This paper presents some questions to the formula of pressure=depth×specific gravity from the viewpoint that the hydrostatic pressure is equal to the gravity of overlying rocks and the rocks in a static fluid sta...This paper presents some questions to the formula of pressure=depth×specific gravity from the viewpoint that the hydrostatic pressure is equal to the gravity of overlying rocks and the rocks in a static fluid state, which is drawn from the research and analysis of the research field and the corresponding problems of the pressure state in the deep crust and the formation depth of the UHP metamorphic rocks. In this research, the underground rocks are considered as the solid possessing some rheological behaviors to discuss the polysource stress state and to obtain a more reasonable method for the calculation of depths using the model of the unbalanced force solid. It is suggested from this paper that the P/SW method for the calculation of the ultrahigh pressure stemming only from the gravity has obviously overstated the formation depth of the UHP metamorphism. The formation model emphasizing the effect of the gravity, the tectonic force and the metamorphic force of the facies change concludes that such UHP minerals as coesite may have been produced in the inner crust.展开更多
Geo-electric anomalies are generated during the process of stress accumulation and release associated with earthquakes.However,the mechanism of these anomalies remains equivocal.Based on the analysis of thermoelectric...Geo-electric anomalies are generated during the process of stress accumulation and release associated with earthquakes.However,the mechanism of these anomalies remains equivocal.Based on the analysis of thermoelectric characteristics of semiconductor minerals of the earth’s deep crust such as graphite,ferrosilicon alloy,magnetite etc.,we perform finite element analysis to evaluate the principles governing the thermoelectric power generated by minerals and rocks.The results show that graphite,ferrosilicon alloy and magnetite all exhibit Seebeck effect and can be superimposed.And the thermo-electric field can be enhanced with the activation temperature increases,the content of thermoelectric minerals increases,the size of aggregates increases,and the spacing of thermoelectric minerals grains decreases.Seismogenic processes would generate a similar thermal gradient.The natural semiconductor minerals in this thermal field show a thermoelectric effect,forming a thermoelectric field that interferes with the background electric field.This study indicates that thermoelectric effect may have an important influence on the formation of geoelectric field.展开更多
In this paper, the effects of frying time, white egg (0%, 5% and 10% w/w) and chitosan (0%, 0.5% and 1.5% w/w) addition to the batter formulation on the quality of simulated crispy deep-fried Kurdish cheese nugget cru...In this paper, the effects of frying time, white egg (0%, 5% and 10% w/w) and chitosan (0%, 0.5% and 1.5% w/w) addition to the batter formulation on the quality of simulated crispy deep-fried Kurdish cheese nugget crusts was studied by using a deep-fried crust model. Moisture content, oil content, color and hardness of the samples were determined. Crust models were fried at 190℃ for 60, 120 and 180 s. Batter formulations and frying time significantly (p < 0.01) affected moisture, oil content, color and hardness of Crust models. Batter formulation contain 10% white egg was found to be an effective ingredient in decreasing oil content of Crust models. The mean moisture and fat content of Crust models formed with batter contained 10% white egg, fried at 190℃, for 180s were 6.207 ± 0.447 and 5.649 ± 0.394. Batters containing 5% white egg and 1.5% chitosan showed the lowest moisture content and the highest oil content among all the formulations. Crust models containing combination of white egg and chitosan were the darkest. Hardness of samples containing chitosan were the highest, specially for ch1.5 The mean hardness in 60, 120 and 180s of frying in this formulation were 21.518 ± 0.481, 36.871 ± 1.758 and 49.563 ± 1.847 respectively.展开更多
Deep-sea cobalt crusts water jet cutting method is proposed to avoid cutter impact load. With simulation calculations and experimental tests, water jet system parameters and its cutting ability were studied. Simula-ti...Deep-sea cobalt crusts water jet cutting method is proposed to avoid cutter impact load. With simulation calculations and experimental tests, water jet system parameters and its cutting ability were studied. Simula-tion results show that working pressure, ejection range and ejection angle of water jet system are main parameters of its cutting ability. Its important degree is in turn the working pressure, ejection range and ejection angle. Increasing water jet system working pressure is the most effective way to improve its cutting ability. When water jet working pressure is constant, in order to improve its cutting ability, the ejection range should be less than 4mm (four times of nozzle diameter) and the ejection angle should be about 13o. Experimental results show that there is a threshold pressure during water jet cutting cobalt crusts simulation material. With the increase of water jet working pressure, its cutting ability increases dramatically. With the increasing of water jet ejection range, its cutting ability decreases sharply. The optimal ejection angle is about 13o</sup.展开更多
