期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于改进YOLO v3模型与Deep-SORT算法的道路车辆检测方法 被引量:33
1
作者 马永杰 马芸婷 +1 位作者 程时升 马义德 《交通运输工程学报》 EI CSCD 北大核心 2021年第2期222-231,共10页
针对道路车辆实时检测遮挡严重与小目标车辆漏检率高的问题,提出了基于改进YOLO v3模型和Deep-SORT算法的车辆检测方法;为提高模型对道路车辆的检测能力,采用K-meansSymbolk@pSymbolk@p聚类算法对目标候选框进行聚类分析,选择合适的... 针对道路车辆实时检测遮挡严重与小目标车辆漏检率高的问题,提出了基于改进YOLO v3模型和Deep-SORT算法的车辆检测方法;为提高模型对道路车辆的检测能力,采用K-meansSymbolk@pSymbolk@p聚类算法对目标候选框进行聚类分析,选择合适的Anchor box数量,并在网络浅层增加了特征提取层,可提取到更精细的车辆特征;为加强网络对远近不同目标的鲁棒性,在保留原YOLO v3模型输出层的同时,增加了一层输出层,将52像素×52像素输出特征图经过上采样后得到104像素×104像素特征图,并将其与浅层同尺寸特征图进行拼接,实现车辆目标的检测;为了降低目标遮挡对检测效果的影响,提高对视频上下帧之间关联信息的关注度,将改进YOLO v3模型和Deep-SORT算法相结合,以此来弥补两者之间的不足。试验结果表明:改进YOLO v3模型有效地提高了车辆检测的性能,与在网络浅层增加特征提取层的模型相比,平均精度提高了1.4%,与增加一层输出层的模型相比,平均精确度提高了0.8%,说明改进YOLO v3模型提取的特征表达能力更强,增强了网络对小目标的检测能力;改进YOLO v3模型在引入Deep-SORT算法后,查准率和召回率分别达到90.16%和91.34%,相比改进YOLO v3模型,查准率和召回率分别提高了1.48%和4.20%,同时保证了检测速度,对于不同大小目标的检测具有良好的鲁棒性。 展开更多
关键词 交通图像识别 卷积神经网络 车辆检测 YOLO v3模型 deep-SORT算法 K-means++聚类算法
原文传递
基于深度卷积嵌入式聚类(DCEC)的海洋环境特征提取对渔情预报模型的改进研究--以西南印度洋大眼金枪鱼为例 被引量:3
2
作者 张天蛟 廖章泽 +3 位作者 宋博 袁红春 宋利明 张闪闪 《海洋学报》 CAS CSCD 北大核心 2021年第8期105-117,共13页
为提高大眼金枪鱼(Thunnus obesus)延绳钓渔情预报模型的预测能力,本研究提出了一种基于深度卷积嵌入式聚类(DCEC)的海洋环境时空特征提取方法,结合广义可加模型(GAM)对西南印度洋大眼金枪鱼延绳钓渔场进行预报。采用2018年1-12月0.041 ... 为提高大眼金枪鱼(Thunnus obesus)延绳钓渔情预报模型的预测能力,本研究提出了一种基于深度卷积嵌入式聚类(DCEC)的海洋环境时空特征提取方法,结合广义可加模型(GAM)对西南印度洋大眼金枪鱼延绳钓渔场进行预报。采用2018年1-12月0.041 6°×0.041 6°的MODIS-Aqua和MODISTerra海表面温度三级反演图像数据(以日为单位)构建DCEC模型,基于Davies-Bouldi指数(DBI)确定最佳聚类数,在此基础上提取各月海表温度(SST)的类别特征值F M;采用美国国家海洋和大气管理局网站2018年1-12月1°×1°的Chl a浓度月平均值作为辅助环境特征因子;采用印度洋金枪鱼委员会2018年1-12月1°×1°的大眼金枪鱼延绳钓渔业数据(以月为单位),计算单位捕捞努力量渔获量(CPUE);将SST月类别特征值F M、Chl a浓度月平均值与CPUE数据进行时空匹配,构建改进GAM;采用SST月平均值、Chl a浓度月平均值与CPUE数据构建基础GAM;采用联合假设检验(F检验)验证模型解释变量对响应变量的影响;采用赤池信息准则(AIC)、均方误差(MSE)、绘制实测值和预测值的散点图并计算相关系数r,分析改进GAM相比于基础GAM的提升效果。