact factors and challenges of DES as emerging green solvent in H_(2)S absorption and conversion.Strategies on H_(2)S removal by DES generally fall into two categories:physical absorption and chemical conversion.Although the chemical conversion of H_(2)S by DES has been less studied compared with the physical absorption,it presents great application potential.At present,the research on H_(2)S removal by DES is still in the initial stage.Therefore,it is necessary to further study the mechanism of H_(2)S removal and construct the relationship between structural properties and desulfurization performance of DES,thereby to solve the issues of sulfur blockage and low quality of sulfur paste which is suffered by conventional liquid redox desulfurization solvent system.Additionally,the methods for efficient solvent regeneration and recycling remain to be explored out to promote the practical application of iron-based DES in the field of gas desulfurization. 展开更多
关键词 deep eutectic solvent(DES) Purification of natural gas DESULFURIZATION H_(2)S Solvent regeneration
暂未订购
Advancing anti-freezing hydrogel electrolyte based on deep eutectic solvent for wide temperature range aqueous zinc-ion battery
17
作者 Yuqi Jiang Yifan Liao +1 位作者 Jiayi Chen Kun Ma 《Journal of Environmental Sciences》 2025年第10期596-605,共10页
Hydrogels based on Deep Eutectic Solvents(DES)demonstrate remarkable anti-freezing,resilience,and toughness,presenting a promising avenue to the operation of aqueous zincion batteries under extreme conditions.A gel el... Hydrogels based on Deep Eutectic Solvents(DES)demonstrate remarkable anti-freezing,resilience,and toughness,presenting a promising avenue to the operation of aqueous zincion batteries under extreme conditions.A gel electrolyte capable of operating over a wide temperature range is developed based on a DES comprising 1 mol/kg(m)Zn(ClO_(4))_(2)+3.5 m Mg(ClO_(4))_(2).Spectral characterization confirms the synergistic influence of both anions and cations on the freezing point of the DES.With four hydrogen bond(HB)acceptors,Mg^(2+) exhibits strong electrostatic attraction towards the O atoms of H_(2)O,while ClO_(4)^(-)forms numerous HBs with H_(2)O molecules.This dual interaction allows for precise adjustment of the chemical environment around the H and O atoms of H_(2)O,resulting in an exceptionally low freezing point of-116.92℃for the DES.The gel electrolyte derived from this DES demonstrates an impressive ionic conductivity of 0.285 mS/cm at-70℃.Leveraging its excellent low-temperature performance and compatibility with a zinc anode,the flexible Zn-Mn battery constructed with this electrolyte exhibits robust electrochemical performance at low temperatures.Specifically,at-70℃,it achieves a high specific capacity of 76.83 mAh/g,displays excellent rate capability,andmaintains stable cycling performance.Moreover,the Zn-Mn battery operates reliably across a broad temperature range from-70 to 80℃.This study presents innovative insights for advancing Zn-Mn batteries capable of efficient operation across diverse environmental conditions,thereby opening new avenues for their development. 展开更多
关键词 Aqueous zinc-ion battery deep eutectic solvent Hydrogel electrolytes All-climate operation
原文传递
Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents 被引量:12
18
作者 Xiao-lin ZHU Cun-ying XU +5 位作者 Jie TANG Yi-xin HUA Qi-bo ZHANG Hai LIU Xiang WANG Meng-ting HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期2222-2228,共7页
Deep eutectic solvents(DESs)are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties.In this study,we investigated the recovery of zinc from zinc oxide dust using... Deep eutectic solvents(DESs)are a kind of potential lixiviant for selective metal processing due to their versatile complexation properties.In this study,we investigated the recovery of zinc from zinc oxide dust using choline chloride-ureaethylene glycol(ChCl-urea-EG)DESs.The zinc extraction efficiency can be up to 85.2%when the slurry concentration is 50 g/L,leaching temperature is 80°C and stirring speed is 600 r/min.The leaching process is controlled by the diffusion and the corresponding activation energy is 32.1 k J/mol.The resultant solution was directly used for the electrodeposition of zinc.The pure zinc deposit is obtained with a current efficiency of 82.6%.Furthermore,the ChCl-urea-EG DESs can be recycled.This approach is shown to be promising for the recycling of zinc from the zinc-containing dust. 展开更多
关键词 deep eutectic solvent selective leaching zinc oxide dust ZINC direct electrodeposition
在线阅读 下载PDF
Closed-loop cobalt recycling from spent lithium-ion batteries based on a deep eutectic solvent (DES) with easy solvent recovery 被引量:10
19
作者 Taibai Li Yige Xiong +4 位作者 Xiaohui Yan Tao Hu Siqi Jing Zhongjie Wang Xiang Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期532-538,I0015,共8页
Efficient recycling technology for the rapid growth of spent lithium-ion batteries(LIBs)is essential to tackle the resources and environmental crisis.Hydrometallurgical approach has attracted extensive research due to... Efficient recycling technology for the rapid growth of spent lithium-ion batteries(LIBs)is essential to tackle the resources and environmental crisis.Hydrometallurgical approach has attracted extensive research due to its potential to reduce the consumption of energy and threat to the environment.However,the simultaneous realization of green,efficient and closed-loop recycling is still challenging.Herein,we report a closed-loop and highly efficient approach to recycle lithium cobalt oxide from spent LIBs based on a choline chloride:oxalic acid(ChCl:OA)type deep eutectic solvent(DES).An ultrafast leaching process is observed at 180°C for 10 s with no observable residues.The energy barrier during leaching is calculated to be 113.9 kJ/mol.Noteworthy,the solubility of cobalt ions can be reversibly tuned by simply adding/evaporating deionized water,thus avoiding the addition of precipitant and enabling the easy recovery of the leaching solvent for realizing a closed-loop recycling process.The simultaneous realization of high efficiency,green and closed-loop process is expected to push the DES into practical application for recycling the electrodes of LIBs. 展开更多
关键词 Lithium-ion batteries recycle deep eutectic solvent CLOSED-LOOP High efficiency Solvent recovery
在线阅读 下载PDF
Overview of acidic deep eutectic solvents on synthesis,properties and applications 被引量:32
20
作者 Hao Qin Xutao Hu +3 位作者 Jingwen Wang Hongye Cheng Lifang Chen Zhiwen Qi 《Green Energy & Environment》 CSCD 2020年第1期8-21,共14页
This review divides the acidic deep eutectic solvents(ADES) into Br?nsted and Lewis DES according to their diversity of acidic character.The hydrogen bond donors and halide salts for formulating an ADES are classified... This review divides the acidic deep eutectic solvents(ADES) into Br?nsted and Lewis DES according to their diversity of acidic character.The hydrogen bond donors and halide salts for formulating an ADES are classified, the synthesis methods are described, and the physicochemical properties including freezing point, acidity, density, viscosity and conductivity are presented. Furthermore, the applications of Br?nsted acidic deep eutectic solvents(BADES) and Lewis acidic deep eutectic solvents(LADES) are overviewed, respectively, covering the fields in dissolution, extraction, organic reaction and metal electrodeposition. It is expected that the ADES has great potential to replace the pollutional mineral acid, expensive and unstable solid acid, and costly ionic liquid in many acid-employed chemical processes, thus meeting the demands of green chemistry. 展开更多
关键词 Acidic deep eutectic solvent Brφnsted acidity Lewis acidity Green chemistry
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部