The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water...The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.展开更多
Barkam-Luqu-Gulang deep seismic sounding profile runs from north of Sichuan Province to south of Gansu Province. It is located at the northeastern edge of Tibetan Plateau and crosses eastern A'nyemaqên suture zo...Barkam-Luqu-Gulang deep seismic sounding profile runs from north of Sichuan Province to south of Gansu Province. It is located at the northeastern edge of Tibetan Plateau and crosses eastern A'nyemaqên suture zone. The upper crust structures around eastern A'nyemaqên suture zone and its adjacent area are reconstructed based on the arrival times of refracted Pg and Sg waves by using finite difference method, ray tracing inversion, time-term method and travel-time curve analysis. The results show that the depth variation of basement along profile is very strong as indicated by Pg and Sg waves. The basement rose in Zoigê basin and depressed in eastern A'nyemaqên suture zone, and it gradually rose again northward and then depressed. The results also indicate that eastern A'nyemaqên suture zone behaves as inhomogeneous low velocity structures in the upper crust and is inclined to- ward the south. Hoh Sai Hu-Maqên fault, Wudu-Diebu fault and Zhouqu-Liangdang fault are characterized by low velocity distributions with various scales. The distinct variation in basement depth occurred near Hoh Sai Hu-Maqên fault and Zhouqu-Liangdang fault, which are main tectonic boundaries of A'nyemaqên suture zone. Wudu-Diebu fault, located at the depth variation zone of the basement, possibly has the same deep tectonic background with Zhouqu-Liangdang fault. The strongly depressed basement characterized by low velocity distribution and lateral inhomogeneity in A'nyemaqên suture zone implies crushed zone features under pinching action.展开更多
Determining the upper boundary of the cobalt-rich crust distribution of a guyot is important for estimating the mineral resources available, however, it has also long been an unsolved question. Correlations between th...Determining the upper boundary of the cobalt-rich crust distribution of a guyot is important for estimating the mineral resources available, however, it has also long been an unsolved question. Correlations between the sub-bottom structures, revealed by sub-bottom profiling, and crust distribution can be revealed for the first time by the synchronous application of sub-bottom profiling and deep-sea video recording. The lower boundary of the sediment corresponds with the upper boundary of the crust. By analysis of these two kinds of data, the lower boundary of the sediment can be determined; therefore, the upper boundary of the crust distribution can be deduced. According to this method of analysis, the upper boundary of water depth of crust distribution of a seamount in the western Pacific is about 1 560 m.展开更多
In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai ...In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area.展开更多
Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute...Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance.展开更多
Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regio...Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence.展开更多
The 3-D geometry of the seismicity in Hindu Kush-Pamir--western China region has been defined by seismic records for 1975-1999 from the National Earthquake Information Center, the U.S. Geological Survey, and over 16,0...The 3-D geometry of the seismicity in Hindu Kush-Pamir--western China region has been defined by seismic records for 1975-1999 from the National Earthquake Information Center, the U.S. Geological Survey, and over 16,000 relocated earthquakes since 1975 recorded by the Xinjiang seismic network of China. The results show that most Ms≥ 5.0 hypocenters in the area are confined to a major intracontinental seismic shear zone (MSSZ). The MSSZ, which dips southwards in Pamir has a north- dipping counterpart in the Hindu Kush to the west; the two tectonic realms are separated by the sinistral Chaman transform fault of the India-Asia collisional zone. We demonstrate that the MSSZ constitutes the upper boundary of a south-dipping, actively subducting Pamir continental plate. Three seismic concentrations are recognized just above the Pamir MSSZ at depths between 45-65 km, 95-120 km, and 180-220 km, suggesting different structural relationships where each occurs. Results from focal mechanism solutions in all three seismological concentrations show orientations of the principal maximum stress to be nearly horizontal in an NNW-SSE direction. The south-dipping Pamir subduction slab is wedge-shaped with a wide upper top and a narrow deeper bottom; the slab has a gentle angle of dip in the upper part and steeper dips in the lower part below an elbow depth of ca. 80--120 km. Most of the deformation related to the earthquakes occurs within the hanging wall of the subducting Pamir slab. Published geologic data and repeated GPS measurements in the Pamir document