实验结果表明:(1)基于DCEC模型提取的F M能够较好地反映西南印度洋海表温度的时空动态特征与规律,并与西南印度洋的气候条件、季风状况和水文特征等相互耦合;(2) F M相比SST平均值的因子解释率更高,对大眼金枪鱼CPUE影响更为显著,高渔获率集中在暖冷流交汇区域;(3)改进GAM相比基础GAM的AIC值降低了9.17%,MSE降低了26.7%,散点图显示改进GAM预测的CPUE对数值与实测CPUE对数值的相关性较显著,r为0.60。本研究证明了DCEC模型在海洋环境特征提取方面的有效性,可为后序大眼金枪鱼延绳钓渔情预报模型的改进研究提供参考。 展开更多
关键词 深度卷积嵌入式聚类 海洋环境特征 大眼金枪鱼 西南印度洋 渔情预报 广义可加模型
在线阅读 下载PDF
海表温度时空分布模式对西北太平洋柔鱼生物学特征的影响 被引量:1
3
作者 张天蛟 张闪闪 +1 位作者 袁红春 余为 《水产学报》 北大核心 2025年第3期58-72,共15页
【目的】旨在提出基于深度学习方法挖掘海表时空分布模式,并分析对不同月份雌、雄柔鱼生长发育变化的影响。【方法】实验基于2016年7—10月西北太平洋柔鱼的生物学测定数据,分析其胴长、体重和性腺成熟度的组成,并采用幂指数方程分月拟... 【目的】旨在提出基于深度学习方法挖掘海表时空分布模式,并分析对不同月份雌、雄柔鱼生长发育变化的影响。【方法】实验基于2016年7—10月西北太平洋柔鱼的生物学测定数据,分析其胴长、体重和性腺成熟度的组成,并采用幂指数方程分月拟合雌、雄柔鱼胴长和体重的关系;采用深度卷积嵌入式聚类(DCEC)模型,基于MODIS-Aqua和MODIS-Terra海表面温度三级反演图像数据提取海表温度(sea surface temperature,SST)的分布模式,用于反映各月调查站点对应的SST时空分布特征与规律;在此基础上,分析不同月份SST时空分布模式对雌、雄柔鱼生长发育的影响。【结果】①2016年7—10月,西北太平洋雌、雄柔鱼的生长与发育不完全同步,雌性生长速率较快,雄性性腺发育速率较快。②基于DCEC模型提取得到了4类SST图像特征,能够较好地反映各月调查站点对应的SST时空分布模式,体现了厄尔尼诺现象、黑潮和亲潮等对海表温度的影响。③7—8月,柔鱼平均体重、胴长和性腺成熟度偏低,雌、雄个体差别不大,与SST时空分布模式的关系不显著。④9—10月,在SST变化较均匀但整体温度较低时,柔鱼平均体重、胴长和性腺成熟度均偏低;在SST变化较均匀但整体温度升高时,柔鱼的平均体重、胴长和性成熟个体数量明显上升,雌鱼生长速率较雄鱼快,但雄性成熟速率较雌性更快;冷暖水相遇形成比较明显的界限时,雌、雄柔鱼的胴长和体重达到最大值,但性腺发育有所延缓。【结论】本研究基于深度学习DCEC模型挖掘了SST时空分布模式对不同月份雌、雄柔鱼生长发育变化的影响,为进一步了解西北太平洋柔鱼生物学特征提供参考。 展开更多
关键词 柔鱼 海表温度(SST)分布模式 深度卷积嵌入式聚类(dcec)模型 生物学特征 西北太平洋
原文传递
考虑空间异质性的降雨滑坡易发性预测研究
4
作者 张幸福 姜元俊 阿比尔的 《工程科学与技术》 北大核心 2025年第4期12-28,共17页
现有滑坡易发性预测方法未能充分考虑地形、土壤和植被等环境因素的空间异质性,也无法准确反映极端降雨对滑坡易发性的影响。为了克服这些限制,引入了一种结合深度嵌入聚类(DEC)的动态雨量阈值分区方法,通过深度学习技术,根据环境因素... 现有滑坡易发性预测方法未能充分考虑地形、土壤和植被等环境因素的空间异质性,也无法准确反映极端降雨对滑坡易发性的影响。为了克服这些限制,引入了一种结合深度嵌入聚类(DEC)的动态雨量阈值分区方法,通过深度学习技术,根据环境因素将研究区域划分为具有相似特征的子区域,实现了滑坡预测模型的精细化空间异质性分析;在此基础上,提出基于混合分布的动态雨量阈值模型以区分非极端降雨与极端降雨,并采用贝叶斯方法动态更新模型参数,提高了模型对不同降雨类型的适应性和预测的时效性。