At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for ident...At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios.展开更多
Weather is a key factor affecting the control of air traffic.Accurate recognition and classification of similar weather scenes in the terminal area is helpful for rapid decision-making in air trafficflow management.Curren...Weather is a key factor affecting the control of air traffic.Accurate recognition and classification of similar weather scenes in the terminal area is helpful for rapid decision-making in air trafficflow management.Current researches mostly use traditional machine learning methods to extract features of weather scenes,and clustering algorithms to divide similar scenes.Inspired by the excellent performance of deep learning in image recognition,this paper proposes a terminal area similar weather scene classification method based on improved deep convolution embedded clustering(IDCEC),which uses the com-bination of the encoding layer and the decoding layer to reduce the dimensionality of the weather image,retaining useful information to the greatest extent,and then uses the combination of the pre-trained encoding layer and the clustering layer to train the clustering model of the similar scenes in the terminal area.Finally,term-inal area of Guangzhou Airport is selected as the research object,the method pro-posed in this article is used to classify historical weather data in similar scenes,and the performance is compared with other state-of-the-art methods.The experi-mental results show that the proposed IDCEC method can identify similar scenes more accurately based on the spatial distribution characteristics and severity of weather;at the same time,compared with the actualflight volume in the Guangz-hou terminal area,IDCEC's recognition results of similar weather scenes are con-sistent with the recognition of experts in thefield.展开更多
Purpose-The aim of this study is to propose a deep neural network(DNN)method that uses side information to improve clustering results for big datasets;also,the authors show that applying this information improves the ...Purpose-The aim of this study is to propose a deep neural network(DNN)method that uses side information to improve clustering results for big datasets;also,the authors show that applying this information improves the performance of clustering and also increase the speed of the network training convergence.Design/methodology/approach-In data mining,semisupervised learning is an interesting approach because good performance can be achieved with a small subset of labeled data;one reason is that the data labeling is expensive,and semisupervised learning does not need all labels.One type of semisupervised learning is constrained clustering;this type of learning does not use class labels for clustering.Instead,it uses information of some pairs of instances(side information),and these instances maybe are in the same cluster(must-link[ML])or in different clusters(cannot-link[CL]).Constrained clustering was studied extensively;however,little works have focused on constrained clustering for big datasets.In this paper,the authors have presented a constrained clustering for big datasets,and the method uses a DNN.The authors inject the constraints(ML and CL)to this DNN to promote the clustering performance and call it constrained deep embedded clustering(CDEC).In this manner,an autoencoder was implemented to elicit informative low dimensional features in the latent space and then retrain the encoder network using a proposed Kullback-Leibler divergence objective function,which captures the constraints in order to cluster the projected samples.The proposed CDEC has been compared with the adversarial autoencoder,constrained 1-spectral clustering and autoencoder t k-means was applied to the known MNIST,Reuters-10k and USPS datasets,and their performance were assessed in terms of clustering accuracy.Empirical results confirmed the statistical superiority of CDEC in terms of clustering accuracy to the counterparts.Findings-First of all,this is the first DNN-constrained clustering that uses side information to improve the performance of clustering without using labels in big datasets with high dimension.Second,the author defined a formula to inject side information to the DNN.Third,the proposed method improves clustering performance and network convergence speed.Originality/value-Little works have focused on constrained clustering for big datasets;also,the studies in DNNs for clustering,with specific loss function that simultaneously extract features and clustering the data,are rare.The method improves the performance of big data clustering without using labels,and it is important because the data labeling is expensive and time-consuming,especially for big datasets.展开更多
基金funded by the State Grid Limited Science and Technology Project of China,Grant Number SGSXDK00DJJS2200144.
文摘At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios.
基金supported by the Fundamental Research Funds for the CentralUniversities under Grant NS2020045. Y.L.G received the grant.
文摘Weather is a key factor affecting the control of air traffic.Accurate recognition and classification of similar weather scenes in the terminal area is helpful for rapid decision-making in air trafficflow management.Current researches mostly use traditional machine learning methods to extract features of weather scenes,and clustering algorithms to divide similar scenes.Inspired by the excellent performance of deep learning in image recognition,this paper proposes a terminal area similar weather scene classification method based on improved deep convolution embedded clustering(IDCEC),which uses the com-bination of the encoding layer and the decoding layer to reduce the dimensionality of the weather image,retaining useful information to the greatest extent,and then uses the combination of the pre-trained encoding layer and the clustering layer to train the clustering model of the similar scenes in the terminal area.Finally,term-inal area of Guangzhou Airport is selected as the research object,the method pro-posed in this article is used to classify historical weather data in similar scenes,and the performance is compared with other state-of-the-art methods.The experi-mental results show that the proposed IDCEC method can identify similar scenes more accurately based on the spatial distribution characteristics and severity of weather;at the same time,compared with the actualflight volume in the Guangz-hou terminal area,IDCEC's recognition results of similar weather scenes are con-sistent with the recognition of experts in thefield.
文摘Purpose-The aim of this study is to propose a deep neural network(DNN)method that uses side information to improve clustering results for big datasets;also,the authors show that applying this information improves the performance of clustering and also increase the speed of the network training convergence.Design/methodology/approach-In data mining,semisupervised learning is an interesting approach because good performance can be achieved with a small subset of labeled data;one reason is that the data labeling is expensive,and semisupervised learning does not need all labels.One type of semisupervised learning is constrained clustering;this type of learning does not use class labels for clustering.Instead,it uses information of some pairs of instances(side information),and these instances maybe are in the same cluster(must-link[ML])or in different clusters(cannot-link[CL]).Constrained clustering was studied extensively;however,little works have focused on constrained clustering for big datasets.In this paper,the authors have presented a constrained clustering for big datasets,and the method uses a DNN.The authors inject the constraints(ML and CL)to this DNN to promote the clustering performance and call it constrained deep embedded clustering(CDEC).In this manner,an autoencoder was implemented to elicit informative low dimensional features in the latent space and then retrain the encoder network using a proposed Kullback-Leibler divergence objective function,which captures the constraints in order to cluster the projected samples.The proposed CDEC has been compared with the adversarial autoencoder,constrained 1-spectral clustering and autoencoder t k-means was applied to the known MNIST,Reuters-10k and USPS datasets,and their performance were assessed in terms of clustering accuracy.Empirical results confirmed the statistical superiority of CDEC in terms of clustering accuracy to the counterparts.Findings-First of all,this is the first DNN-constrained clustering that uses side information to improve the performance of clustering without using labels in big datasets with high dimension.Second,the author defined a formula to inject side information to the DNN.Third,the proposed method improves clustering performance and network convergence speed.Originality/value-Little works have focused on constrained clustering for big datasets;also,the studies in DNNs for clustering,with specific loss function that simultaneously extract features and clustering the data,are rare.The method improves the performance of big data clustering without using labels,and it is important because the data labeling is expensive and time-consuming,especially for big datasets.