a broad supra-subduc- tion, upper crustal zone of evolving antithetic (i.e. north-dipping) back-thrusts that contribute to northsouth crustal shortening and are responsible for exhumation of some ultrahigh-pressure rocks formed during earlier Tethyan plate convergence. An alternating occurrence in activity of Pamir and Chaman seismic zones indicates that there is interaction between strike-slip movement of the Chaman transform fault system and deep-subduction of the Pamir earthquake zone. Pamir subdnction-related seismicity becomes shallower in depth with increasing distance east of the transform fault. Therefore, sinistral movement of the Chaman transform fault appears to be influencing continental deep-subduction in the Pamir region and may provide an explanation for the unusual south-dipping geometry of the intracontinental Pamir plate.展开更多
Based on the petrological studies of wall rocks, mineralized rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that with the development of silification, carbonation and sulfidation, a kind of ...Based on the petrological studies of wall rocks, mineralized rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that with the development of silification, carbonation and sulfidation, a kind of black opaque ultracrystalline material runs through the space between grains and amphibole cleavages, which is the product of fast condensing consolidation with magma mantle fluids turning into hydrothermal crustal fluids in the process of mineralization and alteration. It is thought that the water in ore-forming fluids mainly derived from magmatic water through research on H-O isotopes, and C as well as S isotopic compositions, has clear mantle-derived characteristics, and rock (mine) stones contain high 87Sr/86 Sr ratios, low 143Nd/144 Nd ratios and high 206Pb/204 Pb ratios, which also reflects the ore-forming fluids were derived from the metasomatically enriched mantle. In combination with the features of H-O-C-S isotopes and Sr-Nd-Pb isotopes described above, the ore-forming fluids of the Laowangzhai gold deposit in the northern part of the Ailao Mountains were derived mainly from the deep interior of the mantle, and their properties were transformed from magma fluids to hydrothermal fluids in the course of metasomatism and alteration, which initiated crust-mantle contamination simultaneously to be in favor of mineralization.展开更多
The nature of crustal and lithospheric mantle evolution of the Archean shields as well as their subsequent deformation due to recent plate motions and sustained intraplate geodynamic activity, has been a subject of co...The nature of crustal and lithospheric mantle evolution of the Archean shields as well as their subsequent deformation due to recent plate motions and sustained intraplate geodynamic activity, has been a subject of considerable interest. In view of this, about three decades ago, a new idea was put forward suggesting that out of all shield terrains, the Indian shield has an extremely thin lithosphere(w100 km,compared to 250e350 km, elsewhere), apart from being warm, non-rigid, sheared and deformed. As expected, it met with scepticism by heat flow and the emerging seismic tomographic study groups, who on the contrary suggested that the Indian shield has a cool crust, besides a coherent and thick lithosphere(as much as 300e400 km) like any other shield. However, recently obtained integrated geological and geophysical findings from deep scientific drillings in 1993 Killari(M w: 6.3) and 1967 Koyna(M w: 6.3)earthquake zones, as well as newly acquired geophysical data over other parts of Indian shield terrain,have provided a totally new insight to this debate. Beneath Killari, the basement was found consisting of high density, high velocity mid crustal amphibolite to granulite facies rocks due to exhumation of the deeper crustal layers and sustained granitic upper crustal erosion. Similar type of basement appears to be present in Koyna region too, which is characterized by considerably high upper crustal temperatures.Since, such type of crust is depleted in radiogenic elements, it resulted into lowering of heat flow at the surface, increase in heat flow contribution from the mantle, and upwarping of the lithosphereasthenosphere boundary. Consequently, the Indian shield lithosphere has become unusually thin and warm. This study highlights the need of an integrated geological, geochemical and geophysical approach in order to accurately determine deep crust-mantle thermal regime in continental areas.展开更多
Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogra...Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogram. The crust and upper-mantle velocity structure model in this area was built. The results show that the crust and upper mantle structures present obvious lateral and vertical inhomogeneity. The upper mantle uplifts near Yongqing of northeast Jizhong depression, in Bohai Bay of Huanghua depression and near Kenli of Jiyang depression, where crustal depths are about 31 km, 28 km and 29 km, respectively. According to the dynamic and kinetic characteristics of seismic waves as well as the seismic interfaces and velocity contour undulation in the 2-D velocity structure model, three deep crustal fault zones are inferred in the area. Low velocity (5.90~6.10 km/s) layers (bodies) exist on one or two sides of these deep crustal fault zones.展开更多