以通江县为案例,采用多任务学习自适应神经树模型(MLANT),结合深度嵌入DEC模型与混合分布阈值模型,对滑坡易发性进行预测。结果表明,本文方法在精确度、F1分数及受试者工作特征曲线下面积AUC值等关键性能指标上显著优于传统依赖统一阈值的模型。特别是与传统的基于前期有效降雨量方法相比,预测效果提升显著,预测滑坡密度和数量由0.038事件/km^(2)和44个滑坡事件提升至0.044事件/km^(2)和59个滑坡事件,充分证实了在滑坡易发性预测中使用深度嵌入聚类(DEC)的动态雨量阈值分区考虑空间异质性和区分不同降雨事件的重要性和有效性。 展开更多
关键词 滑坡易发性 深度嵌入聚类(DEC) 空间异质性 混合分布降雨阈值 多任务学习自适应神经树模型
在线阅读 下载PDF
基于多样化梯度嵌入主动学习的轴承故障诊断方法
5
作者 张越宏 袁昭成 +3 位作者 马嘉浩 张楷 郑庆 王大龙 《机电工程》 北大核心 2025年第7期1268-1277,共10页
针对实际应用中轴承深度智能故障诊断模型缺乏大量有标签数据的问题,提出了一种基于多样化梯度嵌入主动学习(BADGE)的轴承故障诊断方法,BADGE法以优化主动学习的查询策略为手段,可提高模型在有限标注成本下的诊断能力。首先,从未标记样... 针对实际应用中轴承深度智能故障诊断模型缺乏大量有标签数据的问题,提出了一种基于多样化梯度嵌入主动学习(BADGE)的轴承故障诊断方法,BADGE法以优化主动学习的查询策略为手段,可提高模型在有限标注成本下的诊断能力。首先,从未标记样本集中随机选取了少量样本进行了人工标注,构建了初始标注集,进而训练出初始模型;然后,运用初始模型对未标记样本进行了预测,计算了类别预测概率分布及样本的梯度嵌入向量,以衡量样本的不确定性;接着,借助改进的K-means++聚类算法,从未标记样本中筛选了兼具不确定性和多样性的子集,对其进行人工标注后合并入了已有标注集,并重新训练了模型;最后,逐步扩充了标注集并提升了模型性能,直至未标记样本全部被使用,或模型达到预设性能指标,并利用凯斯西储大学轴承数据集对BADGE法进行了验证。研究结果表明:以诊断准确率超过99%为目标,BADGE法较随机采样方法减少了最多36%的样本量。BADGE法能够捕捉数据集中不同类别的诊断难易程度,赋予困难类别更大的选择权重,使模型更新更稳定。因此,BADGE法为有限标注成本下的轴承故障诊断提供了有效的方案。 展开更多
关键词 滚动轴承 故障诊断模型 卷积神经网络 深度主动学习 查询策略 多样化梯度嵌入主动学习 改进K均值聚类算法
在线阅读 下载PDF
基于BERT的中文电子病历命名实体识别 被引量:15
6
作者 封红旗 孙杨 +1 位作者 杨森 李文杰 《计算机工程与设计》 北大核心 2023年第4期1220-1227,共8页
针对中文电子病历命名实体识别过程中实体特征利用率低,语义表示不充分等问题,提出一种基于BERT语言模型的命名实体识别方法。运用Char-CNN学习字符的多种特征,将特征加入BERT预训练生成的词向量中,获得融合领域信息和汉字特征的词向量... 针对中文电子病历命名实体识别过程中实体特征利用率低,语义表示不充分等问题,提出一种基于BERT语言模型的命名实体识别方法。运用Char-CNN学习字符的多种特征,将特征加入BERT预训练生成的词向量中,获得融合领域信息和汉字特征的词向量表示,将词向量输入迭代扩张卷积神经网络中进行特征抽取,引入注意力机制加强实体特征的关注度,通过CRF解码标注命名实体。实验结果表明,该方法在CCKS17中取得91.64%的F1值,识别性能优于现有方法。 展开更多
关键词 中文电子病历 命名实体识别 深度学习 语言模型 卷积神经网络 注意力机制 词向量
在线阅读 下载PDF
基于中间图特征提取的卷积网络双标准剪枝 被引量:3
7
作者 程小辉 李钰 康燕萍 《计算机工程》 CAS CSCD 北大核心 2023年第3期105-112,共8页