In order to study the deep geoelectrical structure and the regional geological structure and detect potential oil and gas areas in Qiangtang basin in northern Xizang (Tibet ), 222 MT soundings were conducted along thr...In order to study the deep geoelectrical structure and the regional geological structure and detect potential oil and gas areas in Qiangtang basin in northern Xizang (Tibet ), 222 MT soundings were conducted along three N - S MT profiles across the basin .The MT results indicate that the south and north parts of the Qiangtang basin have a good contrast in the deep electri cal structure . In the south Qiangtang , there are generally two high conductivity layers in the crust . The first is at a depth of about 10 - 25 km and possesses a resistivity of about 10 - 80 Ωm .The second ,the high conductivity layer in the lower crust ,is at a depth of about 40 - 70 km with 3 - 50 Ωm .In the north Qiangtang .there is generally one high conductivity layer .It is at a depth of about 10 - 30 km and the resistivity is about 1-60 Ωm . The thickness of the second high conductivity layer in both the south Qiangtang and the Bangong-Nujiang suture is much greater than that of the first .The thickness of the lithosphere is about 110-120 km for the Bangong-Nujiang suture ,115 km for the south Qiangtang and 100-130 km for the north Qiangtang . On the difference of the deep electrical structures of the crust between the south and the north Qiangtang , we believe that it is related to the eastward flow of the crustal substance .展开更多
Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometer...Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones lie in the Haihe (海河) plain and Bohai (渤海) Bay. Although the geological structure of the sedimentary overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe plain gradually disappear with increasing depth, and the Shanxi (山西) graben in the west is mainly characterized by relatively low velocity anomalies. Bounded by the Taihang (太行) Mountains, the eastern and western parts differ in structural trend of stratum above the crystalline basement. The structural trend of the Huanghuaihai (黄淮海) block in the east is mainly north-east, while that of the Shanxi block and the eastern edge of the Ordos block is mainly north-west. (3) According to the morphological features of Moho, the crust of the study area can be divided into six blocks. In the Shanxi block, Moho apppears like a nearly south-north trending depression belt with a large crustal thickness. In the southern edge of the Inner Mongolia block and the south of the Yanshan (燕山) block,the Moho exhibits a feature of fold belt, trending nearly towards east-west. In the eastern edge of the Ordos block, the structure of Moho is relatively complex, presenting a pattern of fold trending nearly towards north-west with alternating convexes and concaves. Beneath the Huanghuaihai block, the middle and northern parts of the North China rift zone, the Moho is the shallowest in the entire region, with alternating uplifts and depressions in its shape. For the anteclise zone in the west of Shandong (山东) Province, the Moho is discontinuous for the fault depression extending in the north-west direction along Zaozhuang (枣庄) -Qufu (曲阜).展开更多
THE RELATIONS BETWEEN DEEPDYNAMIC PROCESS AND THEFORMATION OF OIL-GAS POOLS INTHE SONGLIAO BASIN, CHINALi Zhi’an(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)Songliao basin, cru...THE RELATIONS BETWEEN DEEPDYNAMIC PROCESS AND THEFORMATION OF OIL-GAS POOLS INTHE SONGLIAO BASIN, CHINALi Zhi’an(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)Songliao basin, crust structure, deep dynamics, the formation of oil-gas poolsThis essay deals in detail with the inhomogeneity of the crust structure and the variation of the Moho, the process of deep dynamics and also relations of deep dynamic process to the formation of oil-gas pools in Songliao Basin.展开更多
The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The ne...The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake.展开更多
文摘This paper presents some questions to the formula of pressure=depth×specific gravity from the viewpoint that the hydrostatic pressure is equal to the gravity of overlying rocks and the rocks in a static fluid state, which is drawn from the research and analysis of the research field and the corresponding problems of the pressure state in the deep crust and the formation depth of the UHP metamorphic rocks. In this research, the underground rocks are considered as the solid possessing some rheological behaviors to discuss the polysource stress state and to obtain a more reasonable method for the calculation of depths using the model of the unbalanced force solid. It is suggested from this paper that the P/SW method for the calculation of the ultrahigh pressure stemming only from the gravity has obviously overstated the formation depth of the UHP metamorphism. The formation model emphasizing the effect of the gravity, the tectonic force and the metamorphic force of the facies change concludes that such UHP minerals as coesite may have been produced in the inner crust.
基金funded by the Open Foundation of the United Laboratory of High-Pressure Physics and Earthquake Science of China,grant number 2019HPPES03。
文摘Geo-electric anomalies are generated during the process of stress accumulation and release associated with earthquakes.However,the mechanism of these anomalies remains equivocal.Based on the analysis of thermoelectric characteristics of semiconductor minerals of the earth’s deep crust such as graphite,ferrosilicon alloy,magnetite etc.,we perform finite element analysis to evaluate the principles governing the thermoelectric power generated by minerals and rocks.The results show that graphite,ferrosilicon alloy and magnetite all exhibit Seebeck effect and can be superimposed.And the thermo-electric field can be enhanced with the activation temperature increases,the content of thermoelectric minerals increases,the size of aggregates increases,and the spacing of thermoelectric minerals grains decreases.Seismogenic processes would generate a similar thermal gradient.The natural semiconductor minerals in this thermal field show a thermoelectric effect,forming a thermoelectric field that interferes with the background electric field.This study indicates that thermoelectric effect may have an important influence on the formation of geoelectric field.
文摘In this paper, the effects of frying time, white egg (0%, 5% and 10% w/w) and chitosan (0%, 0.5% and 1.5% w/w) addition to the batter formulation on the quality of simulated crispy deep-fried Kurdish cheese nugget crusts was studied by using a deep-fried crust model. Moisture content, oil content, color and hardness of the samples were determined. Crust models were fried at 190℃ for 60, 120 and 180 s. Batter formulations and frying time significantly (p < 0.01) affected moisture, oil content, color and hardness of Crust models. Batter formulation contain 10% white egg was found to be an effective ingredient in decreasing oil content of Crust models. The mean moisture and fat content of Crust models formed with batter contained 10% white egg, fried at 190℃, for 180s were 6.207 ± 0.447 and 5.649 ± 0.394. Batters containing 5% white egg and 1.5% chitosan showed the lowest moisture content and the highest oil content among all the formulations. Crust models containing combination of white egg and chitosan were the darkest. Hardness of samples containing chitosan were the highest, specially for ch1.5 The mean hardness in 60, 120 and 180s of frying in this formulation were 21.518 ± 0.481, 36.871 ± 1.758 and 49.563 ± 1.847 respectively.
文摘Deep-sea cobalt crusts water jet cutting method is proposed to avoid cutter impact load. With simulation calculations and experimental tests, water jet system parameters and its cutting ability were studied. Simula-tion results show that working pressure, ejection range and ejection angle of water jet system are main parameters of its cutting ability. Its important degree is in turn the working pressure, ejection range and ejection angle. Increasing water jet system working pressure is the most effective way to improve its cutting ability. When water jet working pressure is constant, in order to improve its cutting ability, the ejection range should be less than 4mm (four times of nozzle diameter) and the ejection angle should be about 13o. Experimental results show that there is a threshold pressure during water jet cutting cobalt crusts simulation material. With the increase of water jet working pressure, its cutting ability increases dramatically. With the increasing of water jet ejection range, its cutting ability decreases sharply. The optimal ejection angle is about 13o</sup.
基金Supported by the Science and Technology Project of CNOOC Ltd.(YXKY-2012-SHENHAI-01)China National Science and Technology Major Project(2011ZX05025-003+1 种基金 2016ZX05026-003)the National Natural Science Foundation of China(91128207)
文摘The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.
基金National Natural Science Foundation of China (40334040).