卷积神经网络(CNN)在计算和存储上存在大量开销,为了使CNN能够在算力和存储能力较弱的嵌入式等端设备上进行部署和运行,提出一种基于中间图特征提取的卷积核双标准剪枝方法。在卷积层后插入中间图互信息特征提取框架,分析卷积核的特征... 卷积神经网络(CNN)在计算和存储上存在大量开销,为了使CNN能够在算力和存储能力较弱的嵌入式等端设备上进行部署和运行,提出一种基于中间图特征提取的卷积核双标准剪枝方法。在卷积层后插入中间图互信息特征提取框架,分析卷积核的特征提取能力,结合批量归一化层的缩放因子对卷积核的综合重要性进行评估,获取更为稀疏的CNN模型。针对全连接层存在大量冗余节点的问题,提出一种基于节点相似度与K-means++聚类的全连接层剪枝方法,聚类相似度较高的节点,并对剪枝后的连接层权重进行融合,在一定程度上弥补因剪枝所造成的精度损失。在CIFAR10和CIFAR100数据集上的实验结果表明,使用该剪枝方法对ResNet56网络进行剪枝,在损失0.19%分类精度的情况下能够剪掉48.2%的参数量以及46.7%的浮点运算量,对于VGG16网络,能够剪掉94.5%的参数量以及64.4%的浮点运算量,分类精度仅下降0.01%。与VCNNP、PF等剪枝方法相比,所提剪枝方法能够在保持模型准确率几乎不变的情况下,对CNN的参数量和计算量进行更大比例的裁剪。 展开更多
关键词 深度学习 模型剪枝 卷积神经网络 互信息 节点相似度 K-means++聚类 中间特征
在线阅读 下载PDF
基于节点日负荷曲线的深度嵌入式聚类及其改进方法对比研究 被引量:6
8
作者 陈谦 陈嘉雯 +1 位作者 王苏颖 史锐 《电力科学与技术学报》 CAS CSCD 北大核心 2023年第1期130-137,共8页
基于日负荷曲线的负荷节点分类是负荷建模的重要环节,详略得当的分类结果保留了负荷节点的内在特性,可提升电力系统仿真计算的效率。当前基于人工智能的节点聚类方法进展迅速,然而总体上针对数据深层特征提取的适应性仍存在不足。采用... 基于日负荷曲线的负荷节点分类是负荷建模的重要环节,详略得当的分类结果保留了负荷节点的内在特性,可提升电力系统仿真计算的效率。当前基于人工智能的节点聚类方法进展迅速,然而总体上针对数据深层特征提取的适应性仍存在不足。采用了基于改进的深度嵌入式算法的日负荷曲线聚类方法,利用神经网络可有效提取数据的深层特征的能力。进而,提出一种先升维后聚类的改进方法,通过算例对比分析,验证了本文所提算法的可行性,以及所提升维—重构聚类方法的正确性。 展开更多
关键词 负荷建模 日负荷曲线聚类 深度嵌入式 升维-重构聚类
在线阅读 下载PDF
LBSN中利用深度学习的POI推荐方法 被引量:3
9
作者 刘旸 吴安波 李慧斌 《计算机工程与设计》 北大核心 2022年第10期2926-2934,共9页
提出一种基于位置的社交网络(LBSN)中利用深度学习的POI推荐方法。设计LBSN异构图,即UP2Vec模型,整合地理签到信息、用户社会关系和时间信息等语境。提出偏好增强谱聚类(PSC)算法,通过分析用户的各种语境信息获得多个维度的数据空间特征... 提出一种基于位置的社交网络(LBSN)中利用深度学习的POI推荐方法。设计LBSN异构图,即UP2Vec模型,整合地理签到信息、用户社会关系和时间信息等语境。提出偏好增强谱聚类(PSC)算法,通过分析用户的各种语境信息获得多个维度的数据空间特征,使用谱聚类划分用户群体。利用谱嵌入增强的神经网络深度挖掘用户与POI之间的非线性关联,实现POI的高质量推荐。实验结果表明,所提方法性能优于对比方法,推荐准确率超过90%。 展开更多
关键词 POI推荐 基于位置的社交网络 深度学习 偏好增强谱聚类算法 UP2Vec模型 谱嵌入增强的神经网络 偏好预测
在线阅读 下载PDF
基于加权马氏距离的改进深度嵌入聚类算法 被引量:3
10
作者 颜子寒 张正军 +2 位作者 王雅萍 金亚洲 严涛 《计算机应用》 CSCD 北大核心 2019年第S02期122-126,共5页