文摘Barkam-Luqu-Gulang deep seismic sounding profile runs from north of Sichuan Province to south of Gansu Province. It is located at the northeastern edge of Tibetan Plateau and crosses eastern A'nyemaqên suture zone. The upper crust structures around eastern A'nyemaqên suture zone and its adjacent area are reconstructed based on the arrival times of refracted Pg and Sg waves by using finite difference method, ray tracing inversion, time-term method and travel-time curve analysis. The results show that the depth variation of basement along profile is very strong as indicated by Pg and Sg waves. The basement rose in Zoigê basin and depressed in eastern A'nyemaqên suture zone, and it gradually rose again northward and then depressed. The results also indicate that eastern A'nyemaqên suture zone behaves as inhomogeneous low velocity structures in the upper crust and is inclined to- ward the south. Hoh Sai Hu-Maqên fault, Wudu-Diebu fault and Zhouqu-Liangdang fault are characterized by low velocity distributions with various scales. The distinct variation in basement depth occurred near Hoh Sai Hu-Maqên fault and Zhouqu-Liangdang fault, which are main tectonic boundaries of A'nyemaqên suture zone. Wudu-Diebu fault, located at the depth variation zone of the basement, possibly has the same deep tectonic background with Zhouqu-Liangdang fault. The strongly depressed basement characterized by low velocity distribution and lateral inhomogeneity in A'nyemaqên suture zone implies crushed zone features under pinching action.
文摘Determining the upper boundary of the cobalt-rich crust distribution of a guyot is important for estimating the mineral resources available, however, it has also long been an unsolved question. Correlations between the sub-bottom structures, revealed by sub-bottom profiling, and crust distribution can be revealed for the first time by the synchronous application of sub-bottom profiling and deep-sea video recording. The lower boundary of the sediment corresponds with the upper boundary of the crust. By analysis of these two kinds of data, the lower boundary of the sediment can be determined; therefore, the upper boundary of the crust distribution can be deduced. According to this method of analysis, the upper boundary of water depth of crust distribution of a seamount in the western Pacific is about 1 560 m.
文摘In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area.
文摘Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance.
文摘Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence.
基金supported by the Major State Basic Research Development Program grants 2008DFA20700 and 2008CB425703
文摘The 3-D geometry of the seismicity in Hindu Kush-Pamir--western China region has been defined by seismic records for 1975-1999 from the National Earthquake Information Center, the U.S. Geological Survey, and over 16,000 relocated earthquakes since 1975 recorded by the Xinjiang seismic network of China. The results show that most Ms≥ 5.0 hypocenters in the area are confined to a major intracontinental seismic shear zone (MSSZ). The MSSZ, which dips southwards in Pamir has a north- dipping counterpart in the Hindu Kush to the west; the two tectonic realms are separated by the sinistral Chaman transform fault of the India-Asia collisional zone. We demonstrate that the MSSZ constitutes the upper boundary of a south-dipping, actively subducting Pamir continental plate. Three seismic concentrations are recognized just above the Pamir MSSZ at depths between 45-65 km, 95-120 km, and 180-220 km, suggesting different structural relationships where each occurs. Results from focal mechanism solutions in all three seismological concentrations show orientations of the principal maximum stress to be nearly horizontal in an NNW-SSE direction. The south-dipping Pamir subduction slab is wedge-shaped with a wide upper top and a narrow deeper bottom; the slab has a gentle angle of dip in the upper part and steeper dips in the lower part below an elbow depth of ca. 80--120 km. Most of the deformation related to the earthquakes occurs within the hanging wall of the subducting Pamir slab. Published geologic data and repeated GPS measurements in the Pamir document a broad supra-subduc- tion, upper crustal zone of evolving antithetic (i.e. north-dipping) back-thrusts that contribute to northsouth crustal shortening and are responsible for exhumation of some ultrahigh-pressure rocks formed during earlier Tethyan plate convergence. An alternating occurrence in activity of Pamir and Chaman seismic zones indicates that there is interaction between strike-slip movement of the Chaman transform fault system and deep-subduction of the Pamir earthquake zone. Pamir subdnction-related seismicity becomes shallower in depth with increasing distance east of the transform fault. Therefore, sinistral movement of the Chaman transform fault appears to be influencing continental deep-subduction in the Pamir region and may provide an explanation for the unusual south-dipping geometry of the intracontinental Pamir plate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40773031 and 40473027)the Ph.D. Programs Foundation of Ministry of Education of China (Grant Nos. 20105122110010 and 20115122110005)the Project of the State Key (Preparation Support) Disciplines of Mineralogy, Petrology and Mineral Deposit Geology of CDUT (Grant No. SZD0407)