针对深度嵌入聚类(DEC)算法在数据降维后的特征空间中采用欧氏距离度量嵌入点之间的距离,容易忽视各特征不同量纲以及不同重要性的问题,提出了基于加权马氏距离的改进DEC算法,并同时给出基于加权马氏距离的间隔统计量(GS)方法判断最佳... 针对深度嵌入聚类(DEC)算法在数据降维后的特征空间中采用欧氏距离度量嵌入点之间的距离,容易忽视各特征不同量纲以及不同重要性的问题,提出了基于加权马氏距离的改进DEC算法,并同时给出基于加权马氏距离的间隔统计量(GS)方法判断最佳聚类数。该算法使用信息熵加权的马氏距离作为距离度量,规范化了欧氏距离的计算,并利用信息熵加大了对聚类重要的特征的权重。实证表明,基于加权马氏距离的改进DEC算法准确率优于原DEC算法,在UCI的路透社新闻等文本数据集上的聚类效果有明显的提升。利用改进的GS方法判断的最佳聚类数也有很大的可行性。 展开更多
关键词 深度嵌入聚类模型 信息熵 加权马氏距离 无监督学习 间隔统计量
在线阅读 下载PDF
基于时间卷积网络的深度聚类说话人语音分离 被引量:1
11
作者 王昕 蒋志翔 +3 位作者 张杨 寇金桥 常新旭 徐冬冬 《计算机工程与设计》 北大核心 2020年第9期2630-2635,共6页
“鸡尾酒会问题”在语音分离任务上一直是一个难题,主要因为这个问题属于一个说话人无关的语音分离问题,对于说话人事先不知道其先验信息。通过参考Jonathan等提出的深度聚类方法,在其基础上进行改进,提出基于时间卷及网络的深度聚类模... “鸡尾酒会问题”在语音分离任务上一直是一个难题,主要因为这个问题属于一个说话人无关的语音分离问题,对于说话人事先不知道其先验信息。通过参考Jonathan等提出的深度聚类方法,在其基础上进行改进,提出基于时间卷及网络的深度聚类模型,以理想二值掩蔽作为分离目标并在公开中文语音数据集下进行实验。实验结果表明,相比传统深度聚类模型,所提模型在训练速度、分离后的语音质量和语音客观可懂度方面都得到了提升。 展开更多
关键词 语音分离 深度聚类模型 时间卷积网络 膨胀卷积 因果卷积 理想二值掩蔽
在线阅读 下载PDF
基于轻量化Yolov5算法的目标检测系统 被引量:10
12
作者 张利红 蔡敬菊 《计算机技术与发展》 2022年第11期134-139,共6页
针对现有的深度目标检测算法结构复杂、计算量过大,难以直接部署到资源有限的边缘设备进行实时检测应用的问题,以Yolov5算法为基础,针对VOC公开数据集在GPU上进行迭代训练,通过使用MobileNetv2替换Backbone特征提取层中的BottleneckCSP... 针对现有的深度目标检测算法结构复杂、计算量过大,难以直接部署到资源有限的边缘设备进行实时检测应用的问题,以Yolov5算法为基础,针对VOC公开数据集在GPU上进行迭代训练,通过使用MobileNetv2替换Backbone特征提取层中的BottleneckCSP结构、Conv替换Focus模块达到网络轻量化,并结合稀疏训练评价特征提取层中卷积核的重要性后进行减枝的方法进一步实现模型压缩。从模型适应平台硬件加速角度出发,根据瑞芯微Rk3399pro加速芯片MAC单元为3的倍数,提出将网络卷积通道数剪枝后约束为9的倍数,并引入了非对称8位模型量化、CPU-GPU-NPU多核协同工作的策略在嵌入式平台上进行C++算法部署。实验证明,轻量化的Yolov5算法在检测精确度mAP下降6.74的情况下,大幅减少了计算参数量,离线模型部署至Rk3399pro嵌入式平台上理论检测速度达到50 fps/s,相较原Yolov5s未优化改进的部署至平台上的速度提升近1.7倍;满足降低模型参数权重后仍能实时精确检测的效果。 展开更多
关键词 目标检测网络 深度可分离卷积 模型量化 减枝 硬件加速 嵌入式部署
在线阅读 下载PDF
Emfacenet:一种轻量级人脸识别的卷积神经网络 被引量:3
13
作者 武文娟 李勇 《小型微型计算机系统》 CSCD 北大核心 2023年第3期560-564,共5页
随着计算机技术日益发展,计算机视觉逐渐融入人们的生活,深度卷积神经网络在计算机视觉领域得到了广泛的应用.然而计算资源和内存的限制,为卷积神经网络在嵌入式设备的部署带来了巨大的困难.本文提出了一种新的轻量级的人脸识别的卷积... 随着计算机技术日益发展,计算机视觉逐渐融入人们的生活,深度卷积神经网络在计算机视觉领域得到了广泛的应用.然而计算资源和内存的限制,为卷积神经网络在嵌入式设备的部署带来了巨大的困难.本文提出了一种新的轻量级的人脸识别的卷积神经网络——Emfacenet,通过在CASIA-WebFace数据集上进行卷积神经网络的训练,并在计算机CPU平台以及嵌入式平台上利用LFW数据集对模型的预测效果分别进行测试,Emfacenet在CPU平台下识别速度分别是Resnet50、Mobilenetv3以及Mobilefacenets这3种模型的2.07倍、1.67倍、1.63倍,在嵌入式平台下识别速度分别56.65倍、2.09倍、3.41倍.而且Emfacenet卷积神经网络模型大小仅为138.1KB,保持较高精度的同时运行效率显著提高,可以适用于嵌入式等硬件资源受限领域来实现人脸识别. 展开更多
关键词 深度学习 卷积神经网络 人脸识别 轻量级模型 嵌入式系统
在线阅读 下载PDF
基于LLE和高斯混合模型的时间序列聚类 被引量:3
14
作者 杨秋颖 翁小清 《计算机技术与发展》 2022年第8期33-41,共9页
聚类分析是常见的数据挖掘方法,时间序列数据挖掘可以将海量时序信息转化成有组织的知识。由于时间序列具有高维度、非线性等特点,大多数聚类算法无法直接应用在原始时间序列数据上并取得令人满意的效果。研究如何在维数约简的同时尽可... 聚类分析是常见的数据挖掘方法,时间序列数据挖掘可以将海量时序信息转化成有组织的知识。由于时间序列具有高维度、非线性等特点,大多数聚类算法无法直接应用在原始时间序列数据上并取得令人满意的效果。研究如何在维数约简的同时尽可能多地保留数据的内蕴特征,识别代表知识的真正有趣的模式,具有重要意义。现有大多数时间序列聚类算法没有考虑数据集的局部结构,而数据集的局部结构对聚类性能有较大影响。提出一种基于局部线性嵌入(Locally Linear Embedding,LLE)和高斯混合模型(Gaussian Mixture Model,GMM)的时间序列聚类算法。首先从保留数据集局部结构的角度,使用LLE将每个高维时间序列样本表示为其k近邻的线性组合,并在低维空间进行重构,在保持数据集局部几何结构的同时实现维数约简;然后使用GMM从概率分布的角度进行聚类分析。与已有方法相比,该方法在单变量时间序列聚类上具有更优的效果。 展开更多
关键词 局部线性嵌入 高斯混合模型 流形学习 时间序列聚类 深度学习
在线阅读 下载PDF
基于深度嵌入卷积聚类的天波雷达杂波分类 被引量:1
15
作者 蒋威 张治山 +1 位作者 李灿 王增福 《火力与指挥控制》 CSCD 北大核心 2022年第12期122-127,135,共7页
天波超视距雷达(天波雷达)在远程预警系统中发挥着关键作用。天波雷达地海杂波识别即为辨识雷达回波每个距离-方位单元背景杂波来源为地或海的过程。利用地海杂波识别结果形成地/海分界线或地形轮廓,然后将其与先验地理信息匹配,可为目... 天波超视距雷达(天波雷达)在远程预警系统中发挥着关键作用。天波雷达地海杂波识别即为辨识雷达回波每个距离-方位单元背景杂波来源为地或海的过程。利用地海杂波识别结果形成地/海分界线或地形轮廓,然后将其与先验地理信息匹配,可为目标定位提供坐标配准参数,改善目标定位精度。由于天波雷达地海杂波谱数据量大,标签标注耗时、耗力,且人工标注困难。提出了一种基于深度嵌入卷积聚类方法的地海杂波无监督分类方法,利用卷积自编码器对输入地海杂波进行重构,然后利用聚类损失函数进行训练,获得聚类结果,实验数据验证了方法的有效性。 展开更多
关键词 深度嵌入卷积聚类 天波超视距雷达 坐标配准 无监督分类
在线阅读 下载PDF
基于深度卷积嵌入聚类的日负荷曲线聚类分析 被引量:23
16
作者 白雅玲 周亚同 刘君 《电网技术》 EI CSCD 北大核心 2022年第6期2104-2113,共10页