文摘Based on the petrological studies of wall rocks, mineralized rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that with the development of silification, carbonation and sulfidation, a kind of black opaque ultracrystalline material runs through the space between grains and amphibole cleavages, which is the product of fast condensing consolidation with magma mantle fluids turning into hydrothermal crustal fluids in the process of mineralization and alteration. It is thought that the water in ore-forming fluids mainly derived from magmatic water through research on H-O isotopes, and C as well as S isotopic compositions, has clear mantle-derived characteristics, and rock (mine) stones contain high 87Sr/86 Sr ratios, low 143Nd/144 Nd ratios and high 206Pb/204 Pb ratios, which also reflects the ore-forming fluids were derived from the metasomatically enriched mantle. In combination with the features of H-O-C-S isotopes and Sr-Nd-Pb isotopes described above, the ore-forming fluids of the Laowangzhai gold deposit in the northern part of the Ailao Mountains were derived mainly from the deep interior of the mantle, and their properties were transformed from magma fluids to hydrothermal fluids in the course of metasomatism and alteration, which initiated crust-mantle contamination simultaneously to be in favor of mineralization.
文摘The nature of crustal and lithospheric mantle evolution of the Archean shields as well as their subsequent deformation due to recent plate motions and sustained intraplate geodynamic activity, has been a subject of considerable interest. In view of this, about three decades ago, a new idea was put forward suggesting that out of all shield terrains, the Indian shield has an extremely thin lithosphere(w100 km,compared to 250e350 km, elsewhere), apart from being warm, non-rigid, sheared and deformed. As expected, it met with scepticism by heat flow and the emerging seismic tomographic study groups, who on the contrary suggested that the Indian shield has a cool crust, besides a coherent and thick lithosphere(as much as 300e400 km) like any other shield. However, recently obtained integrated geological and geophysical findings from deep scientific drillings in 1993 Killari(M w: 6.3) and 1967 Koyna(M w: 6.3)earthquake zones, as well as newly acquired geophysical data over other parts of Indian shield terrain,have provided a totally new insight to this debate. Beneath Killari, the basement was found consisting of high density, high velocity mid crustal amphibolite to granulite facies rocks due to exhumation of the deeper crustal layers and sustained granitic upper crustal erosion. Similar type of basement appears to be present in Koyna region too, which is characterized by considerably high upper crustal temperatures.Since, such type of crust is depleted in radiogenic elements, it resulted into lowering of heat flow at the surface, increase in heat flow contribution from the mantle, and upwarping of the lithosphereasthenosphere boundary. Consequently, the Indian shield lithosphere has become unusually thin and warm. This study highlights the need of an integrated geological, geochemical and geophysical approach in order to accurately determine deep crust-mantle thermal regime in continental areas.
基金State Key Basic Research Development and Programming Project (G1998040702) and State Natural Science Foundation of China (49774230).
文摘Observational data from some of the 10-odd deep seismic sounding profiles in Bohai Bay and its adjacent areas were processed with the methods of two-dimensional ray tracing, travel-time fitting and synthetic seismogram. The crust and upper-mantle velocity structure model in this area was built. The results show that the crust and upper mantle structures present obvious lateral and vertical inhomogeneity. The upper mantle uplifts near Yongqing of northeast Jizhong depression, in Bohai Bay of Huanghua depression and near Kenli of Jiyang depression, where crustal depths are about 31 km, 28 km and 29 km, respectively. According to the dynamic and kinetic characteristics of seismic waves as well as the seismic interfaces and velocity contour undulation in the 2-D velocity structure model, three deep crustal fault zones are inferred in the area. Low velocity (5.90~6.10 km/s) layers (bodies) exist on one or two sides of these deep crustal fault zones.