负荷曲线聚类是电力大数据研究的基础,通过聚类来挖掘用户的用电模式,从而为电力调控提供决策。针对传统的聚类方法难以处理高维多变量数据,提取时间特征较困难,存在特征提取与聚类过程分离的问题,采用基于一维卷积自编码器的深度卷积... 负荷曲线聚类是电力大数据研究的基础,通过聚类来挖掘用户的用电模式,从而为电力调控提供决策。针对传统的聚类方法难以处理高维多变量数据,提取时间特征较困难,存在特征提取与聚类过程分离的问题,采用基于一维卷积自编码器的深度卷积嵌入聚类方法(deep convolutional embedded clustering based on one-dimensional convolution autoencoder,DCEC-1D),对负荷曲线进行聚类并提取典型负荷曲线。首先,用一维卷积自编码器(one-dimensional convolutional autoencoder,1D-CAE)提取特征,送入K-means得到初始簇中心;然后,利用自定义的聚类层对提取的负荷特征进行软分布;最后,为防止扭曲嵌入空间,将聚类损失和重构损失相结合作为损失函数联合优化,得到最终的聚类结果。算例分析以美国加州大学欧文分校(University of California Irvine,UCI)提出的数据集中的葡萄牙居民用户实际采集数据为研究对象,通过戴维森堡丁指数(Davies-Bouldin index,DBI),CH分数(Calinski-Harabaz index,CHI),轮廓系数(Silhouette coefficient,SC)这3个聚类指标进行定量分析,并通过t分布随机邻域嵌入(t-distributed stochastic neighborhood embedding,TSNE)进行可视化分析。试验结果表明,相较于传统的K-means、主成分分析法(principal components analysis,PCA)+K-means,该方法聚类指标有大幅度提升。对比基于局部结构保留的深度嵌入聚类(improved deep embedded clustering,IDEC),基于一维卷积的深度嵌入聚类(deep embedding clustering method based on one dimensional convolutional auto-encoder,DEC-1D-CAE)和1D-CAE+K-means,所提方法的DBI分别降低了约0.15、0.08和1.50,CHI提高了约19384.92、12488.48和36485.72,SC提高了约0.10、0.05和0.63。 展开更多
关键词 深度嵌入聚类 卷积自编码器 时序特征提取 典型负荷曲线 联合优化
原文传递
基于改进GMM-CNN-GRU混合的非侵入式负荷监测方法研究 被引量:24
17
作者 杨秀 李安 +4 位作者 孙改平 田英杰 刘方 潘瑞媛 吴吉海 《电力系统保护与控制》 EI CSCD 北大核心 2022年第14期65-75,共11页
为挖掘用户侧节能减排潜力,对用户用电行为进行精细化分析和管理,提升电能利用效率,提出了一种基于高斯混合模型聚类和深度神经网络相结合的非侵入式负荷监测方法。首先,针对同一电器常出现功率相近但运行状态不一致问题,利用高斯混合... 为挖掘用户侧节能减排潜力,对用户用电行为进行精细化分析和管理,提升电能利用效率,提出了一种基于高斯混合模型聚类和深度神经网络相结合的非侵入式负荷监测方法。首先,针对同一电器常出现功率相近但运行状态不一致问题,利用高斯混合模型聚类算法中“软分类”和类簇灵活的优势,对负荷工作状态进行精细分类,形成负荷用电设备实际运行情况的负荷状态特征库。其次,针对常见的应用于非侵入式负荷监测模型的深度神经网络在多标签分类时存在识别精度低等问题,提出卷积神经网络与门控循环单元混合的深度神经网络模型。最后,综合考虑外部环境数据对家庭用户用能习惯的影响,在AMPds2数据集上开展验证分析,并与其他模型进行对比。结果表明,所提的非侵入式负荷监测模型具有较高的准确性。 展开更多
关键词 非侵入式负荷监测与分解 高斯混合模型聚类 卷积神经网络 门控循环单元 深度学习
在线阅读 下载PDF
基于改进DEC的评论文本聚类算法 被引量:3
18
作者 陈可嘉 夏瑞东 林鸿熙 《吉林大学学报(理学版)》 CAS 北大核心 2023年第5期1147-1158,共12页
针对原始深度嵌入聚类(DEC)算法中聚类层得出的初始聚类数目和聚类中心有很强的随机性,从而影响DEC算法效果的问题,提出一种基于改进DEC的评论文本聚类算法,对无类别标注的电商评论数据进行无监督聚类.首先获得融合句子嵌入向量和主题... 针对原始深度嵌入聚类(DEC)算法中聚类层得出的初始聚类数目和聚类中心有很强的随机性,从而影响DEC算法效果的问题,提出一种基于改进DEC的评论文本聚类算法,对无类别标注的电商评论数据进行无监督聚类.首先获得融合句子嵌入向量和主题分布向量的BERT-LDA数据集向量化表示;然后改进DEC算法,通过自动编码器进行降维处理,在编码器后堆叠聚类层,其中聚类层的聚类数目基于主题连贯性选择,同时使用主题特征向量作为自定义聚类中心,再进行编码器和聚类层的联合训练以提高聚类的准确度;最后利用可视化工具直观展示聚类效果.为验证算法的有效性,将该算法与6个对比算法在无标注的产品评论数据集上进行无监督聚类训练,结果表明,该算法在轮廓系数和Calinski-Harabaz(CH)指标上取得了0.2135和2958.18的最佳效果,说明其可有效处理电商评论数据,反映用户对产品的关注情况. 展开更多
关键词 BERT模型 LDA模型 深度嵌入聚类 自动编码器 聚类
在线阅读 下载PDF
基于改进CAE的嵌入式深度聚类算法 被引量:1
19
作者 李天雨 赵超超 +1 位作者 何鑫 张蔚旖 《现代计算机》 2024年第15期1-9,共9页
针对目前的深度卷积嵌入式聚类DCEC算法的网络结构存在的特征损失问题,提出了一种基于深度卷积降噪自编码器的新网络结构。在新网络结构中,通过优化DCEC中的卷积核步长参数,并加入池化层来加强特征提取的同时减少网络参数和防止过拟合现... 针对目前的深度卷积嵌入式聚类DCEC算法的网络结构存在的特征损失问题,提出了一种基于深度卷积降噪自编码器的新网络结构。在新网络结构中,通过优化DCEC中的卷积核步长参数,并加入池化层来加强特征提取的同时减少网络参数和防止过拟合现象,在解码器中添加了上采样层来恢复在编码器中池化操作造成的特征损失,并为了更有效地加强特征提取,在编码过程后添加全连接层过渡。由此得到一种基于改进CAE的DCEC_ICAE算法,并在三个经典图像数据集上测试,同时使用经典聚类评价指标进行评估。实验结果表明,提出的DCEC_ICAE算法的聚类性能要优于对比算法,证明了新网络结构的有效性和合理性。 展开更多
关键词 深度聚类 卷积降噪自编码器 深度嵌入式聚类 神经网络架构
在线阅读 下载PDF
基于改进Yolov3算法的舰船目标检测识别系统 被引量:5
20
作者 唐崇武 刘洪喜 代长安 《航空电子技术》 2022年第2期39-46,共8页
针对复杂战场环境下对海目标检测识别的需求,设计了一种基于改进Yolov3算法的海面舰船目标实时检测识别系统。使用微调分类网络、增加训练尺度、聚类目标边框维度、二级特征分类等方法对Yolov3检测识别网络模型进行了优化,在提高识别精... 针对复杂战场环境下对海目标检测识别的需求,设计了一种基于改进Yolov3算法的海面舰船目标实时检测识别系统。使用微调分类网络、增加训练尺度、聚类目标边框维度、二级特征分类等方法对Yolov3检测识别网络模型进行了优化,在提高识别精度的同时有效降低了漏检率和虚警率。实验结果表明,优化后的网络模型在自建的舰船图像数据库中将检测识别平均准确率提高到了79.3%,对真实海上航拍视频中舰船目标识别的平均准确率达到了81%以上。 展开更多
关键词 舰船目标检测识别 卷积神经网络 深度特征 模型训练 目标聚类
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部