基金The study is supported by the cooperative project of Central South Bureau of Petroleum Geology ,Ministry of Geology,Mineral Resources and China University of Geosciences
文摘In order to study the deep geoelectrical structure and the regional geological structure and detect potential oil and gas areas in Qiangtang basin in northern Xizang (Tibet ), 222 MT soundings were conducted along three N - S MT profiles across the basin .The MT results indicate that the south and north parts of the Qiangtang basin have a good contrast in the deep electri cal structure . In the south Qiangtang , there are generally two high conductivity layers in the crust . The first is at a depth of about 10 - 25 km and possesses a resistivity of about 10 - 80 Ωm .The second ,the high conductivity layer in the lower crust ,is at a depth of about 40 - 70 km with 3 - 50 Ωm .In the north Qiangtang .there is generally one high conductivity layer .It is at a depth of about 10 - 30 km and the resistivity is about 1-60 Ωm . The thickness of the second high conductivity layer in both the south Qiangtang and the Bangong-Nujiang suture is much greater than that of the first .The thickness of the lithosphere is about 110-120 km for the Bangong-Nujiang suture ,115 km for the south Qiangtang and 100-130 km for the north Qiangtang . On the difference of the deep electrical structures of the crust between the south and the north Qiangtang , we believe that it is related to the eastward flow of the crustal substance .
基金This paper is supported by the National Natural Science Foundation of China (No.40434010)the Focused Subject Program of Beijing (No. XK104910589).
文摘Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones lie in the Haihe (海河) plain and Bohai (渤海) Bay. Although the geological structure of the sedimentary overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe plain gradually disappear with increasing depth, and the Shanxi (山西) graben in the west is mainly characterized by relatively low velocity anomalies. Bounded by the Taihang (太行) Mountains, the eastern and western parts differ in structural trend of stratum above the crystalline basement. The structural trend of the Huanghuaihai (黄淮海) block in the east is mainly north-east, while that of the Shanxi block and the eastern edge of the Ordos block is mainly north-west. (3) According to the morphological features of Moho, the crust of the study area can be divided into six blocks. In the Shanxi block, Moho apppears like a nearly south-north trending depression belt with a large crustal thickness. In the southern edge of the Inner Mongolia block and the south of the Yanshan (燕山) block,the Moho exhibits a feature of fold belt, trending nearly towards east-west. In the eastern edge of the Ordos block, the structure of Moho is relatively complex, presenting a pattern of fold trending nearly towards north-west with alternating convexes and concaves. Beneath the Huanghuaihai block, the middle and northern parts of the North China rift zone, the Moho is the shallowest in the entire region, with alternating uplifts and depressions in its shape. For the anteclise zone in the west of Shandong (山东) Province, the Moho is discontinuous for the fault depression extending in the north-west direction along Zaozhuang (枣庄) -Qufu (曲阜).
文摘THE RELATIONS BETWEEN DEEPDYNAMIC PROCESS AND THEFORMATION OF OIL-GAS POOLS INTHE SONGLIAO BASIN, CHINALi Zhi’an(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China)Songliao basin, crust structure, deep dynamics, the formation of oil-gas poolsThis essay deals in detail with the inhomogeneity of the crust structure and the variation of the Moho, the process of deep dynamics and also relations of deep dynamic process to the formation of oil-gas pools in Songliao Basin.
基金This project was sponsored by the State Science and Technology Commission of China (No. 85907020301)the United Earthquake Science Foundation of China (No. 196122). Contribution No.RCEG98003Research Center of Exploration Geophysics, China Seismologica
文摘The seismic data obtained from the wide angle reflection and refraction profiles that pass through Zhangjiakou area of Hebei Province were interpreted. Some conclusions drawn from the result are as follows: (1) The nearly EW-trending Zhangbei-Chongli crustal fault zone and WNW-trending Zhangjiakou-Bohai Sea deep crustal fault zone meet in the Zhangbei earthquake (Ms = 6.2) area; (2) At the intersection, the two deep crustal fault zones that stretch to the Moho and the discontinuities of interfaces within the crust form the path for large area basalt eruption in Hannuoba; (3) In the earthquake area, the local velocity reversal in the middle-upper crust and abnormal low velocity zone in the lower crust imply that the magmatic activity there is still fairly violent; and (4) The recent activity of Zhangjiakou-Bohai Sea deep crustal fault zone may be the main cause of the Zhangbei earthquake.